Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

30 September 2021

Outline

- Intro
- 2 Examples
- Formal Definitions
- 4 Leftmost derivation and parse trees
- 5 Proving grammars correct

Why study Context-Free Grammars?

- Arise naturally in syntax of programming languages, parsing, compiling.
- Characterize languages accepted by Pushdown automata.
- Pushdown automata are important class of system models:
 - They can model programs with procedure calls
 - Can model other infinite-state systems.
- Easier to prove properties of Pushdown languages using CFG's:
 - Pumping lemma
 - Ultimate periodicity
 - PDA = PDA without ϵ -transitions.
- Parsing algo leads to solution to "CFL reachability" problem:
 Given a finite A-labelled graph, a CFG G, are two given vertices u and v connected by a path whose label is in L(G).

CFG G_1

$$\begin{array}{ccc} S & \rightarrow & aX \\ X & \rightarrow & aX \\ X & \rightarrow & bX \\ X & \rightarrow & b \end{array}$$

Derivation of a string: Begin with *S* and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

Example derivation:

S

CFG G₁

$$\begin{array}{ccc} S & \rightarrow & aX \\ X & \rightarrow & aX \\ X & \rightarrow & bX \\ X & \rightarrow & b \end{array}$$

Derivation of a string: Begin with *S* and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

$$S \Rightarrow aX$$

CFG G₁

$$\begin{array}{ccc}
S & \to & aX \\
X & \to & aX \\
X & \to & bX \\
X & \to & b
\end{array}$$

Derivation of a string: Begin with *S* and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

$$S \Rightarrow aX \Rightarrow abX$$

CFG G₁

$$\begin{array}{ccc}
S & \to & aX \\
X & \to & aX \\
X & \to & bX \\
X & \to & b
\end{array}$$

Derivation of a string: Begin with S and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

$$S \Rightarrow aX \Rightarrow abX \Rightarrow abb$$
.

CFG G₁

$$\begin{array}{ccc} S & \rightarrow & aX \\ X & \rightarrow & aX \\ X & \rightarrow & bX \\ X & \rightarrow & b \end{array}$$

Derivation of a string: Begin with *S* and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

Example derivation:

$$S \Rightarrow aX \Rightarrow abX \Rightarrow abb.$$

Language defined by G, written L(G), is the set of all terminal strings that can be generated by G.

CFG G₁

$$\begin{array}{ccc} S & \rightarrow & aX \\ X & \rightarrow & aX \\ X & \rightarrow & bX \\ X & \rightarrow & b \end{array}$$

Derivation of a string: Begin with S and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

Example derivation:

$$S \Rightarrow aX \Rightarrow abX \Rightarrow abb.$$

Language defined by G, written L(G), is the set of all terminal strings that can be generated by G.

What is the language defined by G_1 above?

CFG G₁

$$\begin{array}{ccc} S & \rightarrow & aX \\ X & \rightarrow & aX \\ X & \rightarrow & bX \\ X & \rightarrow & b \end{array}$$

Derivation of a string: Begin with S and keep rewriting the current string by replacing a non-terminal by its RHS in a production of the grammar.

Example derivation:

$$S \Rightarrow aX \Rightarrow abX \Rightarrow abb.$$

Language defined by G, written L(G), is the set of all terminal strings that can be generated by G.

What is the language defined by G_1 above? $a(a+b)^*b$

CFG G₂

$$\begin{array}{ccc} \mathcal{S} &
ightarrow & a \mathcal{S} b \\ \mathcal{S} &
ightarrow & \epsilon. \end{array}$$

$$S \rightarrow \epsilon$$
.

Example derivation:

S

CFG G₂

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}b \\ \mathcal{S} & \rightarrow & \epsilon. \end{array}$$

$$S \Rightarrow aSb$$

CFG G₂

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}b \\ \mathcal{S} & \rightarrow & \epsilon. \end{array}$$

$$S \rightarrow \epsilon$$
.

$$S \Rightarrow aSb \Rightarrow aaSbb$$

CFG G₂

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}b \\ \mathcal{S} & \rightarrow & \epsilon. \end{array}$$

$$S \rightarrow \epsilon$$
.

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb.$$

CFG G₂

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}b \\ \mathcal{S} & \rightarrow & \epsilon. \end{array}$$

$$S \rightarrow \epsilon$$
.

Example derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb.$$

What is the language defined by G_2 above?

CFG G₂

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}b \\ \mathcal{S} & \rightarrow & \epsilon. \end{array}$$

Example derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb.$$

What is the language defined by G_2 above? $\{a^nb^n \mid n \geq 0\}$.

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

Example derivation:

S

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

$$S \Rightarrow aSa$$

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

$$S \Rightarrow aSa \Rightarrow abSba$$

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbbba.$$

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

Example derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbbba.$$

What is the language defined by G_3 above?

CFG G₃

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$
.

Example derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbbba.$$

What is the language defined by G_3 above? Palindromes: $\{w \in \{a, b\}^* \mid w = w^R\}.$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Exercise: Derive "((()())()())".

S

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$S \Rightarrow (S)$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{cc} S & \Rightarrow (S) \\ & \Rightarrow (SS) \end{array}$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\begin{array}{ccc}
S & \Rightarrow (S) \\
\Rightarrow (SS) \\
\Rightarrow (SSS)
\end{array}$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\Rightarrow (S) \\ \Rightarrow (SS) \\ \Rightarrow (SSS) \\ \Rightarrow ((S)SS)$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\Rightarrow (S)$$

$$\Rightarrow (SS)$$

$$\Rightarrow (SSS)$$

$$\Rightarrow ((S)SS)$$

$$\Rightarrow ((SS)SS)$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\Rightarrow (5)$$

$$\Rightarrow (55)$$

$$\Rightarrow (555)$$

$$\Rightarrow ((5)55)$$

$$\Rightarrow ((55)55)$$

$$\Rightarrow (((5)5)55)$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

$$\Rightarrow (S)$$

$$\Rightarrow (SS)$$

$$\Rightarrow (SSS)$$

$$\Rightarrow ((S)SS)$$

$$\Rightarrow ((SS)SS)$$

$$\Rightarrow (((S)S)SS)$$

$$\Rightarrow (((S)S)SS)$$

$$\Rightarrow (((S)S)SS)$$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Exercise: Derive "((()())()())".

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Exercise: Derive "((()())()())".

```
S ⇒ (S)

⇒ (SS)

⇒ (SSS)

⇒ ((SS)SS)

⇒ (((SS)SS)

⇒ (((SS)SS)

⇒ (((()SS)SS)

⇒ ((()()()SS)

⇒ ((()()()SS)

⇒ ((()()()(S)

⇒ ((()()()(S))

⇒ ((()()()(S))

⇒ ((()()()(S))
```

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Exercise: Derive "((()())()())".

What is the language defined by G_4 above?

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Exercise: Derive "((()())()())".

What is the language defined by G_4 above?

Balanced Parenthesis: $w \in \{(,)\}^*$ such that

- $\#_{(}(w) = \#_{)}(w)$, and
- for each prefix u of w, $\#_{\ell}(u) \geq \#_{1}(u)$.

Visualizing balanced parenthesis

Balanced Parenthesis: $w \in \{(,)\}^*$ such that

- $\#_{(}(w) = \#_{)}(w)$, and
- for each prefix u of w, $\#_{(}(u) \ge \#_{)}(u)$.

CFG's more formally

A Context-Free Grammar (CFG) is of the form

$$G = (N, A, S, P)$$

where

- N is a finite set of non-terminal symbols
- A is a finite set of terminal symbols.
- $S \in N$ is the start non-terminal symbol.
- P is a finite subset of $N \times (N \cup A)^*$, called the set of productions or rules. Productions are written as

$$X \to \alpha$$

Derivations, language etc.

- " α derives β in 0 or more steps, according to G": $\alpha \Rightarrow_G^* \beta$.
- First define $\alpha \stackrel{n}{\Rightarrow} \beta$ inductively:
 - $\alpha \stackrel{0}{\Rightarrow} \alpha$.
 - $\alpha \stackrel{1}{\Rightarrow} \beta$ iff α is of the form $\alpha_1 X \alpha_2$ and $X \to \gamma$ is a production in P, and $\beta = \alpha_1 \gamma \alpha_2$.
 - $\alpha \stackrel{n+1}{\Rightarrow} \beta$ iff there exists γ such that $\alpha \stackrel{n}{\Rightarrow} \gamma$ and $\gamma \stackrel{1}{\Rightarrow} \beta$.
- Sentential form of G: any $\alpha \in (N \cup A)^*$ such that $S \Rightarrow_G^* \alpha$.
- Language defined by G:

$$L(G) = \{ w \in A^* \mid S \Rightarrow_G^* w \}.$$

• $L \subseteq A^*$ is called a Context-Free Language (CFL) if there is a CFG G such that L = L(G).

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\underline{S} \Rightarrow (\underline{S})$$

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\begin{array}{cc} \underline{S} & \Rightarrow (\underline{S}) \\ & \Rightarrow (\underline{S}S) \end{array}$$

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\underline{S} \Rightarrow (\underline{S}) \\
\Rightarrow (\underline{S}S) \\
\Rightarrow ((\underline{S})S)$$

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\begin{array}{ll}
\underline{S} & \Rightarrow (\underline{S}) \\
& \Rightarrow (\underline{S}S) \\
& \Rightarrow ((\underline{S})S) \\
& \Rightarrow (()S)
\end{array}$$

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\begin{array}{ll}
\underline{S} & \Rightarrow (\underline{S}) \\
& \Rightarrow (\underline{S}S) \\
& \Rightarrow ((\underline{S})S) \\
& \Rightarrow (()\underline{S}) \\
& \Rightarrow (()(\underline{S}))
\end{array}$$

- A leftmost derivation in G is a derivation sequence in which at each step the leftmost non-terminal in the sentential form is re-written.
- Example:

$$\begin{array}{ll}
\underline{S} & \Rightarrow (\underline{S}) \\
& \Rightarrow (\underline{S}S) \\
& \Rightarrow ((\underline{S})S) \\
& \Rightarrow (()\underline{S}) \\
& \Rightarrow (()(\underline{S})) \\
& \Rightarrow (()())
\end{array}$$

Derivation represented as parse tree:

$$\underline{S} \Rightarrow (\underline{S})
\Rightarrow (\underline{S}S)
\Rightarrow ((\underline{S})S)
\Rightarrow (()\underline{S})
\Rightarrow (()(\underline{S}))
\Rightarrow (()())$$

- Sentential form can be read off from the leaves of the parse tree in a left-to-right manner.
- Leftmost derivations and parse trees represent eachother.

CFG G₁

$$\begin{array}{ccc}
S & \to & aX \\
X & \to & aX \\
X & \to & bX \\
X & \to & b
\end{array}$$

Prove that $L(G_1) = a(a+b)^*b$.

CFG G_1

Examples

$$\begin{array}{ccc}
S & \to & aX \\
X & \to & aX \\
X & \to & bX \\
X & \to & b
\end{array}$$

Prove that $L(G_1) = a(a+b)^*b$.

- Show that $L(G_1) \subseteq L(a(a+b)^*b)$, and $L(a(a+b)^*b) \subseteq L(G_1)$.
- Use induction statement that talks about sentential forms rather than just terminal strings.
- Eg P(n): "If $S \stackrel{n}{\Rightarrow}_{G_1} \alpha$ then α is of the form S, auX, or aub, with $u \in \{a, b\}^*$."
- Follows that all terminal sentential forms are of the form "aub" $\in L(a(a+b)^*b)$.
- For $L(a(a+b)^*b) \subseteq L(G_1)$ use induction statement "If |u| = n then $S \Rightarrow_{G_1}^* auX$."

Proving grammars correct

CFG G₂

$$S \rightarrow aSb$$

Prove that $L(G_2) = \{a^n b^n \mid n \geq 0\}.$

CFG G₄

$$S \rightarrow (S) \mid SS \mid \epsilon$$
.

Prove that $L(G_4) = BP$.

Visualizing balanced parenthesis

Balanced Parenthesis: $w \in \{(,)\}^*$ such that

- $\#_{(}(w) = \#_{)}(w)$, and
- for each prefix u of w, $\#_{(}(u) \ge \#_{)}(u)$.

