LOGIC AND ALGEBRA AS REGULAR BEHAVIOUR

KAMAL LODAYA

1. EXPRESSIONS TO LOGIC

Fix a nonempty finite set A as an alphabet. Its elements are called letters. A finite sequence
of lettersw : {1,...,n} — A, such as aabab, is called a word over the alphabet. (Some people
say a string.) A set of words is called a language.

The set of all words over A is written A*. The empty word is written . In general, given
a language L, its iteration L* is the language formed by concatenating words from L to form
another word. For instance, given the language {aa, ab, b}, also written aa UabUb, the word
aabab is in {aa,ab,b}*, but the word ba is not. The null word ¢ is always in any L* (by
taking words from L zero times). The set of nonempty words over A is A*.

This notation, with some ad hoc extensions, can be used to describe languages. We
will not look into the details of the notation: these are called reqular expressions, and are
defined in any book on automata theory. We assume that the reader is familiar with such
material. With this background, the aim of this article is to examine some subclasses of
regular languages which can be characterized using logic as well as algebra. Proofs are
barely sketched. The interested reader should try to follow up the material and construct
more detailed proofs.

1.1. Expressions. The starfree expressions are those where the iteration L* is not allowed.
The dot depth of a starfree expression is the maximum number of nested alternations of the
boolean operations (e; U es and €) and concatenations (ejes...e,). Since complement is
allowed, infinite languages are also describable. Thus A* can be described as (), a starfree
expression of dot depth 0. The dot depth 1 expression A*bbbA* describes the language
NoThreeBs of words which do not have three consecutive occurrences of the letter b.

Exercise 1. Give a starfree expression for the language Cycle = (ab)*.

Exercise 2. Verify that the language (ab+ ba)* can be described by the dot depth 2 starfree
expression (A*a b(ab)* aA*) U (A*b (ab)*a bA*).

The language (aa)* is not starfree. How do we prove this?

1.2. Logic. A more systematic notation that programmers and computer scientists have
come to use is logical formulas. Here is a sentence in first-order logic describing exactly the
words in the language NoT hreeBs = A*bbbA*:

VaVyVz(y = 2+1 Az = y+1 A b(x) Ab(y) D —b(2))
1



Formally, we are working in a structure {1,...,n} of positions in the word, with pointers
indicating the positions of variables (indicated below by underlines), binary predicates for
the linear order and the successor (z < y and y = 241 can be thought of as binary predicates
less(x,y) and successor(x,y)), and unary predicate symbols {a(.) | a € A} for the letters.
Thus the logic has a signature with these predicate symbols. Since successor is also definable
using the order (how?) and the unary letter predicates are there in all logics on words, it is
conventional to abbreviate the signature and call the logic FO[<].

Exercise 3. Define y = z+1 in FO[<].

At each position, the unary predicate corresponding to the letter at that position holds,
and no other. Pointer functions like s = [z — 5,y + 6] below are called “assignments” and
written w, s = « in logic textbooks. A detailed inductive definition is not given here.

ababablEy=x+1Ab(x) D -bly)
ababab J=x <yAbx)D-by)
abaabb f=y=z+1Ab(x) D -b(y)

More precisely, we put the pointers into the words, expanding the alphabet to A x p(Vary),
where the variables Var; are those which appear in the first-order formula, constrained to
occur exactly once in the word model.

(6) (8) () ({%) () (8) -y — a1 Ab() D bly)

Position i in the word having the letter (a, {z,y}) means that in addition to its having the
letter a, the variables = and y are assigned the position ¢. Thus a word becomes a model for
a sentence (a formula with no free variables). A language, a set of words, becomes a set of
finite models for the formula.

Here is a sentence, repeatedly reusing two variables, for After LastB = A*bc*d(a+ c+ d)*
over alphabet A = {a,b,¢,d}. Since it is long, it is presented in two steps:

AfterLastB = Fx(b(x) AVy(z <y D -b(y)) A Jy(x <y Ad(y) ANToLastB(y)))),
ToLastB(y) = Va(x <yA-c(x) D Iy(z <yAbly)))

Exercise 4. Write a sentence for the language Cycle = (ab)*. Use few variables.

ROBERT MCNAUGHTON AND SEYMOUR PAPERT showed in their 1971 book that what
we have seen from the examples generalizes all the way to starfree expressions.

Theorem 5 (MCNAUGHTON AND PAPERT). The starfree languages are FO[<|-definable.

Proof. By induction on the starfree expressions we construct a first-order logic sentence
whose finite word models define the same language.

The expression () maps to false, the expression a to the two-variable formula (i = j) A a(i).
Boolean operations on the expressions translate into the same operations on logical formulas.
We are left with concatenation ejes: use the two-variable formula 3z3y(y = z+1 A e[f A e[Qy’j ]),
where the FO sentences for the expressions e, e5 obtained from the induction hypothesis

are relativized to intervals. When the empty word is in e; or ey, add disjuncts for e;es being
2



a,b,c,d

FIGURE 1. Automata for the languages NoT hreeBs, AfterLastB, Cycle and Bicycle

ey or ey respectively. Relativization can be defined by induction on the logical formula: for
boolean combinations we push the relativization down onto the subformulas. For the quan-
tifier, we have (3w¢(x))) = J2(i <2 < j A (¢(2)7))). Finally the endpoints i and j have
to be quantified out existentially, when the empty word is in the language an exception is
made. U

2. LOGIC AS AUTOMATA BEHAVIOUR

Cognitive scientists, like WARREN MCCULLOCH AND WALTER PITTS in the 1940s, in-
vented a graphical notation (called finite automata) to represent regular languages.

Formally, a transition system is a directed graph (@, 0), with the edges (called transitions)
labelled by letters of the alphabet (6 C @ x A x @) which can be alternately seen as the
function § : A — p(Q x Q). The vertices are called states. A finite automaton is a finite
transition system with a set of initial states and a set of final states I, F C (). Figure 1
shows you automata for the languages we have been talking about. The leftmost state of
each automaton is its only initial state, and final states are marked by double circles.

Here is how an automaton operates. It begins in an initial state. On each letter of the
word, it takes the corresponding transition from the current state into a (possibly) new state.
At the end of the word, if the automaton is in a final state, it accepts the word. The language
accepted by the automaton is all words for which there is a sequence of moves from an initial
state to a final state.

Exercise 6. Design an automaton accepting the language Even of all even-length words.

Does looking at languages using automata help in our attempt to describe them in logic?
Yes, here is a sentence for the transition system of the automaton for Bicycle:

JW3X3y3iz

(VuVz(W(w) A z=w+ 1D ((a(w)
ANYVa2Vz(X(z)ANz=2+1D ((a(z) D
ANY2(Y(y) Nz=2+1D ((aly) D Z(z))
NYNe(Z(z) Ne=z+1D Z(x))

)

3



This is a sentence of monadic second-order logic, with the variables W, XY, Z € Vary rang-
ing over sets of positions. Each such set variable stands for a state of the transition system,
and is interpreted as being true for the positions of the word at which the automaton, oper-
ating on the word, is in that state. A little more is required to fully describe an automaton
—for instance, the initial and final states must be used.

Exercise 7. Giwen an arbitrary finite automaton, make up a sentence describing the language
accepted by it.

Formally, our word models are now also equipped with an interpretation for the second-
order variables. Think of the automaton alphabet as being expanded with a set of first-
and second-order variables, specifying at each position the variables which are true there.
It is conventional to write this as the signature MSO[+1] because in monadic second-order
logic the order relation is definable using successor. Here is a hint. Think of how you would
represent the set obtained by taking the image of the transitive closure of a relation.

Exercise 8. Construct automata on the alphabet A x p({x,y}) x p({X}) which check if
a(x), y=x+1 and X(y) are true.

Using these techniques, independently BORIS TRAKHTENBROT in 1958, RICHARD BUCHI
in 1960 and CALVIN ELGOT in 1960, were able to prove a fundamental result:

Theorem 9. The languages accepted by finite automata are exactly those which can be
defined in the monadic second-order theory of the successor relation (MSO[+1]) over words.

Proof. One direction of the proof was sketched above.

For the converse we use induction on the structure of formulas. Finite automata can be
constructed for the atomic formulas. From automata theory, we know that regular languages
are closed under the boolean operations as well as under projection (how?), which we use
for the cases dealing with both the first- and second-order quantifiers. 0

A little more is true. Checking satisfiability or validity of monadic second-order logic is
reduced to checking the automaton constructed above for nonemptiness or universality.

Corollary 10 (BUcHI, ELGOT AND TRAKHTENBROT). The monadic second-order theory
of successor MSO[+1] over finite words is decidable.

3. ALGEBRAIC REPRESENTATION OF AUTOMATA

MICHAEL RABIN AND DANA SCOTT in a 1965 paper showed, using a powerset construc-
tion which they derived from JOHN MYHILL, that for finite automata, it is sufficient to
consider deterministic transition systems where there is a unique a-labelled edge leaving a
state ¢, for every a and gq.

First observe that the set of relations p(Q x Q) over the finite set ) is the transition monoid
of the system, with relation composition being the monoid operation and the identity relation
as the unit 1 of the monoid. Recall that a monoid is a set with a binary associative operation
o which has a unit, that is, mol =m =1om.

4



F1GURE 2. Two transition systems and their transition functions as monoids

Since the set of all words A* is the free monoid generated by A, the function § can be
extended to a monoid homomorphism h : A* — p(Q x Q) using h(zy) = h(x) o h(y) and
h(e) = 1. Conventionally ¢ is used as a name for the extended morphism h.

In this sense finite monoids can be derived from finite transition systems. Figure 2 (which
appeared in MCNAUGHTON AND PAPERT’s book) shows, for a deterministic transition sys-
tem with states @ = {q,r,s}, its set of transition functions @) — Q. A triple like mnp is the
image of q,r,s respectively. The “transition” on letter a is seen as the right-composition of the
“state” (function in the transition monoid) by the function corresponding to a. Idempotent
elements (functions e such that e = e o e) are starred.

Exercise 11. Construct the minimal dfa and transition monoid of the automaton for Cycle.
It has eight elements, five of which are idempotent.

3.1. Congruences of finite index. Two words = and y are equivalent if they define the
same relation h(x) = h(y) on Q. This is a finite-index congruence (called the kernel of
h) studied by MYHILL in the 1950s. ANIL NERODE studied the more compact “right”
congruences. The relations which map initial states I to final states F' in an automaton are
a subset of its transition monoid, and the language accepted is h=*(I x F'). The result is:

Theorem 12 (MYHILL AND NERODE). The reqular languages are exactly those which are
inverse images of morphisms into (designated subsets of ) finite monoids.

Proof. The explanation above gives the argument in the forward direction. For the converse,
the monoid itself can be used as the set of states and each multiplication ma = m/, a € A,
gives a deterministic a-labelled transition. 1 is the unique initial state and the designated

subset gives the final states. O
5



The finite monoid is said to recognize the corresponding regular language. MYHILL AND
NERODE showed that the congruences corresponding to finite automata form a lattice.
Therefore, given a regular language L, there is a maximal saturating finite-index congruence
for it, and by a quotient construction, a minimal deterministic finite automaton accepting
L. Its transition monoid is called the syntactic monoid of the language.

3.2. Inside regular languages. In this article we will consider a subclass of regular lan-
guages, also of automata and of monoids.

Gixen a finite automaton, the nonempty word w € A™ is a counter if the transition func-
tion §(w) induces a nontrivial permutation on the states ). In Figure 1, the word a is a
counter in the bottom automaton on the states X,Y, 7, while the word b is a counter on
X, Y. An automaton without any counter is counter-free, as studied by MCNAUGHTON AND
PAPERT. For example, the top automaton in Figure 2 is counter-free. It has cycles, but the
cycles are not formed from counters. Recently FABRICE CHEVALIER, VOLKER DIEKERT,
DEeEEPAK D’SouzA, PAUL GASTIN, RAJ MOHAN AND PAVITHRA PRABHAKAR observed

that counter-freeness is preserved across automata.

Lemma 13. Given a counter-free nondeterministic automaton, there is a counter-free de-
terministic automaton accepting the same language.

Proof. Use the Rabin-Scott construction from a counter-free automaton M to a powerset

automaton N accepting the same language. Suppose N has a counter X 2L X for some
state X, some w € AT, n > 1. From the subset construction, for each ¢ € X from M,

we find pw—n>q in the automaton M for some p € X. Iterating backward and using the
pigeonhole principle on the finite automaton M, we can find some p € X and positive j, k

such that pw—m>pw—m>q in M. Since M was counter-free, w C/(\)uld not be a nontrivial/\counter,
so p—p. Hence p is in 6(w'™)(X), which is the same as §(w)(X). That is, X C §(w)(X).
By induction §(w)(X) C §(w™)(X) = X. So X==X in N and N is counter-free. O

Theorem 14 (SCHUTZENBERGER 1966, MCNAUGHTON-PAPERT 1971). Given an FO[<]
sentence (formula), the (pointed) language defined by it is accepted by a finite counter-free
automaton.

Proof. By induction on FO[<] formulas with free variables V;, we construct a counter-free
automaton over the pointers alphabet A x p(V;): for a(z), x =y and = <y we directly
construct the automata; for ¢ A 1 we have a product construction; for = ¢ we assume a
deterministic automaton and exchange final and non-final states; for dx¢ we project the
automaton to the alphabet A x p(V; \ {}) by nondeterministically guessing the position
interpreting . Now use Lemma 13. U

The subclass of monoids required to represent counter-free automata is easy to define. A
group is a monoid in which every element has an inverse. The bottom automaton in Figure 2
shows that (minimal) transition systems which are groups have a very symmetric structure.

Exercise 15. Given a finite monoid, how can one find its maximal subgroups?
6



A monoid which is not a group can have submonoids which turn out to be groups. For
example, any idempotent e defines a trivial subgroup {e} since e is its own inverse. This
gives us the right definition, of a monoid which has only trivial subgroups.

Theorem 16 (SCHUTZENBERGER 1965). The transition monoid of a reduced counter-free
automaton does not contain any nontrivial subgroup.

Proof. Let G be a subgroup in the syntactic monoid of the language accepted by the automa-
ton, containing powers of an element g € G. One of those powers must be an idempotent
g" = (g")? = g*" for n > 1. Towards a contradiction assume nontriviality of the group, so
g" # g™l By minimality of the automaton there is a word w mapping to g. So for some

state ¢, we find states 6(w™)(q) = r = 6(w?")(¢q) = §(w™)(r) and by supposition, r # &(w)(r).
Hence w is a counter which permutes the states {r,d(w)(r),...,5(w™1)(r)}. O

3.3. Starfree languages. Using a theory of monoid ideals from a paper by JAMES GREEN
in 1951, SCHUTZENBERGER in 1965 proved the remaining result which characterizes regular
languages corresponding to first-order logic. The theory of monoid ideals will not be given
here. A second proof of this theorem, based on the theory of implementing an automaton
by a product of simpler automata (developed by KENNETH KROHN AND JOHN RHODES in
1965), was first published by ALBERT MEYER in 1969. This theory is not given here.

THOMAS WILKE came up with a third proof, published in 1999. His proof is described by
HOWARD STRAUBING AND PASCAL WEIL in an introductory article, where there is more
material on automata, logic and algebra.

Theorem 17 (Schiitzenberger). If the syntactic monoid of L has only trivial subgroups, then
the language recognized is starfree.

Exercise 18. Prove that there are no sentences of FO[<] defining languages (aa)* and Even.

Corollary 19. There is an algorithm to check, given a regular language, whether it is de-
finable using a sentence of first-order logic FO[<].

Proof. The converse of Theorem 17 is by using the implications in Theorems 5,14,16. All
the implications therefore become equivalences. Now use Exercise 15. 0

THE INSTITUTE OF MATHEMATICAL SCIENCES, C.I.T. CaMpPUs, CHENNAI 600 113, INDIA.



