
E0:272, Formal Methods in Software
Engineering

3:1, January - April 2018
CSA 252, M-W 9.30-11

http://www.csa.iisc.ac.in/~deepak/fmse-2018

Deepak D’Souza K. V. Raghavan

CSA, IISc

Motivation

• Software is increasingly used in a wide range of domains:
business, personal, scientific, embedded control.

• Therefore, software development ought to
• be efficient and predictable
• result in high quality (i.e., correct and reliable) software

• The way to achieve this is to use automated analysis tools

• Methodology of the course: Hands-on study of a series of
advanced tools

• Both research tools, as well as mature, widely-used tools

• Knowledge of such tools gives
• Exposure to practical uses of various analysis techniques
• Generates research ideas for developing better tools
• Prepares one for career in software-development industry

Software development is hard

Average software-development project [Barry Boehm, ICSE ’06
keynote] incurs:

• 90% cost overrun

• 121% time overrun

• delivers only 61% of initially promised functionality

Software defects

• Most large software is buggy

• They cause user dissatisfaction, and sometimes catastrophe
(e.g., Ariane 5 rocket explosion)

• Finding and fixing bugs consumes 50% of the total effort in
software development!

Causes of software defects

• User’s requirements not specified properly

• Design does not meet user requirements.
• More than 50% of all defects are due to above two reasons

• Implementation errors
• Low-level errors, such as null-pointer dereference, array out of

bounds
• Different components of the software (or software and

libraries) evolve separately, and become inconsistent.
• Logical errors

�������������������

����������������

����������

��������������

���������������

������

��������

���������

������

�����������

�������

����������������

���������������

��������������

�����������������

������������������

��������������������

�������������������

����������

������������

�����������������

���������

�����������

����������

������

����������

������

The solution to the problem: tools

• Tools are available for all stages of software development

• Benefits of tools
• Tackle complexity by providing abstract views of software
• Identify errors by exhaustive analysis
• Provide reliable way to make changes
• Make software development more like engineering, and less of

an art

• Our focus is mostly on
• Formal tools, that provide definitive guarantees, and
• Involve non-trivial capability for analysis or transformation.
• We will cover only a small selection of the tools available!

Tools for conceptual modeling and design

• Alloy (Conceptual modeling)
• Formalize key entities in the domain, their relationships

between them, and the operations that can be performed on
them.

• Helps identify inconsistencies and incompleteness in
requirements.

• Rodin (Modeling/design)
• Step-wise refinement of a conceptual model, with guarantee of

preservation of all properties.
• Ultimately: refine to code level.

• Spin (Modeling/design)
• Specify states in the system, and the transitions between them.
• Identify the properties of the sequences of states that can arise.

Overview of Alloy

• Formal modeling of entities and relationships, using sets and
relations

• Modeling of invariants/constraints on the entities

• Analyzing consistency of the model, and identifying errors

Example – keeping track of family relationships

Examples of desired constraints

• Every person has two parents, one man and one woman

• Parents of any child are married

• Cannot marry a sibling or a parent

• Every person is married to at most one person

• a married to b ⇒ b is married to a

• A man can only marry a woman, and vice versa

Key elements of Alloy model

• abstract sig Person

• Person is a abstract entity (i.e., with no concrete instances).

• sig Man, Woman extends Person {}
• Man, Woman are subtypes of Person.
• No other subtypes. Therefore, every instance of Person is an

instance of either Man or Woman.

• spouse is a relation mapping each Person to zero or one Person

• parents is a relation mapping each Person to zero or more
Persons

• Constraints
fact {

all p: Person | one mother: Woman | one father: Man |

p.parents = mother + father // every person has a mother and father

spouse = ~spouse // spouse is symmetric

Man.spouse in Woman && Woman.spouse in Man

// a man’s spouse is a woman and vice versa

}

Results of using Alloy on above example

• Our rules are too relaxed. They allow instances wherein a
person is their own grandparent.

• We could add an extra rule (i.e., fact) that no person be
their own grandparent. However, with this, there are no
non-trivial instances!

Model checking using Spin/SAL

• Given an abstract model like a state machine, and a
specification of desired behaviour of all traces (typically in
temporal logic), the tool tries to verify that the model satisifes
the property.

• If not, it produces a counterexample: a behaviour of the
model that violates the property.

• Similar to Alloy, but checks traces of a state machine rather
than entities and relationships.

Example: Simple Operating System Scheduler

• Scheduler has two tasks (task1 and task2) to schedule.

• Events in the system: sched, block, unblock, fin.

• Scheduler non-deterministically schedules a task if it is ready.

running:

running:

running: running:

blocked:

sched ready:

ended:

0

F T

T

F

F

F

block

blocked:

sched

ready:

ended:

2

T F

F

F

F

F

blocked:

ready:

ended:

0

T T

F

F

F

F

ready:

ended:

1

F T

F

F

F

F

blocked:

Scheduler model in SAL (1)

scheduler: context =

begin

Events: type = {nop, sched, fin, block, unblock};

scheduler: module =

begin

input event: Events

local running: [0..2]

local ready: array [1..2] of boolean

local blocked: array [1..2] of boolean

local ended: array [1..2] of boolean

initialization

running = 0; % no process is running.

ready[1] = true; % process 1 is ready.

ready[2] = true; % process 2 is ready.

blocked[1] = false;

blocked[2] = false;

ended[1] = false;

ended[2] = false;

Scheduler model in SAL (2)

transition [

((event = sched) AND ready[1] AND (running = 0)) -->

running’ = 1; ready’[1] = false;

[] ((event = sched) AND ready[2] AND (running = 0)) -->

running’ = 2; ready’[2] = false;

[] ((event = block) AND (running /= 0)) -->

running’ = 0; blocked’[running] = true;

[] ((event = unblock) AND blocked[1]) -->

ready’[1] = true; blocked’[1] = false;

[] ((event = unblock) AND blocked[2]) -->

ready’[2] = true; blocked’[2] = false;

[] ((event = fin) AND (running /= 0)) -->

running’ = 0; ended’[running] = true;

[] else --> % do nothing

]

end;

Properties we may want to check of the model

• “nocreate:” Once a task has ended it is never created again.

• “nostarve:” Once a task is ready it eventually runs.

• “stateseq:” Each task follows specified state motion:

Ready Running

Blocked

unblock block

sched
Ended

nop nop nop

nop

fin

Properties in SAL

nocreate: theorem scheduler |- G(ended[1] => NOT F(ready[1]));

nostarve: theorem scheduler |- G(ready[1] => F(running = 1));

stateseq: theorem scheduler |- G(((ready[1] AND event = nop) => X(ready[1])) AND

((ready[1] AND event = sched AND running = 0 AND NOT ready[2]) =>

X(running = 1)) AND

((running = 1 AND event = nop) => X(running = 1)) AND

((running = 1 AND event = block) => X(blocked[1])) AND

((blocked[1] AND event = nop) => X(blocked[1])) AND

((blocked[1] AND event = unblock AND NOT blocked[2]) => X(ready[1])));

Output of SAL checker
$ sal-smc scheduler.sal

Counterexample for ’nostarve’ located at [Context: scheduler, line(40), column(0)]:

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

event = unblock

--- System Variables (assignments) ---

running = 0

ready[1] = true

ready[2] = true

blocked[1] = false

blocked[2] = false

ended[1] = false

ended[2] = false

Step 1:

--- Input Variables (assignments) ---

event = unblock

--- System Variables (assignments) ---

running = 0

ready[1] = true

ready[2] = true

blocked[1] = false

blocked[2] = false

ended[1] = false

ended[2] = false

========================

Begin of Cycle

========================

Step 1:

--- Input Variables (assignments) ---

event = unblock

--- System Variables (assignments) ---

running = 0

ready[1] = true

ready[2] = true

blocked[1] = false

blocked[2] = false

ended[1] = false

Output of SAL checker (ctd)

Summary:

The assertion ’nocreate’ located at [Context: scheduler, line(39), column(0)] is valid.

The assertion ’nostarve’ located at [Context: scheduler, line(40), column(0)] is invalid.

The assertion ’stateseq’ located at [Context: scheduler, line(41), column(0)] is valid.

Trace that violates “nostarve” property

running: running:

blocked:

unblockready:

ended:

0

T T

F

F

F

F

ready:

ended:

0

T T

F

F

F

F

blocked:

unblock

Tools for implementation and testing

• Verification tools [VCC]
• Guarantee that a program returns correct output in all runs.
• Programmer needs to specify formally correctness of program

output
• Programmer also needs to specify intermediate properties that

need to hold at various program locations in order for final
output to be correct. Otherwise, tool may fail to work or may
report false warnings.

• Automated testing tools [Pex, AFL]
• Based on actually executing the program on test-cases.
• Both tools automatically generate test inputs one after the

other, to try to reach more and more parts of the program.
• Developer would need to specify a way to check correctness of

output from each run. However, developer need not annotate
intermediate program locations with intermediate properties.

• All bugs found are true bugs.
• However, can miss bugs.

Prerequisites

• Discrete structures such as sets, relations, partially ordered
sets, functions

• Mathematical logic (propositional, first-order)

• General mathematical maturity: comfort with notation,
understanding and writing proofs

• Familiarity with languages C/C++ and Java

• (Moderate) programming experience

Lecture format

• Demo of tools

• Theory and algorithms behind the tools

Assignments and exams (tentative)

• Assignments (60%). Each assignment will involve
• applying one or more tools practically, and
• a few written problems

• Exams: mid-sem (15%), final (25%).
• Will have practical (lab) component.

Misconduct policy

• Academic misconduct (e.g., copying) will not be tolerated
• Discussion in exams ⇒ automatic fail grade for both students
• Assignments

• Work individually.
• If necessary, you can seek clarifications on basic concepts from other

students.
• However, you must develop the solutions to the given problems on your

own (without discussions), and write the programs or answers on your
own.

• No looking at others solutions, no showing your solution to others!
• If you refer to materials other than class lecture notes and text books,

mention them.

• Penalties
• For each instance of a violation of above policy ⇒

Zero for the entire assignment, plus one grade-point reduction in final
grade (for the one who copied).

• Grade-point reductions over multiple violations will accumulate.

• Grading: Your marks for each assignment will be based on your
written answers and on a subsequent viva.

Late policy for assignments

• 12 “free” late days for use over all assignments.

• For each late day after free days have been exhausted ⇒ 25%
penalty on the assignment marks. (Weekends and weekdays
treated the same.)

• No late days allowed on final assignment.

