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Abstract

Sapphire is a multi-processor/multicore simulator where the mem-
ory hierarchy, interconnect (network on chip) and offchip DRAM are
parametrized and can be configured to model various configurations.
Sapphire addresses shortcomings in SESC by integrating it with Ruby
from the GEMS framework. Sapphire also integrates Intacte, an in-
terconnect power model. DRAMSim models off-chip DRAM in great
details. This has been integrated with Ruby. Power consumed by
DRAM is modelled using MICRON power model. Thus Sapphire al-
lows users to explore power and performance implications of all main
system components like processor, interconnect, cache hierarchy and
offchip DRAM.

1 Introduction

Multi-core processors are becoming ever more popular. We are currently
seeing multi-core processors connected through simple 1-D interconnections
such as buses, rings etc. Newer architectures that employ 2-D intercon-
nection structures like mesh based architectures will soon be available viz.
Intel 80 tile architecture. These kind of architectures provide a large design
space which an architect would want to explore better and efficient architec-
tures. The design space includes (but not limited to) exploring performance
optimization and energy efficiency in the context of different network topolo-
gies, network flit size, routing algorithms, router design, choice of each node
(spanning from single compute elements to full processors), size of caches at
various levels, co-scheduling algorithms for applications etc. The simulation
framework for multi-cores must be endowed with sufficient configurability
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so as to enable exploration of some or all of these parameters for energy
efficiency/performance optimization.

Multi-core simulators available today primarily fall under two categories,
namely processor simulators and system simulators. Processor simulators
model the processor pipeline in detail and are suitable for microarchitectural
exploration. Simulators such as SESC[15], Opal[12] are processor simulators
which are popular. These simulators cannot model the system-level impact
of a certain change. System simulators such as Simics [11], M5 [4] simu-
late the entire system (including the processor, caches, memory hierarchy,
I/O devices). Most system simulators allow booting of complete operating
systems and perform end-to-end simulations. Such simulators are useful for
modeling the system level impact of a macro architectural change or changes
to the system software. But this makes these simulators very slow.

To make the simulator faster, various techniques have been applied like
simulation of an interval from every phase of the program, instead of simu-
lating the whole program[16], abstracting various components of the system
architecture or selectively simulating on the native platform and on the cycle-
accurate simultor. Yet another popular tool is CMP-$im [7]. Unlike other
simulators, CMP-$im uses dynamic instrumentation to track certain events
of interest. The execution happens on the host processor and instructions are
added to the application binary to capture events of interest. While such a
technique can be used to perform cache modeling, the scheme cannot be ap-
plied to explore diverse cache configurations like distributed caches [5], tiled
caches [21] and molecular caches[18] and wide range of interconnect topolo-
gies from bus-based to point-to-point and Network-on-Chip based choices
like torus and meshes.

2 Motivation

SESC [15] is an open-source processor simulator that is capable of model-
ing multi-cores or chip multiprocessors(CMPs), simultaneous multi-threading
and symmetric multi-processors. The simulator models the MIPS processor
instruction set. The simulator consists of a functional emulator which per-
forms the functional simulation. The trace of instructions executed by the
functional emulator are passed through the timing model. It models minute
details of the processor pipeline and processor components. Such a decou-
pled implementation lends high efficiency to the SESC processor implementa-
tion. The simulator also models the memory hierarchy and the interconnect.
However, these models cannot be easily extended to perform various archi-
tectural explorations with regard to caches and network on chip. Also, the
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interconnection implemented in SESC is not advanced and does not model
2-D interconnections. As shown subsequently, the network on chip is an im-
portant component which contributes to performance and energy efficiency.
Since the source and sink of the data on the network are the various ele-
ments of the memory hierarchy, it is essential to model these accurately. As
per [9], interconnects consume significant amount of power and area on the
chip, compared to caches and cores on CMPs. Hence interconnects should be
co-designed along with caches on CMPs. However, implementations of these
components in SESC needs substantial improvement to support configura-
bility to the extent available in Ruby, the memory hierarchy simulator[12].

The GEMS [12] simulation framework includes Opal, the processor simu-
lator and Ruby, the memory hierarchy simulator. Opal simulates the SPARC
instruction set and performs detailed pipelining modeling. Opal too uses a
functional simulator for actual application execution and the timing is ob-
tained from the pipelining. For functional simulation, it employs Simics [11].
The GEMS simulation framework can operate in two modes: Simics+Ruby
and Simics+Opal+Ruby. The use of Simics helps GEMS to do system-level
modeling while not trading off the accuracy of pipeline modeling. However,
due to the use of Simics, this approach incurs the overhead of simulating
the operating system and other I/O devices. Even though Simics provides
an efficient implementation of all components, it increases simulation time.
Also a user intending to evaluate the micro-architectural changes does not
need the completeness of system-level modeling. Ruby simulates the mem-
ory hierarchy and interconnect in great details. It is highly configurable.
Ruby allows specification of various coherence protocols, in terms of states,
events and transitions, through a language called SLICC. This specification
is transformed into a C++ implementation by the framework. This allows
accurate modeling of the coherence protocol, which is an important contrib-
utor of network traffic. The network in GEMS can be modeled at various
levels of details. Garnet [2], the network model included within GEMS can
be configured to specify the exact interconnect topology, the link latency and
bandwidth of specific links etc. It models various stages of network router
pipeline, namely, route computation, virtual channel allocation, switch allo-
cation and switch traversal. In Sapphire, we try to leverage the advantages
of both simulation frameworks by integrating the SESC processor with Ruby,
the memory and interconnect model.
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3 Integrating SESC with Ruby

Ruby is designed to work independent of the Opal processor (or Simics).
Due to this reason, Ruby has a well defined interface that specifies the list
of functions exported by Ruby and the list of processor functions expected
by Ruby. This clear interface definition integrating with Ruby is not an
engineering intensive task. For integration, we created a SescInterface

class which implemented all the relevant interfaces to interact with SESC. In
SESC, a new memory object was created. The memory object, referred to as
RubyMemObj forwards the requests to Ruby, while ensuring that two requests
belonging to the same processor, do not refer to the same cache line (which
is a requirement of Ruby). The detailed block diagram is shown in Figure 1.

As can be observed from Figure 1, an object of the RubyMemObj class is
created for every cache (i.e. L1-I, L1-D). These objects enqueue the incoming
requests that can be processed in this cycle. Other requests that cannot be
processed are placed in a separate data structures. The Request Dispatcher
(which is a callback function) deques as many requests as the number of
ports from each processor and forwards the requests to Ruby. The request
is received by the SescInterface object in Ruby. The request is forwarded to
the appropriate Sequencer (one per processor) for subsequent processing by
the caches. When the data is available, Ruby invokes the call back function
for hit, which triggers the corresponding function in SESC.

Figure 2 shows the sequence of steps involved in making a request to
Ruby. An IMemRequest object is created by the FetchEngine of SESC. This
request is forwarded to the RubyMemObj object, which in turn checks whether
Ruby can accept this request. If yes, the request is stored in the respec-
tive queue for this processor. The control is returned to the FetchEngine.
When the clock cycle is incremented then the callback function to forward
all requests from RubyMemObj is invoked. This issues the requests to Ruby,
through SescInterface. The SescInterface forwards the request to the
appropriate Sequencer object. The Sequencer object then forwards the
request to the appropriate L1 Cache Controller within Ruby. The request
flows through the memory hierarchy and when the data is available, the hit
callback of SESC is invoked to inform SESC about the completion of the
request. The RubyMemObj in turn invokes the goUp function to inform the
Load/Store Queues that the data is now available.

This simulator now addresses all the shortcomings of SESC. The tech-
nique described in the above section can be used to attach any processor
front end to the Ruby memory hierarchy.
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Figure 1: Detailed block diagram showing the integration of SESC with Ruby.
The components shown within the box are new components that have been
added for integration.
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FetchEngine RubyMemObj SescInterface Sequencer

IMemRequest::create ()
fetch() access()

isReady()

RunningProcs

makeRequest()

hitCallback()
goUp()

.

.

.

advanceTime() doRubyRequestCB()

return
return

return

return
return

RubySESC

Figure 2: Interaction between various modules of SESC and Ruby for process-
ing an instruction memory request. A similar sequence of calls are executed
for a data request.

4 Modeling the Interconnect

While the simulator by itself exposes sufficient configurability to be able
to model the interconnect, most architectural simulations use single cycle
communication distance between two routers or between the router and end
point (i.e. cache/memory in this case). With technology scaling, while the
effective length of the wire decreases, the resistance of the wire increases on
account of lower wire width [6]. Due to these reasons the interconnects need
to be appropriately enhanced through increased wire pitch, use of repeaters,
appropriate selection of repeater size, use of pipe stages etc. While many
of these choices are made while transforming a design into silicon, current
available high-level simulators do not capture the impact of these param-
eters during architectural simulation. These parameters determine power
consumed and latency incurred by the network link. Our framework fills this
gap by integrating Intacte [14], a low level tool to explore interconnect links.

Intacte [14] is an interconnect exploration tool which given the range of in-
put frequencies, wire length and technology parameter, gives the least power
configuration of the link by iterating over the following set of parameters:
wire width, wire spacing, repeater size and spacing, number of repeaters,
degree of pipelining, supply voltage and threshold voltage. These values
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are obtained using conservative estimates of activity and coupling factors.
However, the tool can take these as input to estimate the best configuration.

In order to estimate the latency (in cycles) of a certain wire, we need
to estimate the wire length. We estimate the interconnect length between
router-router and router-end point by constructing the floor plan of each node
on the network. Each network node contains a processor, L1 Cache Controller
connected to the L1 instruction(L1-I) and L1 data cache(L1-D), L2 Cache
Controller and L2 Cache, a router and an optional memory controller. The
memory is placed off-chip and is not a part of the node. We henceforth refer
to the network node as a tile. The floorplan of a typical tile is shown in
Figure 3. The area of the processor is same as the size of a single core of
Intel Nehalem [Internet]. The area occupied by the L2 cache is obtained
using an approximate estimate of 7.5mm2 per MB of cache, which is the
density achieved on the AMD Shanghai processor [Internet]. This estimate
is more conservative than the estimates obtained by CACTI [13]. The area
of the router is estimated to be quite negligible at 32nm [8]. The L1 cache is
of size 32KB whose area is very small and included in the processor area and
hence is not depicted in the figure. ‘ The wire lengths were determined for
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1MB L2 Cache

2.74mm X 2.74mm

7mm
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9.6mm
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5.5mm X 5.5mm
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Figure 3: The floorplan of a tile with 1MB L2 cache and 4MB L2 cache. R
refers to the router.

the floorplans in Figure 3 at a frequency of 3GHz and 32nm technology. This
is tabulated in Tables 1 and 2. As is evident from the table, some of these
latencies are quite high and hence cannot be ignored during architectural
simulations. In order to account for these in simulation, we modify the
network configuration file and input the specific latencies as obtained from
Intacte. It can be observed from these tables that the latency increases with
increase in cache size, due to the larger area occupied by the 4MB L2 cache.
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Table 1: Tile Link Latencies and Power Estimations using Intacte for 1MB
L2 cache; R: Router, M : Memory Controller, L1 : L1 Cache Controller, L2 :
L2 Cache Controller.

Link Type Length PipeLineStages Power
L1-R 1.26mm 2 1.083 mW
L2-R 4mm 8 3.4091 mW

R-R Horizontal 4mm 8 3.4091 mW
R-R Vertical 7mm 10 6.1998 mW

M-R 0.2mm 1 0.2545 mW

Table 2: Tile Link Latencies and Power Estimations using Intacte for 4MB
L2 cache.

Link Type Length PipeLineStages Power
L1-R 1.5mm 2 1.39 mW
L2-R 5.6mm 10 4.7437 mW

R-R Horizontal 5.5mm 10 4.6526 mW
R-R Vertical 9.6mm 19 8.14 mW

M-R 0.2mm 1 0.2545 mW

4.1 Modelling Power in Interconnect

Yet another aspect that needs to be considered in NoC based architectures is
the power dissipated in the interconnect. This aspect is crucial for evaluating
architectural solutions for energy efficiency, since interconnect power is no
longer a negligible aspect [17]. In order to address this, we compute the link
activity and coupling factors for all request and response messages on the
network. One of the requirements for performing this analysis is the ability
to pass correct memory data over the network. While, Ruby implements
exact data transfers when simulated with Simics, the feature is not available
otherwise.

In order to implement this, a detailed understanding of the SESC mem-
ory model and update procedures need to be understood. The instructions
in SESC are obtained from the MIPS executable. However the data por-
tions i.e. stack, global and heap memories are allocated by the simulator
and then passed on to the running application. The simulator updates the
memory upon receipt of memory writes. This memory is not accessible to
Ruby. The request structure between SESC and Ruby is modified to pass
the expected data along with the request (since SESC performs the write in
functional simulation before it is simulated through the pipeline). The mem-
ory implementation in Ruby is modified to return this data (available along
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with request) instead of looking up its copy of the memory. The activity
computation function appropriately accounts for the data, upon the return
path and not along the forward path.

5 Modelling DRAM

Memory model of Ruby does not model DRAM latencies and power ac-
curately. Hence, Sapphire includes a DRAM simulator, DRAMSim [19].
DRAMSim implements detailed timing models for variety of existing mem-
ories, including SDRAM, DDR, DDR2 etc. DRAMSim simulator is param-
eterized to support various row buffer management policies, address man-
agement policies and various layouts in terms of channels, ranks, rows and
columns. This simulator uses MICRON power model [1] to estimate the
power consumed in memory accesses.

6 Framework Evaluation

6.1 Simulation Procedure

Flow chart in Fig. 4 shows the experimental procedure. The first step of
the procedure is to determine the optimal floorplan based on the processor,
cache and router area. This is then used to compute the link lengths. These
link lengths are then passed through Intacte to obtain the link parameters
such as the number of pipe stages. To obtain these parameters, we assume
conservative values of activity and coupling factor. Link parameters giving
minimum power are used for the assumed activity and coupling factor. The
number of pipe stages determines the latency of the link in cycles. This infor-
mation is used in the network configuration file. The simulation is performed
on Sapphire. Sapphire determines the activity and coupling factors of all the
links. These are then passed through Intacte to determine the power dissi-
pated in the NoC. DRAMSim model estimates power consumed in off-chip
memory accesses. Cache power is estimated using CACTI power model [13].

6.2 Experimental Setup

In this section we present a results for a few experiments that were performed
on Sapphire. Table 3 gives applications used during the experiments. We use
32KB of instruction and data L1 cache. L2 cache is shared distributed and
each tile contains 1MB of single bank L2 cache. The various applications
which were simulated are shown in Table 3. Results for few of them are
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Figure 4: The figure shows the steps to be followed for performing de-

tailed power-performance analysis on Sapphire.
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Multithreaded - PARSEC Benchmark[3]
H.264 Encoder SimLarge i/p, Media Domain

swaptions SimLarge i/p, Financial Domain
blackscholes SimLarge i/p, Financial Domain
fluidanimate SimMedium i/p, Animation

Splash2 Benchmark[20]

Ocean (continuous)
512x512 grid points, High Performance
Computing

FFT 64K Complex Data points
LU(Continuous) 256x256 Matrix

LU(Non-Continuous) 256x256 Matrix
RADIX Sorts 256K keys

Combination used for Multiprogramming Workload
Splash2 Benchmark[20]

LU(Non Continuous) 256x256 Matrix Factorization,B=16
RADIX radix sort on 512K keys

Alpbench Benchmark [10]
MPGEnc(Enc) Encodes 15 Frames of size 640x336
MPGDec(Dec) Decodes 15 Frames of size 640x336

Multiprogramming Workload
ENC-LU 8 threads from each app., executed

Dec-RADIX 1B instructions
Dec-LU executed till completion

Table 3: Applications used for experimentation

presented here. The link lengths for the experiments are as shown in Table
1.

6.3 Results

The plot in Figure 5 shows the interconnect power (excluding the router
power). To verify correctness of these results, we compare these with the
link utilization reported by Ruby. This is shown in Figure 6. The link power
shows a very high degree of correlation with the link utilization. The link
utilization measures the temporal activity of the links. Assuming that the bit
level correlation between successive packets follows a statistical distribution
(with a mean and variance), it is easy to see that the link utilization and
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activity factor have to be correlated. However the value of the mean and
variance of this distribution are different for different applications, therefore
the link utilization cannot be directly utilized.

Figure 5: Graph shows variation in interconnect power consumed by various
applications as the number of threads used for execution is varied.

Figure 6: Graph shows variation in average link utilization for various appli-
cations as the number of threads used for execution is varied.

Figure 7 shows the time spent in transit by all the communication pack-
ets. While several of these communication overlap with each other and com-
munication, this measure gives the total time it would have taken had the
communication been done serially (say on a bus based architecture). As is ev-
ident from the graph, as the number of threads increases the communication
drops, since each thread needs to perform a smaller piece of the task, while
the cache size remains fixed at 1MB i.e. more resources are now available to
perform the same amount of task. In such a scenario the communication is
bound to reduce. After reaching a certain minima, the communication will
begin to increase since the synchronization messages need to be sent higher
number of entities.
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Figure 7: Graph shows variation in time spent in transit in term of clock
cycles for various applications as the number of threads used for execution is
varied.

7 Conclusion

Sapphire integrates configurable processor model using SESC with cache and
2-D interconnect model from Ruby and offchip DRAM model using DRAM-
Sim simulators. Low level parameters of Interconnect link can be configured
using Intacte. Power consumed by various components like cache, intercon-
nect and DRAM can be estimated using CACTI, Intacte and DRAMSim.
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