
Dataflow Analysis for Datarace-Free Programs

Arnab De Deepak D’Souza Rupesh Nasre

IISc-CSA-TR-2010-8

http://archive.csa.iisc.ernet.in/TR/2010/8/

Computer Science and Automation

Indian Institute of Science, India

December 2010

Dataflow Analysis for Datarace-Free Programs

Arnab De∗ Deepak D’Souza† Rupesh Nasre‡

Abstract

Memory models for shared-memory concurrent programming lan-
guages typically guarantee sequential consistency (SC) semantics for
datarace-free (DRF) programs, while providing very weak or no guar-
antees for non-DRF programs. In effect programmers are expected
to write only DRF programs, which are then executed with SC se-
mantics. With this in mind, we propose a novel scalable solution
for dataflow analysis of concurrent programs, which is proved to be
sound for DRF programs with SC semantics. We use the synchro-
nization structure of the program to propagate dataflow information
among threads without requiring to consider all interleavings explic-
itly. Given a dataflow analysis that is sound for sequential programs
and meets certain criteria, our technique automatically converts it to
an analysis for concurrent programs.

1 Introduction

In recent years several new semantics based on relaxed memory models have
been proposed for concurrent programs, most notably the Java Memory
Model [21], and the C++ Memory Model [3]. While the aim of the relaxed
semantics is to facilitate aggressive compiler optimizations and efficient exe-
cution on hardware, the semantics they provide can be quite different from
the standard “Sequentially Consistent” (SC) semantics. A common guaran-
tee that they typically provide however is that programs without dataraces
will run with SC semantics. For programs with dataraces there are very weak
guarantees: the Java Memory Model [21] essentially ensures that there will
be no “out-of-thin-air” values read, while the C++ memory model specifies
no semantics [3] for such programs.

∗arnabde@csa.iisc.ernet.in
†deepakd@csa.iisc.ernet.in
‡nasre@csa.iisc.ernet.in

1

The prevalence of this so-called “SC-for-DRF” semantics makes the class
of datarace-free programs with sequentially consistent semantics, an impor-
tant one from a static analysis point of view. An analysis technique that is
sound for this class of programs can in principle be used by a compiler-writer
for the general class of programs, as long as the ensuing transformation pre-
serves the weak guarantees described above. From a verification point of view
as well, the class of racy programs is unlikely to require sophisticated analysis
due to the loose semantics for this class of programs, while a sound analysis
for datarace-free programs can be used to prove non-trivial properties for the
class of datarace-free programs.

With this in mind in this paper we propose a novel and scalable dataflow
analysis technique for concurrent programs that is sound for datarace-free
programs under the SC semantics. Given a sequential dataflow analysis that
meets certain criteria, our technique automatically produces an efficient and
fairly precise analysis for concurrent programs. The criteria that the un-
derlying analysis must meet is that each dataflow fact should be dependent
on the contents of some associated lvalues (an lvalue is an expression that
refers to some memory locations at runtime). Several sequential dataflow
analyses such as null-pointer analysis, interval analysis, and constant propa-
gation satisfy this criteria. Our technique gives useful information (in terms
of precision of the inferred data-flow facts) at points where the corresponding
lvalue is read. For example, in the case of null-pointer analysis, the dataflow
fact “NonNull(p)” is dependent on the contents of the lvalue “p” and is rel-
evant before a statement that dereferences (reads) “p”. Similarly, the fact
that an lvalue has a constant value at a program point is dependent on the
contents of the lvalue and is relevant at statements that read that lvalue.

The main challenge in lifting an analysis for sequential programs to con-
current programs is that multiple threads can simultaneously modify a shared
memory location. Traditionally the analysis techniques for concurrent pro-
grams address this problem in one of the following ways: they either inval-
idate the analyzed fact if there is any possible interference from any other
thread [4, 16], making the analysis very imprecise, or they exhaustively ex-
plore all possible interleavings [28], leading to poor scalability. In contrast,
our analysis technique uses the synchronization structure of the program to
propagate dataflow facts between threads. The main insight we use is that
it is sufficient to propagate dataflow facts between threads only at corre-
sponding synchronization points (like from an “unlock(l)” statement to a
“lock(l) statement”). We also show how our framework can be integrated
with a context-sensitive analysis.

We have implemented our technique in a framework for automatically
converting dataflow analyses for sequential Java programs to sound analyses

2

for concurrent programs and instantiated it for a null-reference analysis. Our
initial experience with the tool shows that the analysis runs in a few seconds
on real benchmark programs, and is able to prove a high percentage of deref-
erences to be safe. We have also developed a prototype implementation for
concurrent C programs which use the pthreads library [12]. This allows us to
compare our technique empirically with the state-of-the-art Radar tool [4],
and show that our tool is more precise on a few medium-sized benchmarks.

2 Overview of Our Approach

In this section we informally illustrate our technique with the help of a few
examples. We consider the null-pointer analysis where the goal is to compute
a set of dataflow facts for each edge of the program which tell us which
lvalues are non-null along all executions reaching that edge. Examples of
such dataflow facts can be NonNull(p->data) for the program in Figure 1.

Note that value of the dataflow fact NonNull(p->data) at runtime de-
pends on the contents of the memory location corresponding to the lvalue
p->data. Hence, at runtime, the value of this fact can only be modified
by writing to the memory locations corresponding to p->data or p, possibly
through some alias. Moreover, the value of the fact NonNull(p->data) is rel-
evant only before the statements where p->data is dereferenced or p->data
is assigned to some other pointer or p->data is compared to NULL. For ex-
ample, in Figure 1, this fact is relevant before the statements M3, P3, P7 and
C3, but not before P6 or M2. Note that at all edges where this fact is relevant,
the successor statements read p->data. Our analysis guarantees that for a
given datarace-free program, if a fact is computed to be true at a program
edge where the fact is relevant, then it is indeed true at that program edge
in all executions of the program.

Figure 1 shows a simple concurrent producer-consumer program, where
data is shared through a shared location, pointed to by p. The call to new

returns newly allocated memory. Note that, the main thread sets the pointers
p and p->data to non-null values. The prod thread sets p->data to null after
locking l, but restores its non-nullity before unlocking l. As a result, the
cons thread can dereference p and p->data without checking for non-nullity
after locking l. This code has no null-pointer dereferences in any of its
executions. Clearly, the threads in this code depend on each other to make
the pointers non-null before any other thread can access them. We also note
the the program has no data-races.

Let us again consider the dataflow fact NonNull(p->data) in the program
of Figure 1. As the program is datarace-free, if a thread writes to p->data or

3

Figure 1: Program 1

p and some other thread reads p->data later in the execution, then these ac-
cesses must be synchronized, i.e. there must be a release action (e.g. unlock
or spawn) by the first thread, followed by an acquire action (e.g. lock or first
action of a thread) by the second thread, between the write and the read. In
other words, in any execution of the program, the action that modifies the
dataflow fact and the action before which it is relevant either belong to the
same thread or are synchronized.

As the first step of our analysis, we introduce new edges between nodes of
the control-flow graphs (CFGs) representing different threads. These edges
correspond to possible “release-acquire” pairs at runtime. We refer to this
unified set of CFGs with added edges as the sync-CFG. Figure 1 shows the
edges we add for this program as dashed arrows — from spawn to the first
instruction of the child thread and from the unlock to lock statements if
they access same lock variable and if they can possibly run in parallel.

In the next step of our analysis, we perform a sequential dataflow analysis
on this sync-CFG to compute a set of dataflow facts at each program edge
that conservatively approximates the join-over-all-paths (JOP) solution over
the sync-CFG.

In Figure 1, we show the lvalues discovered to be non-null by our analysis
at different program points in italics. As p->data is non-null at point M5 in
the main thread before spawning the cons thread, this fact gets propagated
to the first instruction C1 of the cons thread though one of the added edges,

4

Figure 2: Program 2

and from there to the lock instruction at C2. Similarly, although p->data

is set to null in the prod thread at P4, it is set back to non-null at P6 before
the unlock. This facts also gets propagated to the lock statement of the
cons thread through the edge P8 to C2. As p->data is non-null in both the
paths joining at the C2 of the cons thread, we can determine p->data to be
non-null before the lock statement in all executions. This makes the fact
NonNull(p->data) to be true before the deference of p->data at C3.

The reason why our analysis works is that if, in an execution, an action
modifies the dataflow fact NonNull(p->data) and it is relevant at some later
action, then there exists a static path from the statement of the first action to
the statement of the second action in the sync-CFG and the static dataflow
function corresponding to this path will conservatively approximate the effect
of the execution path segment from the first action to the second action on
the dataflow fact. As an example, consider the interleaved execution path
fragment [P6, C1, P7, P8, C2, C3] where P6 modifies NonNull(p->data) and
it is relevant at C3. There is a static path in the sync-CFG [P6, P7, P8, C2,
C3] which has the same effect on this dataflow fact as the execution path
segment.

We note that at points where a fact is not relevant our analysis may com-
pute incorrect values. For example our analysis computes NonNull(p->data)
to be true at C1 although the interleaved execution path segment [P4,C1] can
make it false. However, the fact NonNull(p->data) is not relevant at C1.

Let us now consider a buggy version of the program, presented in Figure 2.
The main thread is the same as Figure 1. This program is also DRF, but
the prod thread releases the lock after setting p->data to null at P4, and
acquires the lock again before setting it to non-null. If the cons thread
dereferences p->data in between these two actions, it will dereference a null-

5

pointer. For example, the execution path segment [P4, P5, C2, C3] will result
in null-pointer dereference. Note that there is a static path [P4, P5, C2, C3]
in the sync-CFG that also sets the fact NonNull(p->data) to false before C3.
Hence our analysis will detect that p->data can be null before the dereference
at C3. Note that here also we incorrectly compute NonNull(p->data) to be
true at C1 as the modification of this fact at P4 is not propagated to C1.
Nevertheless, as the program is datarace-free, before the cons thread reads
p->data, it must synchronize with the prod thread and the modified value
for the fact NonNull(p->data) is propagated to the cons thread through the
corresponding static edge ([P5, C2] in this case).

3 Related Work

There are quite a few works on dataflow analysis of concurrent programs in
the literature and they differ considerably in terms of technique, precision
and applicability. Some works [17, 11, 6] create parallel flow graphs similar
to our technique and perform a modified version of sequential analysis on
them, but unlike us, their techniques are applicable to very specific analyses,
such as bit-vector analysis or gen-kill analysis. In particular, they do not
handle the analyses where the value of a dataflow fact can depend on some
other dataflow fact. For example, in null-pointer analysis, p is non-null after
a statement p = q only if q is non-null before the statement. Unlike our
technique, they also do not consider many features of modern concurrent
programs such as unbounded threads, synchronization using locks/volatiles
etc. For example, the pointer-analysis algorithm presented in [24] considers
only structured par-begin/par-end like synchronization constructs.

On the other hand, there are a few works such as [16] that kill the dataflow
facts whenever there is a possible interference. Similarly, Radar [4] uses a
datarace detection engine to conservatively kill a dataflow fact whenever
there is a possible race on the lvalues corresponding to the fact. Our tech-
nique is more precise than theirs as we propagate the dataflow facts precisely.
For example, in Figure 1, Radar cannot detect the dereference of p->data in
the cons thread to be safe. Recently Farzan et al [7] presented a composi-
tional technique for dataflow analysis, but it is applicable to only bit-vector
analyses.

Model checkers such as [28] provide an alternative technique to find if
a property holds at a particular program point. They typically exhaus-
tively enumerate all interleavings of a program, resulting in poor scalability.
CHESS [22] prunes the number of interleavings by context switching only at
the synchronization points, assuming the program is datarace-free, but scala-

6

bility still remains an issue. In contrast ours is a static analysis which does not
explore interleavings explicitly. Moreover, due to infinite state-spaces, model
checking of real programming languages cannot cover all program behaviors.
Thread modular analyses [8, 9, 10] can analyze each thread separately, but
either require user-defined annotations denoting some invariants or try to
infer them automatically, limiting their scalability and precision. Recently,
Malkis et al. [20] proposed a thread-modular abstraction refinement tech-
nique where the set of reachable “global states” is computed as the cartesian
abstraction of sets of reachable “local” states. If a global state is infeasible, an
abstraction refinement step excludes it from the cartesian abstraction. This
technique assumes the number of dynamic threds to be statically bound. It
is not implemented for real programs and the analysis-refinement cycle limits
its scalability.

4 Preliminaries

4.1 Program Structure

In this section we formalize the structure of the subject programs for our
analysis. For ease of presentation, we use a simple core language that has the
representative features of real programming languages with shared-memory
concurrency.

The program is composed of a finite number of named thread codes1,
one of which is designated as the main thread. The program is denoted as
P = (T0, . . . , Tk), where each Ti is name of a static thread. Each thread Ti

is represented as a control flow graph (CFG) Ci where each node represents
a statement in the program. We do not consider procedures at this point
(context-sensitive inter-procedural analysis is described in Section 8). In the
rest of the paper, we use the terms nodes and statements interchangeably to
refer to the static statements in the program.

Figure 3 defines the syntax of the language partially. Variables are de-
clared globally. The non-terminal Decl in Figure 3 describes a variable dec-
laration. A regular (non-synchronization) variable can be of some basic type
or structure type or pointer type. A synchronization variable is either a lock
or a thread identifier.

Statements (Stmt in Figure 3) are of following types: assignment, branch,
synchronization and skip. Assignment statements (AsgnStmt in Figure 3)
assigns the value of an expression to an lvalue, which is either a declared

1We refer the code of a thread as a static thread and the runtime instance of a thread
as a dynamic thread.

7

Decl ::= VarType <var> | Lock <lockvar>

| ThreadId <tid>

VarType ::= BasicType | VarType*

Stmt ::= AsgnStmt | BranchStmt | SyncStmt

| skip
AsgnStmt ::= Lval := Expr

Lval ::= <var> | *Lval

SyncStmt ::= lock <lockvar> | unlock <lockvar>

| <tid> := spawn <T> | join <tid>

| start | end

Figure 3: Partial syntax of the language

variable or dereference of an lvalue. Expressions are arithmetic or logical
expressions over constants and lvalues or “address of” expressions. Branch
conditions can be any Boolean expression.

For an lvalue l, we define deref (l) to be the set of lvalues that are deref-
erenced in the expression of l. Formally,

deref (l) =

{

{l′} ∪ deref (l′) if l is of the form ∗l′

∅ otherwise

For example, if p is a variable and **p is an lvalue, then deref (∗ ∗ p) =
{p, ∗p}.

We call an lvalue l relevant at a program edge E and the node in nsucc(E)
if l is syntactically part of the expression read at the node nsucc(E). Note
that, if l is relevant at a program edge/node, all lvalues in deref (l) are also
relevant at that program edge. In the program of Figure 1, at C3, the relevant
lvalues are p, p->data and *p->data. We consider only well-typed programs
without pointer arithmetic.

Synchronization statements (SyncStmt in Figure 3) are of special interest
to us. Each thread has a start node and an end node, containing special
start and end statements, respectively. Threads are spawned by spawn

statements that take static thread names as parameters and return thread
ids of the child threads. A parent thread waits for a child thread to finish
using a join statement. The lock and unlock statements have the standard
semantics for reentrant locks. Only synchronization statements can access
synchronization variables. Although we consider only these synchroniza-
tion statements in this paper, our technique can be applied to programming
languages with other synchronization statements that have acquire/release

8

semantics (described in Section 4.2), such as read/write of volatiles in the
Java programming language [13].

For a CFG C = (Nodes ,Edges , E0, E♯), Nodes denotes the set of nodes,
Edges ⊆ Nodes × Nodes denotes the set of edges, E0 /∈ Edges denotes a
special start edge with no predecessor node and E♯ /∈ Edges denotes a special
end edge with no successor node in C. For a node N , epred(N) = {E ∈
Edges | ∃N ′ ∈ Nodes : E = 〈N ′, N〉} denotes the set of predecessor edges
of N and npred(N) = {N ′ ∈ Nodes | 〈N ′, N〉 ∈ Edges} denotes the set of
predecessor nodes of N . For an edge E = 〈N,N ′〉, {N} is the singleton set
of predecessor node of E, denoted by npred(E) and the set epred(npred(E))
is the set of predecessor edges of E, denoted by epred(E). Similarly, esucc

and nsucc denote the sets of successor edges and successor nodes for an edge
or a node, respectively. Although we overload these notations, the meaning
should be clear from the context. Each CFG has a start node N0 which is
the successor node of E0 and an end node N♯ which is the predecessor node
of E♯. Let NM

0 and EM
0 denote the start node and the start edge of the main

thread and NM
♯ and EM

♯ denote the end node and the end edge of the main
thread, respectively.

A path Π in a CFG C is defined as a sequence of nodes 〈N ′
0, . . . , N

′
n〉 of C,

such that there is an edge in C between N ′
i and N ′

i+1 for every i, 0 ≤ i < n.
A path Π is called an initial path in C if the first node of the path is the
node N0, the start node in C.

4.2 Execution

Let P be a program written in the language described in Section 4.1. An
action is a dynamic instance of a statement in an execution. For an action a,
stmt(a) denotes the corresponding static statement or node and thread id(a)
denotes the dynamic thread id of the thread performing the action.

An interleaving of P is a sequence of actions 〈a0, . . . , an〉, stmt(a0) =
NM

0 , possibly from different dynamic threads, such that the projection of the
sequence to any thread id is consistent with the sequential semantics of that
thread, given the values of reads of shared variables. If I is an interleaving
of P , I[i] denotes the ith action in the interleaving. Let a be an action in an
interleaving I. By eprev(a) and enext(a) we denote the program point (CFG
edge) reached in the thread executing a just before and after executing a,
respectively. Similarly, by next(a) we mean the next action in I that belongs
to the same dynamic thread as a. Thus, next(a) = I[j] if a = I[i] and
thread id(ai) = thread id(aj), i < j and there is no k, i < k < j such that
thread id(ai) = thread id(ak). If a′ = next(a), then we say a = prev(a′).

Synchronization actions are of two types: spawn, end and unlock actions

9

are the release actions, where as join, start and lock actions are the acquire

actions.
An interleaving I of program P is synchronization-valid if

• Each unlock action is preceded by a matching lock action. For every
prefix of I, number of unlock actions on a lock variable by a dynamic
thread must be less than or equal to the number of lock actions per-
formed by the same dynamic thread on the same lock.

• Locks maintain mutual exclusion property. If a is a lock action per-
formed by a dynamic thread t on a lock l, then for any thread t′ 6= t,
the number of unlock actions performed on l by t′ before a in I must
be exactly equal to the number of lock actions on l by t′ before a in
I.

• The start action of any thread (except the main thread) is preceded
by a corresponding spawn action that returns a thread id which is the
same as the started thread.

• Each join action is preceded by the end action of the thread it waits
for.

An interleaving is sequentially consistent (SC) if every read of a memory
location reads the value written by the last preceding write to the same
memory location in the interleaving. We assume that there is an initial write
to every memory location whenever the memory is allocated in an execution.

An sc-execution is simply a synchronization-valid and sequentially con-
sistent interleaving.

4.3 Datarace-free Programs

Two non-synchronization actions in an sc-execution are conflicting if they
both access a common memory location and at least one of them writes to
that memory location.

Given an sc-execution E of a program P , we say a release action synchronizes-

with subsequent acquire actions corresponding to it. More specifically, an
unlock action synchronizes with any subsequent lock action on the same
lock variable, a spawn action synchronizes with the start action of the thread
it spawns and an end action synchronizes with the join action that waits
for the thread to finish. If in E , an action a synchronizes with an action b, it
is denoted by a <E

sw b.
Similarly, if in an sc-execution E , a = E [i] and b = E [j] are two actions

such that thread id(a) = thread id(b), i < j and there is no k, i < k < j,

10

such that thread id(E [k]) = thread id(E [i]), then there is a program-order

relation between a and b, denoted by a <E
po b. Note that if a <E

po b, then
there is an edge from stmt(a) to stmt(b) in the CFG of the corresponding
static thread.

The happens-before order induced by an sc-execution E , is a partial-order
on the actions of E , denoted by ≤E

hb , and is defined as the reflexive transitive
closure of <E

sw and <E
po relations.

An sc-execution E is datarace-free if every pair of conflicting actions are
related by the happens-before order. A program is datarace-free if all sc-
executions of the program are datarace-free. This definition of datarace-
freedom is equivalent to the more intuitive definition [25] — in any sc-
execution of a datarace-free program, two conflicting actions from different
dynamic threads cannot happen immediately after one another.

Many programming languages such as Java [21] and C++ [3] and thread-
ing libraries such as pthreads [2], guarantee that any execution of a datarace-
free program in these languages is equivalent to some sc-execution. We as-
sume that the memory model of our language guarantees sequentially con-
sistent semantics for datarace-free programs and we are only interested in
datarace-free programs in this paper. Henceforth we refer to an sc-execution
simply as an execution.

5 Analysis for Sequential Programs

In this section, we characterize the class of the analyses for sequential pro-
grams that can be converted to analyses for concurrent programs using our
technique. This class essentially consists of the “value set analysis” (Sec-
tion 5.1) and any consistent abstraction (Section 5.2) of it.

We assume the sequential program to consist of a single main thread. It
may not have any synchronization statement except for the start and end

statements of the main thread. Let us denote the sequential program by P
and its CFG by C = (Nodes ,Edges , E0, E♯).

5.1 Value Set Analysis

Intuitively, the value set semantics of a program is an abstract semantics
where the state at each program edge is a map from the lvalues read or
written in the program to a set of values. The analysis characterizes a con-
servative approximation of such a state for each program edge E, i.e. the
set of values corresponding to an lvalue l in the solution should include ev-
ery value contained in the memory location corresponding to l at E in any

11

execution of the program P reaching E.
Formally, the value set analysis VS for a program P is a tuple (LVS ,FVS)

where LVS is the lattice of abstract states and FVS is the set of static flow
functions. An abstract state in this semantics is denoted by the map VS :
LVals → 2Values , where LVals is the set of lvalues read/written in program
P and Values is the set of values that can be contained in any memory
location. The domain of the states is thus LVals → 2Values , denoted as
ValueSets . Hence the lattice LVS is a join-lattice (ValueSets ,�,⊤,⊥,⊔),
where for vs , vs ′ ∈ ValueSets and S ⊆ ValueSets

• vs � vs ′ iff ∀l ∈ LVals : vs(l) ⊆ vs ′(l)

• ⊤ = λ l.Values

• ⊥ = λ l.∅

•
⊔

S = λ l.
⋃

vs∈S

vs(l)

We allow the analysis to be flow-sensitive and (partially) path-sensitive.
Hence, the static flow function for any node N is of the form FN : ValueSets×
Edges → ValueSets , allowing it to propagate different abstract states along
different successor edges. The flow functions for different types of statements
are defined below. Given an expression e, the denotation JeK : ValueSets →
2Values is a function that returns a set of values obtained from evaluating e
on all possible concrete states corresponding to a given value set. For an
lvalue l, AliasSet(l) denotes the set of lvalues that may represent the same
memory location as l. Note that for sequential programs, the AliasSet can
be computed from the value sets itself or from some sound pointer analysis
such as [1].

If N ∈ AsgnStmt and is of the form l := e, FN(vs ,) = vs ′, where

vs ′(l′) =















JeK(vs) if l′ = l

JeK(vs) ∪ vs(l′) if l′ ∈ AliasSet(l)
Values if l ∈ AliasSet(deref (l′))
vs(l′) otherwise.

Intuitively, we destructively update the value set of the lvalue at the LHS,
but conservatively update the value set of an lvalue that may be alias of the
LHS. If an lvalue is dependent on some alias of the LHS, the memory location
corresponding to that lvalue might change. Hence its value set is set to ⊤.

IfN ∈ BranchStmt and the branch condition is e, then FN(vs , true branch) =
vs ′ and FN(vs , false branch) = vs ′′, where

12

∀l, v : v ∈ vs ′(l) iff v ∈ vs(l) ∧ ∃v̂s : v̂s(l) = {v} ∧ true ∈ JeK(v̂s)
∀l, v : v ∈ vs ′′(l) iff v ∈ vs(l) ∧ ∃v̂s : v̂s(l) = {v} ∧ false ∈ JeK(v̂s).

Intuitively, a value v is included in the value set of an lvalue l along the true
branch if e can evaluate to true with v contained in l. The false branch is
similar. Branch statements do not generate any value that was not there
in the input value set. Flow functions for other statements are identity
functions.

A concrete state of a program P is a map cs : LVals → Values . Given an
action a from an execution E of the program P , pre(a) and post(a) denote
the concrete states immediately before and after a is executed, respectively.
If a♯ is the last action of E , post(E) = post(a♯). Given a program edge E,
let Ξ(E) denote the set of executions of the program up to E, ie, Ξ(E) =
{E | E = 〈a′0, . . . , a

′
♯〉 and E = enext(a′♯)}. Then for an edge E the collecting

value set at E is defined to be

CVS [E] = λ l.
⋃

E∈Ξ(E)

post(E)(l). (1)

Let E = 〈a′0, . . . , a
′
n〉 be an execution of the sequential program P . ΠE =

〈N ′
0, . . . , N

′
n〉 is the path corresponding to E where for all i, 0 ≤ i ≤ n,

N ′
i = stmt(a′i). Note that for a sequential program, there is an edge in the

CFG between N ′
i and N ′

i+1 for all i, 0 ≤ i < n. For any analysis A = (L,F),
the flow function for the path ΠE with the initial state d ∈ L along the edge E
is defined by FΠE

(vs , E) = FN ′
n
(FN ′

n−1
(. . . (FN ′

0
(vs , E ′

0) . . .), E
′
n−1), E), where

each E ′
i = 〈N ′

i , N
′
i+1〉, E ∈ esucc(N ′

n) and each FN ′
i
∈ F . Let Σ(E) be the set

of initial paths up to E. Then the ideal join-over-all-paths (JOP) solution
of the analysis A on P , denoted by JA, is given by

∀E ∈ Edges : JA[E] =
⊔

Π∈Σ(E)

FΠ(⊤, E) (2)

For value set analysis, the static flow functions overapproximate the run-
time behavior, i.e. ∀l ∈ LVals : v = post(an)(l) ⇒ v ∈ FΠE

(⊤, enext(an)).
We assume the flow function of an empty path to be identity. Hence for a
sequential program, CVS � JVS .

Any dataflow analysis (say A) characterizes a further conservative ap-
proximation of the JOP by the least solution SA for the following set of
equations:

13

X [E0] = ⊤
∀E ∈ (Edges − {E0}) : X [E] =

⊔

E′∈epred(E)

Fnpred(E)(X [E ′], E) (3)

As described in standard literature e.g. [14], if flow functions are mono-
tonic, JA � SA. In particular, CVS � JVS � SVS . Note that the least
solution always exists, but may not be computable for value set analysis. If
the underlying lattice has bounded height, the least solution for A can be
computed using an algorithm like Kildall’s [15].

5.2 Abstractions of Value Set Semantics

In this section, we define consistent abstractions [5] of the value set semantics.
An analysis A = (L,F), where L = (D,�), is a consistent abstraction of
VS if there are a monotonic abstraction function α : ValueSets → D and a
monotonic concretization function γ : D → ValueSets , such that

• ∀x ∈ D : x = α(γ(x)).

• ∀vs ∈ ValueSets : vs � γ(α(vs)).

• ∀E ∈ Edges : SVS [E] � γ(SA[E]) and α(SVS [E]) � SA[E].

Cousot and Cousot [5] provide a sufficient “local” condition to check that
one abstraction is a consistent abstraction of another.

5.3 Null-Pointer Analysis

In this section, we describe a simple null-pointer analysis NPA as an example
of a consistent abstraction of the value set analysis. This analysis can be used
to prove a pointer to be non-null when it is dereferenced. Given a program
P , an abstract state is a map of the form LVals → {NonNull ,MayNull},
where LVals is the set of lvalues in P . The domain of the analysis DNPA is
a set of all such maps. The concretization function γ : DNPA → ValueSets is
defined below for d ∈ DNPA:

γ(d)(l) =

{

Values if d(l) = MayNull

Values − {NULL} if d(l) = NonNull .

Similarly, if a value set contains NULL, the abstraction function maps it to
MayNull , otherwise to NonNull .

14

For d1, d2 ∈ DNPA and l ∈ LVals , the join operation is defined below:

d1 ⊔ d2(l) =

{

NonNull if d1(l) = d2(l) = NonNull

MayNull otherwise.

The flow functions for a node N , edge E and state d are given below. By
d[l← a] we denote a map same as d except that d(l) = a.

If N is of the form if (l != NULL):

FN(d,E) =

{

d[l← NonNull] if E is the true edge
d otherwise.

If N is of the form l := e:

FN(d,E)(l′) =















NonNull if l′ = l, e is an lvalue, and d(e) = NonNull

d(l′) if l′ /∈ AliasSet(l) and l /∈ AliasSet(deref (l′))
d(l′) if l′ ∈ AliasSet(l), e is an lvalue, and d(e) = NonNull

MayNull otherwise.

The flow functions for all other statements are identity functions. Note
that this analysis requires a may-alias analysis. It is easy to see that this is
an abstraction of the value set analysis.

6 Analysis for Concurrent Programs

Given a concurrent program P and a dataflow analysis A for sequential
programs, our technique converts A to an analysis for P that is sound if P
is datarace-free and A falls into the class of analyses described in Section 5.
We assume availability of a sound may-alias analysis. For example, flow-
insensitive may-alias analyses such as [1] are sound for concurrent programs.

1. Construction of the sync-CFG: We first construct an extended CFG
C for P , called sync-CFG, as follows. We begin by taking the disjoint
union of the CFGs of threads of P . We then add the may-synchronize-

with (msw) edges between nodes of these CFGs as described below.
These edges are added between nodes that might participate in a
synchronizes-with relation at runtime. More specifically, we add the
the following types of edges:

1. From a spawn node to the start node of the child thread.

2. From an end node of a thread to the corresponding join node of
the parent thread.

15

3. From an unlock node to a lock node, if they access the same lock
and if the corresponding threads may run in parallel.

In case the exact set of edges are difficult be compute, we can use any
over-approximation of it. For example, if locks can be aliased (not
possible in the language described in Section 4.1), we use the may-
alias analysis to find out whether a lock/unlock pair may access the
same lock variable at run-time. Similarly, simple control flow based
techniques can be applied to conservatively detect whether two threads
can run in parallel. Figure 1 shows the msw edges added for the shown
program fragment.

2. Constructing Flow functions: Flow functions of the synchronization
statements are simply identity functions. Flow functions of other nodes
are same as that of A.

3. Constructing and Solving Flow Equations: The sync-CFG C cor-
responds to a (non-deterministic) sequential program. We construct
the flow equations for our analysis A over C as given in Equation 3.
Finally, we compute the least solution of these set of equations over the
sync-CFG C.

Interpreting the Result: As we show in Section 7, the solution given by
our technique conservatively approximates the value sets of relevant lvalues at
a program edge, while it may not be sound for non-relevant lvalues. Hence the
client of the analysis must use the result to reason about only relevant lvalues.
For example, in the program of Figure 1, our analysis wrongly concludes that
p->data must be non-null at C1, but p->data is not relevant at C1. On the
other hand, it finds p->data to be non-null at C3 where it is relevant and
this fact is sound.

Alternatively, to present a solution that is sound for all lvalues, we define
a program dependent operation havoc on value set states as follows. For
vs ∈ ValueSets , E ∈ Edges and l ∈ LVals ,

havoc(vs , E)(l) =

{

Values if l is not relevant at E
vs(l) otherwise

Then for an abstract analysis A, α(havoc(γ(SA)[E], E)) (or any conserva-
tive approximation of it) is the final solution at edge E. This step essentially
sets the abstract values of non-relevant lvalues at every program point to the
most conservative value. Hence, this method produces useful results only for
relevant lvalues at each program edge, but is sound for all lvalues.

16

The alias analysis can be computed in time polynomial in size of the pro-
gram. The conservative sync-CFG can also be computed in polynomial time.
The modified program represented by the sync-CFG is again polynomial in
size of the original program and the least solution can be computed in time
polynomial in the size of the sync-CFG. Hence, the entire algorithm takes
time polynomial in size of the original program.

7 Proof of Soundness

7.1 For Value Set Analysis

In this section we prove that given a datarace-free concurrent program P ,
the solution characterized by the technique described in Section 6 is a con-
servative approximation of the collecting semantics defined by Equation 1
for value set analysis with respect to the relevant lvalues at each program
edge. Note that the least solution to the equation system 3 is a conservative
approximation of the JOP solution over the sync-CFG C of P . Thus it is
sufficient for our purpose to argue that if there is an execution of P in which
an lvalue l has a value v at a program edge E where l is relevant, then there
is an initial path in the sync-CFG to E along which the value v is included
in the value set of l at E. This is shown in Lemma 7.2 below.

We begin with a lemma that will be useful in proving Lemma 7.2.

Lemma 7.1 Let E = 〈a0, . . . , aj〉 be an execution of the program P . Let

l be a relevant lvalue at stmt(aj) and v = pre(aj)(l). Let M be the set of

memory locations corresponding to the lvalues {l} ∪ deref (l) at aj. Let ai,

i < j be the last action before aj that writes to a memory location in M .

Then there exists a static path Π in the sync-CFG C from stmt(next(ai)) to

stmt(prev(aj)) such that ∀vs ∈ ValueSets : v ∈ vs(l) ⇒ v ∈ FΠ(vs , E)(l),
where E = eprev(aj).

Proof As l is relevant at stmt(aj), aj reads all the memory locations of
M . As ai is the last action before aj that writes to one of these memory
locations, ai and aj are conflicting. As the program is datarace-free, we
must have ai ≤

E
hb aj. Recall that the happens-before relation is the reflexive

transitive closure of program-order and synchronizes-with relations. It is easy
to see that if for two actions b and b′ from E , b <E

po b
′ or b <E

sw b′, then there
is an edge in C from stmt(b) to stmt(b′). Hence, a path Π′ from stmt(ai) to
stmt(aj) in C can be constructed by joining the edges of C corresponding
to these po and sw relations. As neither ai nor aj can be synchronization
actions (they read/write to lvalues), hence, in Π′, stmt(ai) is succeeded by

17

stmt(next(ai)) and stmt(aj) is preceded by stmt(prev(aj)). Clearly, this path
is a subsequence of the list of nodes corresponding to ai, . . . , aj. We further
obtain Π from Π′ by excluding stmt(ai) and stmt(aj) from Π′.

By contradiction, let vs be a value set state such that v ∈ vs(l) and
v /∈ FΠ(vs , E). Then there must be a node N and an edge E in Π such that
E ∈ esucc(N) and there is a value set state vs ′ such that v ∈ vs ′(l) and
v /∈ FN(vs ′, E)(l). From the definition of flow functions from Section 5.1,
this can be possible only in the following two cases:

• N is an assignment to l. As ai was the last assignment to any memory
location in M , the memory location corresponding to l does not change
after ai till aj. If LHS of N was l, then the corresponding action in
ai+1, . . . , aj−1 must have written to a memory location in M , which is
not possible because of the choice of ai.

• N is a branch statement and E is the true successor edge and the
condition e is such that it does not evaluate to true when l has a value
v. This is not possible as the execution took the true branch E with
the value v in l. The argument is similar for the false branch.

Hence, there can be no such vs and the lemma is proved.

Lemma 7.2 Let E = 〈a0, . . . , aj〉 be an execution of P . Let l be an lvalue

relevant at stmt(aj) and v = pre(aj)(l). Let N = stmt(aj) and E ∈ epred(N)
in C. Then there exists an initial static path Θ in C from NM

0 up to E, such

that v ∈ FΘ(⊤, E)(l).

Proof We prove the lemma by induction on the length k = j + 1 of the
execution E .

Base case: If k = 0, Θ = ǫ (empty path) and FΘ(⊤, E) = ⊤. Clearly,
v ∈ ⊤(l).

Induction step: Let us assume the result for k < n and consider the case
for k = n.

Let ai be the last action in E before aj which writes to a memory location
corresponding to the lvalues in {l} ∪ deref (l) at aj. Then we have v =

post(ai)(l) as the value contained in l cannot change after ai in E . As N̂ =
stmt(ai) is an assignment statement, let us denote the singleton edge in
esucc(N̂) by Ê. Then either of the following is true:

1. N̂ writes to a memory location corresponding to an lvalue in deref (l)
at aj. In this case, any path Θ̂ from NM

0 to N̂ (both inclusive) in C

will have v ∈ FΘ̂(⊤, Ê)(l), as the flow function of N̂ sets the value set

18

of l to Values . It is easy to see that if a node gets executed, then there
is a path from NM

0 to that node in C.

2. N̂ writes to the memory location corresponding to l. Let the RHS
be the expression e. As the length of 〈a0, . . . , ai〉 is less than k, by
the induction hypothesis, there is a path Θ′′ from NM

0 up to but not
including N̂ , such that for all lvalue l′ read in e, v′ = pre(ai)(l

′)⇒ v′ ∈
FΘ′′(⊤, epred(ai))(l

′). Let Θ̂ = Θ′′.N̂ . From the definition of static flow
function, this implies v ∈ FΘ̂(⊤, Ê)(l).

Now let Π be the path from stmt(next(ai)) to stmt(prev(aj)), excluding

both, as given by Lemma 7.1. Clearly, E = eprev(aj). Let Θ = Θ̂ ·Π. As v ∈

FΘ̂(⊤, Ê)(l) and v = post(ai)(l), using Lemma 7.1, we have v ∈ FΘ(⊤, E)(l).

We finally prove the following soundness theorem:

Theorem 7.3 Let P be a datarace-free concurrent program. Let SVS be the

solution returned by our technique and let CVS be the collecting value set of

P . If l is an lvalue relevant at an edge E, then CVS [E](l) ⊆ SVS [E](l).

Proof As already observed in the beginning of this section, since our analysis
finds a conservative approximation of the join-over-all-paths solution over the
paths of sync-CFG C of P , it is sufficient to show that if there is an execution
of P which has a value v in an lvalue l at a program edge E where l is relevant,
then there is an initial path in C to E along which the value v is included in
the value set of l at E. This is a direct consequence of Lemma 7.2. Hence
the theorem is proved.

The following corollary is immediate from Theorem 7.3 and definition of
havoc.

Corollary 7.4 For a datarace-free program P and for all edges E, CVS [E] �
havoc(SVS [E], E).

7.2 For Abstractions of Value Set Semantics

We now show that the havoced solution characterized by our technique for
any consistent abstraction of value set semantics conservatively approximates
the collecting semantics for value set analysis for a datarace-free program.

19

Theorem 7.5 Let A be a consistent abstraction of the value set semantics

and SA be the solution returned by our analysis for a datarace-free concurrent

program P . Then for all edges E, CVS [E] � havoc(γ(SA)[E], E).

Proof From definition of consistent abstraction, SVS � γ(SA). As havoc

is monotonic, havoc(SVS [E], E) � havoc(γ(SA)[E], E). From Corollary 7.4,
we have CVS [E] � havoc(SVS [E], E). Thus, CVS [E] � havoc(γ(SA)[E], E).

8 Context-Sensitive Analysis

For programs with procedure calls, context-sensitive analyses are required to
improve the precision of sequential analyses. In this section, we describe how
one such context-sensitive technique, namely the call-string approach [26],
can be integrated into our framework. For sake of completeness, we briefly
describe the sequential call-string approach here.

We first augment our language described in Section 4.1 with procedure
calls. A thread now consists of a number of procedures, each with their
own rooted CFGs. Each thread has a entry procedure with the same name
as the thread. Only the entry procedures have start and end edges and
nodes. Execution of a thread starts with the execution of the start node of
the entry procedure. We define two new types of statements : CallStmt of
the form <procname>(), where <procname> is name of some procedure and
ReturnStmt of the form return. The control flow structure of a thread is
represented by a Interprocedural Control Flow Graph (ICFG), which is ob-
tained by taking disjoint union of all the CFGs of all the procedures that can
be called during execution of the thread and adding call edges and return

edges. Call edges are added from call statements to the root nodes of the
called procedures’ CFGs. Return edges are added from return statements to
the statements immediately following the call statements calling the proce-
dures containing the return statements. Note that in any CFG, there are no
edges from call statements to the next statements in the same procedures.

8.1 Sequential Analysis with Call-Strings

As before, the sequential program consists of a single main thread. Let
A = (L,F) be the underlying sequential dataflow analysis with L = (D,�).
Let C∗ = (Nodes ,Edges , E0, E♯) denote the ICFG of the program.

We define a call-string γ as a (possibly empty) sequence of call statements.
Let Γ be the set of all possible call-strings. The empty call-string is denoted

20

by ǫ. The size of a call-string γ is denoted by |γ|. The ith component of γ is
denoted by γ[i] and the substring from ith to jth component (both inclusive)
is denoted by γ[i..j]. The operator “·” denotes the string append operation.

The call-string approach defines a new dataflow analysis framework A∗ =
(L∗,F∗), where L∗ = (D∗,�). The domain D∗ is the space of all maps
from Γ into D. The ordering in L∗ is the pointwise ordering on L, i.e. for
ξ1, ξ2 ∈ D

∗, ξ1 � ξ2 iff ∀γ ∈ Γ, ξ1(γ) � ξ2(γ). Similarly, the join operation in
L∗ is defined as a pointwise join on L, i.e., for ξ1, ξ2 ∈ D

∗, γ ∈ Γ, (ξ1⊔ξ2)(γ) =
ξ1(γ)⊔ξ2(γ). The largest element in L∗ is ⊤∗ = λ γ.⊤. Similarly, the smallest
element is ⊥∗ = λ γ · ⊥.

In order to define the flow functions, we first define a partial binary
operator ◦ : Γ× Edges → Γ in the following way:

γ ◦ 〈N,N ′〉 =















γ ·N if 〈N,N ′〉 is a call edge
γ[1..|γ| − 1] if 〈N,N ′〉 is a return edge and γ[|γ|] is the

corresponding call statement
γ otherwise

A flow function F ∗
N ∈ F

∗, whereN ∈ Nodes , is a function fromD∗×Edges

to D∗, defined below:

F ∗

N(ξ, E)(γ) =

{

FN(ξ(γ′), E) if there exists a unique γ′ such that γ = γ′ ◦ E
⊥ otherwise

The analysis characterizes the call-string solution S∗
A as the least solution

of the following set of equations:

X ∗[E0] = λ γ. if γ = ǫ then ⊤ else ⊥
∀E ∈ (Edges − {E0}) : X ∗[E] =

⊔

E′∈epred(E)

F ∗

npred(E)(X
∗[E ′], E)

(4)

The final summarized solution SA is defined for an edge E ∈ Edges as

SA[E] =
⊔

γ∈Γ

S∗

A[E](γ)

8.2 Integrating Call-String Analysis into Our Frame-

work

Intuitively, any abstract state that is reachable at a release node via any
call-string should be joined with all abstract states at the corresponding

21

acquire node, as the release and the acquire nodes may belong to different
dynamic threads at runtime and there is no relation among the call-strings
of different threads. Therefore we modify the call-string lattice by adding a
second component and use it to propagate the joined abstract value along an
msw edge. If the abstract state corresponding to some call-string is ⊥ at the
acquire node, it implies that the call-string is not reachable at that program
node. Hence we join the propagated value only with the call-strings that are
mapped to non-bottom values.

Given a concurrent program P and a call-string based analysisA∗, we first
construct the sync-ICFG C = (Nodes ,Edges , E0, E♯) in the same way as the
context-insensitive case. We define a new analysis framework A = (L,F) as
follows. We define L = (D,�) where D = {(ξ, d) ∈ D∗ ×D | ∀γ ∈ Γ : ξ(γ) 6=
⊥ ⇒ d � ξ(γ)} and (ξ1, d1) � (ξ2, d2) iff ξ1 � ξ2 and d1 � d2. For ψ1, ψ2 ∈ D

where ψ1 = (ξ1, d1) and ψ2 = (ξ2, d2), ψ1⊔ψ2 = 〈(ξ1⊔ξ2)∇(d1⊔d2), (d1⊔d2)〉.
The operator ∇ : D∗×D → D∗ is defined as follows: For ξ ∈ D∗ and d ∈ D,

(ξ∇d)(γ) =

{

ξ(γ) ⊔ d if ξ(γ) 6= ⊥
⊥ otherwise

Given ξ ∈ D∗, we define reduce : D∗ → D as reduce(ξ) =
⊔

γ∈Γ

ξ(γ). We

define the flow function F̂ ∈ F for N ∈ Nodes , ψ ∈ D and E ∈ esucc(N)
below. Let ψ = (ξ, d) and d′ = reduce(ξ). Then

F̂N(ψ,E) =























〈λ γ. if γ = ǫ then d′ else ⊥, d′〉 if N is a spawn node and E
is an msw edge

〈λ γ.⊥, d′〉 if N is not a spawn node but E
is an msw edge

〈F ∗
N(ξ),⊥〉 otherwise

As in the context-insensitive case, the call-string solution SA is charac-
terized by the least solution of the following set of equations:

X[EM
0] = 〈λ γ · if γ = ǫ then ⊤else ⊥,⊥〉

∀E ∈ (Edges − {E0}) : X[E] =
⊔

E′∈epred(E)

F̂npred(E)(X[E ′], E)
(5)

The final summarized solution SA at a program edge E is given by

SA[E] = reduce(ξE)

where SA[E] = (ξE, dE).

22

The solution described in previous section may not be computable even
if L is of finite height, because in presence of recursive procedure calls, the
call-strings may grow unboundedly. In practice, we use an approximate but
sound call-string approach where we represent a call-string by a finite length
suffix, as described in [26].

The soundness of our context-sensitive analysis can be proved in a similar
way to the context-insensitive analysis.

9 Implementation

We have implemented our technique into a framework STAND (STatic ANanl-
ysis for Datarace-free programs) that automatically converts dataflow anal-
yses for sequential Java programs to analyses for concurrent program. We
use Soot [27] as the frontend and SPARK [18] for the alias analysis. We in-
stantiated STAND for a simple null-dereference analysis and used it to prove
safety of dereferences in three large Java programs, jdbm (a transactional
persistence engine), jdbf (an object-relational mapping system) and jtds (a
JDBC driver). As mentioned in [23], developers of these programs fixed the
dataraces detected by Chord [23] and hence, they are likely to be datarace-
free. All our experiments are carried out on an Intel Xeon machine with 2.27
GHz clock and 2 GB RAM.

We report the percentage of dereferences proven to be safe for our bench-
mark programs in column % safe of Table 1. We observe that on an average,
STAND is able to prove over 80% of the dereferences safe. We compare our
precision with an unsound sequential analysis that is obtained by removing
the msw edges (except for edges from spawn to start) from a sync-CFG
and running the same underlying sequential analysis on the modified graph.
Note that this analysis is unsound as it does not account for the interference
from other threads. The column % seq-safe denotes the percentage of deref-
erences shown to be safe by this unsound, sequential analysis. We observe
that the difference between % safe and % seq-safe is small. Hence it can
be concluded that the loss of precision in STAND can largely be attributed
to the underlying sequential analysis. Finally, we report the total analysis
time in two parts: SPARK time denotes the time taken by the SPARK alias
analysis and STAND time denotes the time taken by our analysis excluding
alias analysis. Note that the analysis time of STAND after alias analysis is
fairly small for these benchmark programs.

We also compare our approach with Radar [4] by implementing null-
pointer analysis for concurrent C programs with the pthread library. This
implementation uses the LLVM compiler infrastructure [19]. We executed

23

Table 1: Results using STAND
Benchmark LOC (w/o lib) % safe % seq-safe STAND time(s) SPARK time(s)
jdbm 19077 79.5 81.0 2.518 35
jdbf 15923 81.9 82.8 2.883 120
jtds 66318 80.3 84.3 1.709 51

Figure 4: Precision comparison between Radar and Stand

Radar and STAND on the five concurrent programs (average size greater
than 1000 LOC) implementing some classic concurrent algorithm and data-
structures. The precision results, measured as the percentage of dereferences
proven to be safe, are shown in Figure 4. We observe that STAND consis-
tently does better than Radar. We manually checked that the reason behind
this difference is that Radar conservatively kills a dataflow fact whenever
there is a race possibly affecting that fact whereas STAND propagates the
exact facts from one thread to another. The analysis time of STAND for this
set of programs is only 0.8 seconds on average.

Acknowledgments.

We thank Ankur Sinha for helping with the experiments.

References

[1] L. O. Andersen. Program Analysis and Specialization for the C Pro-

gramming Language. PhD thesis, DIKU , University of Copenhagen,
1994.

[2] H.-J. Boehm. Reordering Constraints for Pthread-Style Locks. In Pro-

ceedings of the 12th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 173–182, New York, NY, USA,
2007. ACM.

24

[3] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the 2008 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 68–78,
New York, NY, USA, 2008. ACM.

[4] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner. Dataflow Analysis
for Concurrent Programs Using Datarace Detection. In Proceedings of

the 2008 ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 316–326, New York, NY, USA, 2008. ACM.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

Symposium on Principles of programming languages, pages 238–252,
New York, NY, USA, 1977. ACM.

[6] M. B. Dwyer and L. A. Clarke. Data Flow Analysis for Verifying Proper-
ties of Concurrent Programs. In Proceedings of the 2nd ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 62–75, New
York, NY, USA, 1994. ACM.

[7] A. Farzan and Z. Kincaid. Compositional Bitvector Analysis for Concur-
rent Programs with Nested Locks. In R. Cousot and M. Martel, editors,
SAS 2011, volume 6337 of LNCS, pages 253–270. Springer Berlin / Hei-
delberg, 2011.

[8] C. Flanagan, S. Freund, and S. Qadeer. Thread-Modular Verification for
Shared-Memory Programs. In D. Le Mtayer, editor, ESOP 2002, volume
2305 of LNCS, pages 285–301. Springer Berlin / Heidelberg, 2002.

[9] C. Flanagan and S. Qadeer. Thread-Modular Model Checking. In T. Ball
and S. Rajamani, editors, SPIN 2003, volume 2648 of LNCS, pages 624–
624. Springer Berlin / Heidelberg, 2003.

[10] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-Modular
Shape Analysis. In Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 266–277,
New York, NY, USA, 2007. ACM.

[11] D. Grunwald and H. Srinivasan. Data Flow Equations for Explicitly
Parallel Programs. In Proceedings of the 4th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 159–168, New
York, NY, USA, 1993. ACM.

25

[12] IEEE and The Open Group. The Open Group Base Specifications Issue
6, IEEE Std 1003.1, 2004 Edition, 2004.

[13] JSR-133 Expert Group. JSR-133: Java Memory Model and Thread
Specification. http://www.cs.umd.edu~pugh/java/memoryModel/

jsr133.pdf, August 2004.

[14] J. B. Kam and J. D. Ullman. Monotone Data Flow Analysis Frameworks.
Acta Inf., 7:305–317, 1977.

[15] G. A. Kildall. A Unified Approach to Global Program Optimization. In
Proceedings of the 1st ACM SIGACT-SIGPLAN Symposium on Princi-

ples of Programming Languages, pages 194–206, New York, NY, USA,
1973. ACM.

[16] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for Free: Efficient
and Optimal Bitvector Analyses for Parallel Programs. ACM Trans.

Program. Lang. Syst., 18(3):268–299, 1996.

[17] J. Lee, D. A. Padua, and S. P. Midkiff. Basic Compiler Algorithms for
Parallel Programs. In Proceedings of the 7th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 1–12, New
York, NY, USA, 1999. ACM.

[18] O. Lhoták. Spark: A Flexible Points-to Analysis Framework for Java.
Master’s thesis, McGill University, December 2002.

[19] LLVM Project. The LLVM Compiler Infrastructure. http://llvm.

org/.

[20] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-Modular
Counterexample-Guided Abstraction Refinement. In R. Cousot and
M. Martel, editors, SAS 2010, volume 6337 of LNCS, pages 356–372,
2010.

[21] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 378–391, New York, NY, USA,
2005. ACM.

[22] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic
Testing of Multithreaded Programs. In Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 446–455, New York, NY, USA, 2007. ACM.

26

[23] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for
Java. In Proceedings of the 2006 ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation, pages 308–319, New
York, NY, USA, 2006. ACM.

[24] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs.
In Proceedings of the ACM SIGPLAN 1999 Conference on Program-

ming Language Design and Implementation, pages 77–90, New York,
NY, USA, 1999. ACM.

[25] J. Sevcik. Program Transformations in Weak Memory Models. PhD
thesis, University of Edinburgh, 2008.

[26] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow

Analysis, chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[27] R. Valle-Rai. Soot: A Java Bytecode Optimization Framework. Master’s
thesis, McGill University, July 2000.

[28] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Pro-
grams. In Proceedings of the 15th IEEE International Conference on

Automated Software Engineering, page 3, Washington, DC, USA, 2000.
IEEE Computer Society.

27

