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ABSTRACT

In this paper, we address the problem of power consump-
tion in a data cache by focusing on the latency tolerance of
data regions. Latency tolerance of a data region indicates
how critical the data region to the overall performance of
the program. We use a profile- based technique focusing on
context-as well as path-sensitive analysis to identify critical
and non-critical data regions. We deploy criticality analysis
to drive a power-aware optimization technique which allo-
cated a split data cache, operating in normal and drowsy
modes, to critical and non-critical data regions respectively.
This technique saves around 30% of total power and 20%
of leakage power in the data cache without any significant
performance penalty.

1. INTRODUCTION

A memory subsystem is one of the primary energy con-
suming components in modern embedded systems. In mem-
ory subsystems, several parameters like per-memory access
latency, per-memory access power consumption, and die area
have a direct and significant impact on the overall power
efficiency of embedded computing systems [8]. Various sub-
systems like data caches, RAM and the disks constitute the
memory subsystem.

Cache memories emerge as significant contributors to the
leakage power problem because they constitute a significant
proportion of on-chip transistors in embedded devices [14]
. To quote few examples, on chip caches occupy 43% of to-
tal chip area in the SA-110 [4] and about 75% in Itanium-2
[12]. They consume 30% of the total power in the processor
cores like StrongARM and 16% of the total power in Alpha
21264. This attracts considerable attention of designers and
justifies the need to achieve circuit and architectural opti-
mizations in order to reduce leakage power. The simplest
and most frequently used method of reducing such leakage
power is to place unused cache lines into low leakage mode
and keep the rest of the cache lines active by exploiting some
form of locality [11] . Several circuit techniques and man-
agement schemes exist in literature that indicate the timing
and procedure for turning individual cache lines on or off
[11].

In this paper, we address the problem of power consump-
tion in a data cache by focusing on the latency tolerance of
the data regions. Latency tolerance of a data region indi-
cates how critical a data region is to the overall performance
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of the program. Figure 1(a) provides a brief overview of our
approach.

We implement a context sensitive, profile-driven analysis,
to identify disjoint data regions. The length of the calling
context and dynamic path length are taken into account.

We now define criticality of the data regions identified in
the previous step (profile-driven analysis). We apply a crit-
ical path model of a superscalar out-of-order pipeline and
quantify latency tolerance of all the memory operations. A
memory operation can be either a hit or a miss at some
level of the cache hierarchy. This means that the latency of
a memory operation could vary in value depending on the
particular architectural event. If the impact of this latency
changes the instructions per cycle (IPC), then the memory
operation is considered as critical. By considering the la-
tency tolerance of these memory operations, we analyze the
criticality of a disjoint data region. For our research, we
define critical data regions as, the regions of data that are
accessed by critical memory operations.

To the best of our knowledge, our work is the first one
that describes power-aware optimization using critical data
regions.

1.1 Organization

The subsequent sections of the paper are ordered as fol-
lows. Section 2 briefly provides the background and dis-
cusses the significance of a data region in the context of
power savings. Section 3 elaborates the technique to identify
disjoint data regions. Section 4 explains the quantification
of criticality and in section 5 the optimization technique that
employs this criticality analysis to reduce power consump-
tion is described along with the experimental design and our
power saving results. Section 6 describes related work and
section 7 concludes.

2. BACKGROUND

Most of the compiler-directed power optimization tech-
niques proposed in the literature operate at the instruction
level. Any decision made by an optimization based on a per-
instruction analysis should be independent of the decisions
already made for other instructions. This non-interference
based approach can yield efficient optimizations by avoiding
frequent variations in the tuning of the parameters. How-
ever, per-instruction based techniques do not capture the
higher level semantics of programs as they operate at a
very fine grain level of program execution. Programmers
implement meaningful procedures and data structures in
their software designs. Such coarse-grained information on



Context Length
———— Context Sensitive Profiling ~ f«—— Program

lAddress Memory Profile

Clustering

l, Disjoint Data Regions

Critical Path Model

—| Quantifying Criticality Program

l Critical and Non Critical Data Regions

Optimization

(a)

For(k=0; k<num_nets_affected; k++) {

1) inets=nets_to_update[k];

2) | if(net_bloc_moved[k] == FROM_AND_TO) {

3) net[inet].tempcost = -1;
4) continue;
5) }

6) bb_coords[inet] = bb_coord_new[bb_index];

7) | if(netlinet]l.num_pins > SMALL_NET)

8) bb_num_on_edges|[inet]=bb_edge_new[bb_index];
9) bb_index++;
10) net[inet].ncost=net[inet].tempcost;

11) net[inet].tempcost=1;

(b)

Figure 1: Overview of the approach. An exam-
ple from the benchmark vpr. Boxed statements are
more critical.

software designs can be utilized in designing optimizations
which can result in significantly more gains as compared to
per-instruction based optimizations.

An Example

Consider an example drawn from the vpr benchmark shown
in figure 1(b). Let us first consider the scenario when per-
instruction based optimizations are to be carried out. As
shown in the figure, a significant portion of the total mem-
ory accesses are concentrated towards two data structures
net_bloc_moved and net. The branch instruction in line 7
depends on the memory accesses to net. A branch instruc-
tion is a critical instruction. Therefore, these accesses can
be considered as more critical when compared to other ac-
cesses to the same data structure as depicted in lines 3, 10
and 11. When the memory operation at line 7 is encoun-
tered, the dynamic criticality predictor (derived from the
critical path model as explained in [6]) considers that access
as critical. Consider that all the fields of net belong to the
same cache line. When this cache line is accessed at 10 and
11, the predictor considers these accesses to be non-critical.
During the execution of the program, this continuous change
in the state of the instruction could lead to sub-optimal be-
havior of an optimization. For example, a cache controller

may continuously change the state of cache lines consider-
ing the criticality of data accessed by these individual in-
structions. This demonstrates that considering instruction
criticality in isolation for the purpose of classifying data as
critical or non-critical is not sufficient for an optimal power-
saving technique. We need to take into account the region
of memory that gets accessed by non-critical data accesses
and apply an optimization on the entire region (for example
place the entire region into a low-power state). In order to
design such an optimization, the data regions that show uni-
form criticality behavior need to be identified first. In the
rest of this section,we explain the techniques that consider a
region of data for power optimization and lead to significant
power savings.

2.1 Attributing Criticality to a Data Region

The criticality of a data region can be mainly attributed
to memory access latencies and branch-load dependencies.
For instance, a memory access to a data region can hit a
cache or go through a series of misses. This delay may vary
across different memory accesses. Similarly, in the case of
branch-load dependencies, a branch misprediction can de-
lay a memory access to a particular data region. Hence, we
can correlate memory access latencies and branch mispre-
dictions with the criticality of a data region. We identify
these critical data regions and comprehend their behavior
from a complete program point of view. This helps us to
drive power-aware optimizations at the data structure level,
which are semantically meaningful data regions rather than
contemplating on per-instruction basis.

We now provide a summary of critical path model of an
out-of-order processor [6]. The performance characteristics
of a program including the architectural events and inherent
data dependencies are modeled by a dynamic dependency
graph. Each node in a dynamic dependency graph repre-
sents a mode of instruction. An instruction can be in the
dispatch mode D, the execution mode E or in the commit
mode C. These three nodes denote events within the machine
pertaining to the instruction. The model captures different
dependencies between these modes across the instructions.
For each instruction there is a dependency between D and
E followed by E and C. This indicates the execution of the
instruction, i.e. dispatch followed by execution and finally
commit. The model also captures dependencies between two
instructions. A DD edge captures in-order dispatch, CC
captures in-order commit and EE edge between two instruc-
tions captures data dependency. A mis-predicted branch’s
execution outcome is needed to dispatch instructions from
the right target. Such control dependencies are captured by
ED edge. A reorder buffer dispatches instructions in pro-
gram order. The size of this buffer places a constraint on
the dispatch of new instructions unless the instruction at the
head of the buffer commits. Such resource constraints are
captured in the form of CE dependency edge. Each of these
edges is attributed by a latency indicating the time taken
for the architectural event. The commit of last instruction
ends this dependency graph. By traversing backwards on
the longest path, we can identify the critical path of the pro-
gram. The instructions on the critical path are the critical
operations. The regions of data accessed by critical memory
operations are critical data regions.

Fields et al. [6] also predict the criticality of in-flight in-

structions by planting tokens through the dependency edges.The



critical path predictor aids in the accurate prediction of
the critical path. This further helps in tuning architectural
parameters which harmonize with the critical instructions
thereby improving the performance.

10 r5=0
11 r3=ld[r2]
L1 12 r1=r3*6

Dispatch Node

13 r6=ld[r1]

14 comp r6,0 Execute Node
15 brL1

16 r6=r6+10 Commit Node

Backtracking the dark edges which indicate maximum latency when compared
between the incoming edges gives the critical path

Figure 2: Fields critical path model. This Example
shows a dynamic trace of instructions and dynamic
dependency graph.

An example of this model is shown in Figure 2. The Fig-
ure shows a dynamic trace of a program. Each instruction is
represented by three nodes as described earlier. The instruc-
tions 12 and I1 have EFE edge because of data dependency.
Instructions 11, I8 and I5 are constrained by reorder buffer
(ROB) size of length 2. Instructions I5 and I6 have a branch
mis-prediction dependency. By traversing backwards from
the last instruction’s commit node and taking the maximum
latency edges, the critical path can be identified. The darked
edges indicate the critical path in the instruction trace. Us-
ing a trace variant of this model, where we generate the
trace of the program and feed it to a backward pass model
as explained above, we identify the critical path and critical
instructions. We attribute disjoint data regions as critical or
non critical by measuring the criticality of these data regions
whenever they get accessed on the critical path.

The Fields model also has a predictor model, where by
maintaining history of the event latencies, instructions are
predicted either to be critical or non-critical. This model
need significant amount of hardware to maintain the history
and prediction tables.

3. IDENTIFYING DISJOINT DATA REGIONS

Data structures that are either heap-allocated or stack-
allocated are considered as ideal candidates for criticality
analysis. Such data structures comprise more than 90% of
total accesses during program execution. Most of the dy-
namic power consumption in a memory subsystem is due to
the per-access power consumption. Hence it is profitable for

any power-aware optimization to be designed for such data
accesses.

A dynamically allocated data structure can be viewed as
a set of data addresses distributed across the memory space.
These data blocks are not contiguous. The memory, which
is required by a data structure, is allocated (using malloc
or any other custom memory management method)and ac-
cessed at different points of execution. We profile SPEC
benchmarks for memory allocation sites and memory oper-
ations such as loads and stores using context sensitive pro-
filing. Identification of disjoint data regions is done in two
stages.

First, we profile allocation sites and memory operations
such as loads and stores. By profiling these allocation sites
and collecting the access behavior of these allocated regions,
we generate an undirected graph where each node is a static
memory instruction (PC value of memory accessing instruc-
tion). This undirected graph is called Data Relationship
Graph (DRG). Next, we use a clustering algorithm to cre-
ate disjoint data regions. Each disjoint data region can be
mapped to a data structure in a program or a logical data
region of a data structure.

3.1 Context-Sensitive Profiling

The LLVM compiler provides data structure analysis for
automatic pool allocation [10], where data regions corre-
sponding to a particular data structure (for e.g., a linked
list) are allocated contiguously in memory. Their analy-
sis is a context-sensitive, flow-insensitive, alias analysis. It
captures heap-allocated data structures. They perform alias
analysis at each of the address references. By using the alias
analysis results as well as heap allocation tables, they map
malloc sites to the references. They do not consider program
paths.

However, for some benchmarks, program paths also im-
pact the allocation criteria significantly. Moreover, static
program analysis is conservative and is an expensive tech-
nique both with respect to computing as well as memory
footprint when used to perform a context, flow and path
analysis. Static program analysis conservatively creates large
data regions, thereby impeding the opportunities. Consid-
ering the above constraints, we suggest that profiling an ap-
plication with representative inputs before performing this
analysis could be a more acceptable and scalable technique.
We follow this methodology in order to analyze data struc-
tures.

More recently, data partitioning techniques [3][16] have
been used to map memory operations to data addresses.
They distribute data into different cache partitions by form-
ing a relationship between memory operations and individ-
ual data addresses. The authors do not consider context-
sensitive profiling which is crucial for SPEC integer bench-
marks, where dynamically allocated data significantly de-
pends on the context as well as the path in which it was
allocated. Moreover, it should be noted that considering in-
dividual data addresses and creating relationships could lead
to finer granular regions, where applying criticality based
techniques becomes infeasible.

An Example: In the parser benchmark, a table is used
for most of the computation. This table consists of linked-
lists to store words along with the attributes that are associ-
ated with these words. Each entry of the table stores a single
sentence and the table is initialized for each sentence. The



struct Table_connector{
short lw,rw;

Connector *le, *re;
short cost;

int count;
Table_connector *next;

EF (N_words >=10)

{

BR1: table_size= (1<<16);
push_context(BR1, context_stack);

//push the pc value at BR1 onto a stack
//The size of context_stack is limited by context length

}

else if (N_words >=4)

BR2: table_size=(1<<(((6*N_words-4))/6)+4));
push_context(BR2, context_stack);

else

BR3: table_size=(1<<4);

Site ID 1: table = (Table_connector**)xalloc(table_size *
sizeof(Table_connector¥));

update(heap_table,path_id,Site ID1, table, table+table_size);
for(i=0;i<table_size;i++) {

table[i]=NULL;

}

JMPS5:s_table_size=next_power_of_two_up(count_disjuntcs_in_sentence());
push_context(JMP5,context_stack);

path_id=get_path_id(context_table,context_stack);
Site ID 2: table = (Connector**) xalloc(s_table_size * sizeof(Connector¥*));
update(heap_table,path_id,Site ID2, table, table+s_table_size);

:lMP5:s_table_size:next_power_of_two_up(size_oF_sentence_expressions());
push_context(JMP6,context_stack);

//updating context table

//context stack has the current context

//get_path_id returns a unique path id for context
path_id=get_path_id(context_table,context_stack);

Site ID 3: table = (Connector **) xalloc (s_table_size * sizeof(Connector¥));
//Enter the details of path id, site id and start and end addresses into heap table
update(heap_table,path_id,Site ID3, table, table+s_table_size);

push_context(BR3, context_stack); Freop Table ——
path_id=get_path_id(context_table,context_stack); Sitelib) Path ID Start End (P Sl Path ID
1 1 Ox... Oox... BR1 1
1 2 ox.. ox.. BR2 2
2 3 Ox... Oox... JMP5 3
3 4 ox... ox... JMpe i

Figure 3: The example considers malloc sites whose characteristics change depending on the context. This
is a code snippet extracted from the parser benchmark. The path to the malloc site alters the way in which

the created data is accessed.

connector variables in each table entry are updated through
other functions. Each of these variables points to a list of
attributes that vary across sentences. During the dictionary
lookup and parsing of the sentence, the Table-connector data
structure is accessed frequently. The computation logic for
each of the sentence varies depending on the grammatical
notations.

Consider the example shown in figure 3 derived from the
parser benchmark. The program is instrumented for collect-
ing data addresses allocated by each malloc call, represented
as a SiteID. In addition, we maintain an abstract heap ta-
ble which comprises of the start address, malloc site', and
the size of the data allocated. Whenever there is an access
to a certain data address, a lookup on the heap table pro-
vides the malloc site id which is associated with the data
address. Thus we create a mapping between malloc site id
and program counter value (PC) of the memory operation.
We use a program instrumentation and analysis tool, ATOM
[5], for profiling. Note that the free routines which deallocate
memory seldom have an impact due to rare occurrences of
address Teuse.

The function indicated in figure 3 allocates data for the
parser benchmark. The context of the malloc (in this case
zalloc) site, which can be obtained either by a string of pro-
cedure calls (calling-context) or a string of branches (path),
varies during the execution of the program. Here we obtain
the context of the malloc site through a string of branches.
The instrumentation points for branches and memory allo-
cation sites are indicated in bold letters. As seen in figure 3
, BR1, BR2, BR3, JMP5 JMP6 indicate branches. Here
we consider only the last branch before the allocation hap-
pens, as the context.

! An identification code based on program counter value of
the malloc call.

The first table is a context table which is maintained
to record the context. Each entry has a context and we
associate a path id with it. If the context of the malloc site
is obtained by a string of function calls (calling context),
we can associate a context id to each of these strings. For
example, in the Figure the path string BR1 is associated
with Path ID 1.

The second table presents the heap table. This table
stores each of the memory allocation sites and the range
of (beginning and ending) addresses of the blocks allocated
in an instance of execution. During the execution of the
program, we encounter a series of branches. As maintained
in the heap table, the context at a particular execution point
indicates the corresponding context id or path id, depending
on the type of the context. A data region is represented by
a set of ranges of data addresses at each malloc site along
with a corresponding path id or a context id. The SiteID
1 has two dynamic instances as shown in the heap table.
These two instances are identified with the path IDs 1 and
2, due to BR1 and BR2. There are three tables in this
program. We can identify these three tables from the three
malloc sites.

The above example indicates that the data regions allo-
cated at various points of execution are dependent on the
input sentence in the parser benchmark. By profiling these
allocation sites and collecting the access behavior of these
regions, we generate groups or clusters of data regions that
can be deployed for further analysis. This motivates us to
consider context-sensitive profiling.

3.2 Clustering Algorithm for Identifying Dis-
joint Data Regions
The primary goal of the clustering algorithm is to create
disjoint regions of data allocated during program execution
and form clusters of static memory operations (PCs) access-



Algorithm 1 Clustering Algorithm

Input: an instrumented program P
Output: set of disjoint data regions

1: C Context length initialized to 1

: D Number of disjoint data regions

: DRG is Data Relationship Graph

: includeDRG(0O;): Procedure to include a node in DRG

: createEdgeDRG(O,, Oy4): Procedure to create an edge
between O, O, in DRG

6: pushContext: Procedure to push a branch up to length

C

7: ContextTable: A map between context and M;

8: HeapTable:A map between malloc site and data address
9: ¢ =1,2,3...0; indicates memory operations

10: j =1,2,3....M; indicates malloc site instances

11: while D keeps changing do

12: createDRG(P)

13: D=createConnectedComponents(DRG)

14: C=C+1

Tt W N

15: if Limitation Guidelines Encountered then
16: report warning

17: exit

18: end if

19: end while
20: Procedure Create DRG(P)
21: for each dynamic Instruction of P do

22: if Instruction is a Control instruction and jump to
Address then

23: if Considering path then

24: currentContext=Push(Context, Address)

25: end if

26: else if Instruction is a function call to an Address
then

27: if Considering call string then

28: currentContext=Push(Context, Address)

29: end if

30: else if Instruction is a malloc call M, then

31: ContextTablelnsert(currentContext, Mp)

32: Heap TableInsert(mallocSite, createdData)

33: else if Instruction is a memory operation O, then

34: effadd=E[ffective Address(Instruction)

35: context of Op=ContextTableQuery

36: (HeapTableQuery(effadd))

37: if O, € DRG then

38: if VO, : context of O, = context of O, then

39: createEdgeDRG(Op, O4)

40: end if

41: else

42: includeDRG (O, )

43: end if

44: end if

45: end for

46: Procedure createConnectComponents()

47: N is set of nodes in DRG

48: C is set of connected components

49: C; is connected component i, set of nodes
50: while N # () do

51: node € N

52: Nrode is set of nodes reachable from node
53: Vn € Npode

54: if node € C; then

55: C; = nuU Oi; N:{N} -C;

56: else

57: create new component Cheq

58: Crew = MU Crew; N={N} - Crew
59: end if

60: end while

ing these disjoint regions. While particular instance of a
memory operation (a memory access) maps to a single mal-
loc site, a static memory operation may map to more than
one malloc site. In order to capture this complex relation-
ship between malloc site instances and memory operation
instances, we first introduce a Data Relationship Graph
(DRG). DRG is defined as follows:

Definition 3.1. A data region is a set of data addresses.

Definition 3.2. Let M; be a set of data regions allocated
from an allocation site S at different instances of execution.
Suppose a data region D € M;. Let a and b be program
counter values. Let M, and M, be the set of data addresses
accessed by a and b respectively. We define the data region
D as a common data region, if M, N M, C D.

Definition 3.3. A data relationship graph is defined as
G=(V,E), where V is the set of nodes corresponding to
the static memory operations,i.e., program counter values
of memory accessing instructions and E is the set of edges
defined as follows: Between a node acV and a node beV, 3
an edge e € E : a and b have a common data region.

Algorithm 1 describes the high level clustering routine for
generating disjoint data regions. An instrumented program,
as described earlier, is used to generate these data regions.
We consider a context in the form of a sequence of branches
or string of function calls. We increment the length of the
context until we reach a fix point with respect to the number
of disjoint regions.® The inner loop of the algorithm creates
the data relationship graph for a particular context length.

3.3 Algorithm for the Creation of Data Rela-
tionship Graph

Algorithm 1 describes the creation of a data relation-
ship graph. During instrumentation, we instrument branch,
jump and memory instructions and also malloc sites. The
memory operations are indicated as O; and malloc sites as
M;. The instrumentation routine inserts profiling functions
before each of these primitives. Here we can recall that the
heap table and context table discussed earlier in this sec-
tion maintain mappings between data addresses, malloc site
instances and current contexts.

The algorithm performs different operations for each type
of Instruction as described below:

e If the instruction is a branch

During the execution of a program, we may encounter
a conditional jump or a branch. If we consider a path
as an indicator of the context, we push the encountered
branch target address onto a context-stack. The size
of the context-stack is pre-defined in the outer loop.

e If the instruction is a function call

If we encounter a function call, which is a jump instruc-
tion, we push the callee address onto a context-stack
in case we consider call string as an indicator of the
context.

e If the instruction is a call to a malloc M,:

'Here we increment the context length by one, but in general
depending on the availability of the memory one can choose
to increment it by more than one



If we encounter a call to the malloc routine, we main-
tain the data addresses created at that instance in the
HeapTable. For the corresponding malloc instance, we
consider the current context from the context stack
and update the ContextTable.

e If the instruction is a memory operation O:
During execution, each memory operation is instru-
mented to capture the effective data address. Effec-
tive data address is the actual data address obtained
by adding the base address and the offset. With this
effective data address we lookup the HeapTable. This
yields us the malloc instance and this is used to obtain
the context from the ContextTable. The query oper-
ations, ContextTableQuery and Heap TableQuery pro-
vide us with the context at which the corresponding
data address was created.

While executing the memory operations, if the context
identifier of any operation matches with the context iden-
tifier of the current operation, it indicates that these two
operations have accessed data created at the same context.
Therefore we insert an edge between these two operations.
Each operation can have more than one context identifier,
since it can access multiple data addresses during execution
at different times.

3.4 Identifying Disjoint Data Regions using DRG

The DRG captures the mapping between memory oper-
ations and accessed data regions. The connected compo-
nents of DRG are identified using a variant of Depth First
Search(DF'S) based algorithm as described in Algorithm 1.
During DFS, we check if a node already belongs to a com-
ponent. If it does, all the nodes reachable from that node
associate with the same component identifier. During DFS,
if a node is visited, we annotate the node with the compo-
nent id and include the node into the set of nodes of the
component id. We obtain a forest of disjoint components.
Each component can now be considered as a disjoint data
region.

3.5 Relevance of Context Length

One of the important parameters to the algorithm used
for context sensitive profiling is the context length. Context
length directly affects the number of disjoint regions that
are formed using profiling and clustering. Evidently, as we
increase the context length, the number of edges in the DRG
increases and then decreases. Hence, identifying the right set
of disjoint regions (considering context length) is crucial for
the efficient operation of any optimization technique. In this
section, we elaborate with the help of an example, how the
number of disjoint regions varies with respect to the context
length.

351 Ezample

Figure 4 shows an example of code for memory allocation
that usually occurs in the benchmarks. The figure depicts
four paths that lead to the actual allocation site S1. At
S1, the program calls a custom allocator, which gets fixed
values for the variables p and ¢ in all the four paths. In this
example, the path for the creation of data structure p is S1,
S2, S4 where as that for the data structure q is S1, S3, S4.
There are two functions foo and bar which access these data

structures. The function bar has two loads from ¢, whereas
foo has four loads from p. There are three cases to consider:

When the path length is zero: In this case the graph
has too many disjoint regions and it cannot capture the
essence of data regions. This gives scope for a lot of interfer-
ence across the operations since the data addresses share a
memory block. For example, all the addresses of data struc-
ture p might be available in a few other memory blocks as
well. This does not meaningfully capture the meaning of
data regions. The resulting DRG is shown in figure 5(a).
When the path length is one: The heap table associated
with site S4 captures all the data that is allocated at that
site. In other words, at S4 both p and ¢ are allocated. The
DRG formed by using path length 1 is shown in the figure
5(b) . All the memory operations in both the functions are
connected to each other. This is because of the following
reason. When we look up a data address and associate the
context for that instance, we get S4 as the context identi-
fier for all the accesses. The context S4 along with the site,
identifies all the data allocated for both p and q. When the
path length is two: By increasing the path length to 2,
we are able to distinguish between the two allocations. The
paths now considered are S2,54 and S3,54. The DRG in this
case is shown in figure 5(c) .

In figures 6(a) and 6(b), DRGs for Parser benchmark with
path lengths 2 and 5 respectively are shown. In figures 6(c)
and 6(d), we show DRG generated when call string is consid-
ered in perl benchmark. These DRGs indicate an increase in
disjoint regions when either path length or call string length
are increased.

As seen in the above three cases, the total number of dis-
joint components tends to increase with the context string
length (length=0 is an exception). The reason for this in-
crease can be attributed to the connectivity of the DRG.
Increasing the context length beyond certain limit removes
more and more edges from the DRG. However there is a
maximum limit to the number of components that can be ob-
tained by increasing the context length. Beyond this thresh-
old limit, once the maximum number of components is at-
tained, this number remains a constant notwithstanding any
subsequent increase in the context length. In some bench-
marks, a large number of paths to an allocation site tends
to generate more components, as in parser and vpr. For
other benchmarks, these paths do not guarantee improved
contexts unless a very long path is considered. In such pro-
grams, we consider call graph profiles as the context for the
malloc sites. For this purpose we experiment with both path
and calling context, with different context lengths and we
choose the one that generates more number of components.
In some cases, for example gzip, memory allocation and us-
age happen in a loop body. So, unless we consider the entire
program path, we cannot capture the disjoint regions. One
may choose a trial-and-error method for various path lengths
or calling contexts, but this does not guarantee reaching the
fixed point of Algorithm 1 (for maximum number of mean-
ingful data regions). A set of Limitation Guidelines to iden-
tify such workloads is to track heap table and disjoint data
regions, and exit from Algorithm 1 are, if the size of the heap
table, i.e. number of entries, is small and not changing with
context length. The number of disjoint regions would also
remain constant. This behavior is observed at small con-
text lengths. The observation is usually true even at small
context lengths, the algorithm generates significant disjoint



alloc(int a_var) //allocation Function
typedeF struct t{ Heap & Context table Length 1
iF(a_var < 10) inta, b; -
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elee — typedef struct val{ 1D 1D
BR3: S3: val1 =get_val(lesser); int q i
:if(type==type_var_Fflag) }rr\:::%'n() S1 sS4 Ox.. Ox..
:llzgzs‘t: val2 =get_val_new(); { Path Path ID
BRS5: S5: val2 =get_val_old(); : B . String
JMP4:return (malloc type_—type_var_ﬂag, BR1 1
(val1*val2*sizeoFf(type_var))); BR1: while(a_var < N) BR2 s2
//memory allocation site {
JMP1: BR3 s3
* * S1: node[a_var]=alloc(a_var);
?ar (type_var>* q, val* v) //load q a_varst; BRA4 sa
v-=>q = q->§;////lloag:21 N BR5 S5
v->r = q->b; //loa iy
} a P= node[1]; q= node[20]; JMP1 2
* p, int* i MP2
Foo (type_var * p, int* total, int x)//load p Foo(p,l: x); JMP2 =)
i 1= JMP3. JMP3 4
while(cond !'=0) bar(q,v),
total[cond] = p->a + p->b; b JmPa s
= w* ) [ *
iF(x > Q_: value/ load A3 // load Aa*/ Heap & Context table Length 2
‘é?sleue p->a;//load AS Site ID Path 1D Start End Path String Path ID
val ue= p->b;//load A6 S1 S4,82 Ox.. Ox.. BR1, JMP1 1
cond--; s1 S4,83 Ox.. Ox.. BR4,BR2 S4,852
3 BR4, BR3 s4,83
BR5,BR2 =2
LOADS DATA STRUCTURES o S
p. q BR5,BR3 S5,83
A1, A2, load q B NCHES JMP2,JMP1 2
A3, A4, A5, A6 and load p RA
s1, s2, S3, sS4, S5 JMES JMP2 s
JMP1,JMP1 4

Figure 4: This example considers malloc sites whose characteristic would change depending on the context.
The path to the malloc site changes the way the created data is accessed.

regions. In such cases, it is better to use the Full Drowsy
configuration with simple policy as explained in section 5.
As gzip falls under this class, we do not consider it for our
experiments.

4. QUANTIFYING CRITICALITY OF DIS-
JOINT DATA REGIONS

As discussed in an earlier section, dynamic data structures
that do not impact the overall execution time can be used as
candidates for designing power-aware optimizations. Due to
complex pipelines, quantifying the criticality or the latency
tolerance of these data regions is challenging. We quantify
the criticality of the memory operations using Fields criti-
cality model [6] as described in the sub section 2.1. Further,
we use a pipeline simulator [19] to obtain the frequency of
execution of each memory instruction and the total number
of critical instances of the instruction.

We first define the criticality of a data region using equa-
tion 1.

Cop = Torit,, /Total (1)
Cdata = Z Cop (2)
Yop

Cop : criticality of operations
Cldata : criticality of data region
Tcrit,, : critical instances of operations

Total : total number of instances

During simulation, we gather the total number of times
a particular instruction was commit critical, i.e., Terity-
The section Total is the total number of times that the in-
struction was executed. The summation over all the critical
operations that access a particular data region is given as
Cldata- Higher the ratio of C,p, more critical the component

is.

Applying equation 1, we get graphs as shown in the fig-
ure 7. As we can observe from the figure 7, the data re-
gions can be named as critical or latency tolerant adhering
to a particular threshold value. For the benchmarks vpr
and eon there are two components that are critical as com-
pared to others. It is observed from the experiments that
these components are not always hot components, i.e., com-
ponents with a high frequency of access. Thereby we can
say that a hot component is not necessarily a critical com-
ponent. Other benchmarks also show a partition between
critical and non-critical components. We also observe that
the latency-tolerant data regions comprise of 30 to 50% of
total memory accesses. Further, the footprint of these data
regions varies across the benchmarks. It has been observed
that footprints, criticality and frequency are not always co-
herent for these data regions. This is shown in the figure
8. This indicates that in order to design new optimizations,
criticality of data regions becomes a vital parameter.

5. POWER AWARE OPTIMIZATION

In order to design an effective power-aware optimization,
we first spilt the L1 cache into drowsy cache and normal
cache. The drowsy cache has varying latency and its pa-
rameters are given in the Table 1 .

We assume an additional bit to annotate each instruction
to be either critical or non-critical. Each memory operation
is categorized as critical or non-critical based on its criti-
cality. During instruction fetch, the instruction decoder dy-
namically identifies it as either critical or non-critical. When
critical memory instructions are missed data is fetched into
the normal cache. When non-critical instructions are missed,
data is fetched into the drowsy cache. Note that latency of
the accesses to the drowsy cache is higher than that of the
normal cache. This causes considerable delay in the pipeline.
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Figure 6: Relevance on context length in Parser and Perl benchmarks. We can observe that there is an
increase in the number of disjoint regions with context length.

But since these accesses emanate from non-critical data re-
gions or latency-tolerant data regions, this delay is absorbed
by the pipeline, thereby minimizing the impact on perfor-
mance.

An important limitation of our study is that the profile-
driven technique that is employed here does not guarantee
precision in finding disjoint data regions. In other words,
parts of critical regions may not be critical at all and simi-
larly, parts of latency-tolerant regions may be critical. Hence
it may be necessary to check both the partitions in the case
of a miss. This operation may not guarantee reduction in
the power consumption since the per-access power may ei-
ther remain the same or even slightly higher than the base-
line. Addressing this concern we devise an access policy for
a miss.

Case 1: When there is a miss due to a critical mem-
ory operation

The optimization performs a tag-search in the drowsy
cache. If it is found, the memory operation is performed.
However this additional penalty especially for critical mem-
ory operations can hamper overall performance. Hence our
technique of power optimization simultaneously searches both
drowsy cache as well as the L2 cache, causing a significant
reduction in access latencies. This mitigates the above prob-
lem and minimizes performance penalty. In our power con-

sumption model, we have considered the additional power
consumption due to simultaneous searches of both drowsy
as well as the L2 cache.

Case 2: When there is a miss in the drowsy cache

In this case, a tag look up in the normal cache is per-
formed. If we encounter a miss, an L2 cache access is per-
formed. In this case, the access latency is higher than the
access latency observed in case 1. However,since the access
emanates from non critical memory operations, the addi-
tional latency is absorbed.

5.1 Experimentation

For experimentation, we consider benchmarks from SPECINT2k:

parser, perl, vpr, twolf, eon, pointer intensive benchmarks
like bc and olden benchmarks: em3d, bh. It is not possible
to experiment with other benchmarks because they have less
number of disjoint regions. Moreover due to custom mem-
ory allocation, especially gcc, it is difficult to instrument
the memory allocation points. In spite of a custom mem-
ory allocator in parser, the allocation happens through a
single function which could be instrumented.For our exper-
iments, we modified the Hotleakage simulator [19] to add
extra cache and measured the total leakage savings using
the power model provided in the simulator. Hotleakage im-
plements various low leakage controls like drowsy cache,
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equations 1 are shown here.

gatedVyq etc. The L1 data cache is split into two halves:
a normal mode cache, and another with a leakage control
mode. We consider the drowsy cache as the leakage control
cache.

Pipeline 0-0-0
Issue width 4
Branch predictor Combined predictor
L1 - Split cache 16KB, 16KB, 2 cycles
L1 variable voltages 0.8v-0.6v
L1 variable latencies 3-5 cycles
L2 cache 512KB 4 way, 6 cycles

Table 1: Baseline Processor Configuration and Split
Data Cache Configuration

Next, we measure the power consumption in two parts.
We first measure the total dynamic power consumption. As
the L1 data cache is split into two halves, the dynamic power
per access changes for each access. The splitting of the cache
could alter the behavior of the L2 level data cache, thereby
changing the power consumption in the L2 cache. We then
measure the total leakage consumption. Usually cache leak-
age is measured from the tag array and data array parame-
ters. Existing power models like cacti [9] compute per-cycle
leakage of a cache. We measure the total leakage in the cache
as well as total savings in the drowsy cache. The total power
savings are in both forms of power consumption: dynamic
as well as leakage power.

5.2 Results

Figure 9 presents power savings, both dynamic and leak-
age compared to a baseline processor for the configuration
given in Table 1. The graph shows savings as well as penal-
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ties for 3 different configurations. In the legend, 1, 2 and 7
indicate our savings and penalty due to our technique.total
Dcache and total Leakagesplit indicates our scheme and total
data cache dynamic as well as leakage energy savings. The
configurations 3, 4 and 8 are based on per-instruction crit-
icality based control policy when we employ Field’s model.
The configurations 5, 6 and 9 are due to Full drowsy con-
figuration. The graph demonstrates an overall energy sav-
ings of 35% to 38% and a leakage energy savings ranging
from 13% to 20%. Since L1 cache is split, the per access
power consumption is almost halved. By employing drowsy
cache, we achieve significant leakage savings. We compare
our savings against two policies and configurations. The
Full drowsy configuration shown in figure 9 indicates em-
ploying a 32KB drowsy cache with Simple policy [7]. In
such a policy the complete drowsy cache is turned off peri-
odically. In our policy we employ a 2000 cycle window. Con-
sidering 0.02um technology and 3 cycle latency for bringing
a drowsy cache line to active state, we observe an average
of 21% savings in the leakage power with 27% of total sav-

ings. These savings are comparable to our technique. The
Simple policy can reduce the leakage significantly as most of
the cache lines are placed in drowsy state. But the perfor-
mance penalty of this policy is significantly higher than our
technique. The other configuration is to control the split
cache with per-instruction criticality based control policy.
This is shown in In such a policy, critical path predictor
model as explained in sub-section 2.1 is used. The data
fetch policy is similar to our policy, but we use the critical
path model to predict whether an instruction is critical or
not. In this configuration we observe an average of 25% to-
tal savings and 15% of leakage savings. This configuration
is moderately less efficient than using the Full drowsy cache
configuration. But due to critical instruction prediction, the
performance penalty is lower than that of Full drowsy cache,
i.e. 4% compared to 6% respectively. Leakage savings of our
technique are higher and in some cases comparable to Full
drowsy cache, which is 32KB drowsy cache where in our tech-
nique we employ 16KB drowsy cache, but our total savings
are significantly higher than both the other configurations.
The main reason is very low performance penalty, which is
less than 1% even with a split data cache.

Note that as the cache is split, the leakage energy con-
sumption savings are only attributed to the split data cache.
The seventh bar indicates the performance penalty due to
employing a split cache. This penalty (though very insignif-
icant), is due to the increased latency of the drowsy accesses
and to some extent, due to increased L2 level accesses. In
some cases like parser, there is a slight performance improve-
ment. This is due to a reduction in the number of L2 level
accesses and reduction in L1 cache pollution. We do not
employ drowsy cache at L2 because it is a shared resource.
Also, a minor increase in the access time in L2 can impact
the performance significantly.

5.3 Sensitivity analysis

Energy Savings Comparision with a L1 Drowsy Cache
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Figure 10: This graph shows the sensitivity of the
optimization. The comparison is between a com-
plete L1 drowsy cache and split cache. The power
consumption is compared against a baseline proces-
sor with no leakage control

Since critical data regions have a higher impact on the
performance as compared to non critical regions, we perform
a sensitivity analysis of the split cache at various voltage
levels. As indicated in the experimental results, the split
cache contributes to significant power savings. Now, we vary
the voltage levels of L1 data cache. The coninAgurations
0.8S, 0.7S, 0.6S indicate the voltage levels of the drowsy
cache pertaining to the split L.1 cache. Similarly 0.8D, 0.7D,
0.6D indicate the voltage levels of the total L1 drowsy cache.
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Figure 11: This graph shows the performance
penalty between L1 drowsy cache and split cache.

The variation of the voltage levels causes variation in leakage
power per cycle and also varies per-access cycle time. A
limitation of Cacti [9] is that it can estimate leakage power
as well cycle time at a fixed voltage level. Since it does not
consider different voltage levels, we assume that the latencies
would be 3, 4 and 5 cycles for voltage levels 0.8v, 0.7v and
0.6v respectively.

The results demonstrate that split cache outperforms the
total drowsy cache. Even though the per-cycle leakage power
in the total drowsy cache L1 is lower than that of the split
cache, the extra leakage savings are dominated by an in-
crease in performance penalty. The total number of execu-
tion cycles increase due to an increase in the access times.
Thus the total power consumption increases with increase
in access latencies. Due to increased number of transitions
in the total drowsy cache, extra penalty (which is 3 cycles
from low to high and 300 cycles from high to low) increases
the power consumption. We use the same penalty values for
the split data cache. This is further illustrated in figures 10
and 11 . As shown in figure 10, vpr benchmark consumes
more power as compared to the baseline processor. Figure
11 shows the increase in the penalties for both the caches
by varying the supply voltage. As we can observe, the total
L1 drowsy cache quickly starts showing significant penalties
(as for twolf), whereas the split cache absorbs the extra la-
tencies due to the split drowsy cache and the penalties do
not grow at a similar rate. For benchmarks bh, em3d and
be, we do not notice a remarkable difference as compared to
the split cache. This is because the data regions that are
fetched into the drowsy cache are tolerant or non-critical.
We also observe an extra leakage savings of around 5% as
compared to the baseline processor when we vary the sup-
ply voltage. These savings can be attributed to the reduced
cycles or improved performance of split cache.

6. RELATED WORK

Traditional compiler algorithms statically identify critical
memory operations based on the data dependency graph[13].
These techniques associate predefined latencies with the edges
of these dependency graphs.

Srinivasan et.al. [17] discussed run-time metrics and other
dynamic dependency-based characteristics to identify criti-
cal memory operations. The authors demonstrate that these
metrics perform well in identifying the critical memory in-
structions.

As already cited, Fields et.al [6] developed a more rigor-
ous pipeline based critical path model that not only iden-
tifies critical instructions but can also be used to predict

the criticality of in-flight instructions. Their model extends
the work of Srinivasan et.al. [17] by taking into considera-
tion the resource dependencies and classifies instructions as
either fetch critical, execution critical or commit critical.

More recently, newer metrics [20] have been developed to
improve the notion of criticality. These distinguished studies
signify that using critical instruction predictors may lead to
an increased likelihood of non-critical instructions being pre-
dicted as critical. These metrics are used to identify critical
instructions from program structure. Fields model provides
an architecture dependent trace based critical path model
which can capture dynamic events.

[15] performs a limit-study on critical loads which are not
vital for execution time. In [18] the authors introduce a new
metric for quantifying the criticality of instructions. This
architecture-dependent metric, tautness, is used to design
more efficient critical instruction predictors.

In a nutshell, most of the optimizations designed based on
the criticality models worked at the instruction level[2][1].
They conclude that a data cache block gets accessed non-
uniformly by critical and non-critical instructions from the
time it is available until it gets replaced. This causes inef-
ficiency in the energy savings. All this research points to
the need to quantify the criticality of a data region from the
program point of view instead of using critical instruction
predictors to dynamically tune data cache voltage levels. We
go further and analyze chunks of memory regions for their
latency tolerance as well.

7. CONCLUSIONS

In this paper we addressed the problem of energy con-
sumption in data caches of modern embedded systems. We
used a profile-based technique focusing on context-as well
as path-sensitive analysis. The accuracy of the technique
depends on the length of the context and the length of the
path. We modeled the criticality behavior of data regions
at a coarser level than at a single memory operation level.

We used the criticality analysis to drive a power-aware
optimization technique which allocated a split data cache,
operating at normal and drowsy modes, to critical and non-
critical data regions respectively. This technique saves around
30% of total power and 20% of leakage power in the data
cache without any significant performance penalty.

8. REFERENCES

[1] Jaume Abella and Antonio Gonzalez. Power Efficient Data
Cache Designs. In Proceedings of the 21st International
Conference on Computer Design (ICCD), page 8, 2003.

[2] Rajeev Balasubramonian and Viji Srinivasan. Hot and Cold:
Using Criticality in the Design of Caches. In Workshop on
Power Aware Computing Systems (PACS), pages 180-195,
2003.

[3] Michael Chu, Rajiv Ravindran, and Scott Mahlke. Data access
partitioning for fine-grain parallelism on multicore
architectures. In 40th International Symposium on
Microarchitecture (MICRO), pages 369-380, 2007.

[4] J. H. Edmondson and P. I. Rubinfeld. Internal organization of
the alpha 21164, a 300mhz 64-bit quad-issue coms risc
microprocessor. Digital Technical Journal, 2:119-135, 1995.

[5] Alan Eustace and Amitabh Srivastava. Atom: a system for

building customized program analysis tools. In ACM

SIGPLAN Programming Language Design and

Implementation, pages 528-539, 1994.

Brian Fields and Ras Bodik. Focusing processor policies via

critical-path prediction. In Proceedings of the 28th annual

international symposium on Computer architecture (ISCA),

pages 74-85, 2001.

6



=)

(10

(1]

(12]

(13]

(14]

(15]

(16]

(17

(18]

(19]

[20

K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy Caches: Simple techniques for reducing leakage power.
In 29th International Symposium on Computer Architecture
(ISCA), pages 148-157, 2002.

Bruce Jacob, Spencer Ng, and David Wang. Memory Systems
Cache, DRAM and Disk. Morgan Kaufmann, 2008.

Normal P. Jouppi and Premkishore Shivakumar. Cacti 3.0: An
integrated cache timing, power and area model. 2001.

Chriss Lattner and Vikram Adve. Automatic pool allocation:
improving performance by controlling data structure layout in
the heap. In Programming Language Design and
Implementation (PLDI), pages 129-142, 2003.

Yan Meng, T. Sherwood, and R. Kastner. Exploring the limits
of leakage power reduction in caches. ACM Transactions on
Architecture and Code Optimization, 2:221-246, 2005.

J. Montenaro. A 160mhz 32bit 0.5w cmos risc microprocessor.
In The International Conference on Solid-State Circuits,
1996.

Stephen Muchnik. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1998.

M. Powell, S. H. Yang, B. Falsafi, K. Roy, and N. Vijaykumar.
Reducing leakage in a high-performance deep-submicron
instruction cache. IEEE Transactions on Very Large Scale
Integration Systems, 9:77-89, 2001.

Ryan Rakvic, Deepak Limaye, and John P. Shen. Non-vital
loads. In High Performance Computer Architecture (HPCA),
pages 165-174, 2002.

Rajiv Ravindran and Scott Mahlke Michael Chu.
Compiler-managed partitioned data caches for low power. In
Conference on Languages, compilers, and tools for embedded
systems (LCTES), pages 237-247, 2007.

Srikant Srinivasan and Roy Ju. Locality vs criticality. In
International Symposium on Computer Architecture (ISCA),
pages 132-143, 2001.

ES Tune and B Calder. Quantifying instruction criticality. In
International Conference on Parallel Architectures and
Compilation Techniques (PACT), page 104.

Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of
subthreshold and gate leakage for architects. In Technical
Report CS-2003-05, Virginia University, 2003.

Craig Zilles and Pierre Salverda. A criticality analysis of
clustering in superscalar processors. In International
Symposium on Microarchitecture (MICRO), pages 55-66,
2005.



