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• Networks represent high-dimensional yet sparse structure

• Information flows often come via repeated interactions

• Point processes are simple, flexible, and useful in this setting

• Example: analysis of a corporate e-mail data set



Point Process Approach
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• Interaction data are often summarized as counts Xij

• ‘New social media’, online messaging, transactions, etc.. . .

• Interactions may have single or multiple receivers



Fitting a Simple Model

• Suppose we assume constant-rate Poisson ‘send’ processes, &
constant-rate selection of a single receiver for each message

• Directed graph on N nodes ⇒ 2N node-specific parameters

• Tabulate observed counts (Xi+,X+j) per sender/receiver to fit

Theorem (Perry & W, 2011, Case of Binary, Undirected Data)

For Xij ∈ {0, 1}, let P{Xij = 1} = pij , and log pij = αi + αj .

If all degrees Xi+ satisfy 1 ≤ X 2
i+ ≤ ε0 X++, with ε0 ≤ 15−2, there

exists a monotone transformation α̂ of the network degrees solving
the likelihood equation such that ‖α̂− α̂ML‖∞ ≤ 10 ε0.



Introduction



A Corporate Email Network

The Enron corpus: a large
collection of email messages sent
within the company between
November 1998 and June 2002

21,635 messages
156 employees



A Typical Email Message



Homophily in the Network?

• Question: Is group membership predictive of interaction?

• Gender, Department, Seniority

• Answer(?): Contingency table analysis, homogeneity
assumptions are violated:

• Dependence, Time variation, Multi-way interactions

Other questions: Are past interactions predictive of future ones? Does this

effect vary over time? How should multiple-receiver interactions be handled?

Can these be treated as multiple pairwise interactions? . . .



Contingency Table Analysis

• Positive log-odds indicates homophily (‘birds of a feather’)

• Fisher’s exact test yields significance levels

• Validity?



Dependence



Varying Rates



Multiple Recipients



Modeling



Proportional Intensity Model

Model pairwise interactions i → j via stochastic intensity λt(i , j):

λt(i , j) dt = Pr{interaction i → j occurs in time [t, t + dt)}.

Sender i interacts with receiver j at a baseline rate λ̄t(i) modulated
up or down according to the pair’s covariate vector, xt(i , j):

λt(i , j) = λ̄t(i) · exp{βT0 xt(i , j)} · 1{j ∈ Jt(i)}.

• Jt(i) is the receiver set of sender i at time t

• λ̄t(i) denotes the baseline intensity of sender i

• xt(i , j) ∈ Rp comprises covariates; coefficient vector β0



Covariate Possibilities

• Group-Level Covariates: same gender, dept, seniority. . .

1{i and j belong to the same group}

• Network Covariates: received from j last hour, day, week. . .

1{interaction j → i occurred in [t − δl , t)}

Any process depending only on the past is a valid covariate; e.g.,

1{for some k , interactions i → k and k → j occurred in [t − δl , t)}



Inference

Treat λ̄t(i) as a nuisance parameter (Cox’s partial likelihood):

a) Log partial likelihood at time t, evaluated at β:

logPLt(β) =
∑
tm≤t

{
βT xtm(im, jm)−log

[ ∑
j∈Jtm(im)

exp{βT xtm(im, j)}
]}

b) Approximate “multicast” likelihood:

log P̃Lt(β) =
∑
tm≤t

{∑
j∈Jm

βT xtm(im, j)−|Jm| log
[ ∑
j∈Jtm(im)

exp{βT xtm(im, j)}
]}

NB: Maximizing log P̃Lt(·) instead of logPLt(·) introduces bias



Asymptotics

Different asymptotic regime than traditional proportional hazards

For pairwise interactions, under suitable regularity conditions:

Theorem (Perry & W, 2010)

As the number n of interactions grows,

i) The maximum likelihood estimator β̂n of β0 is consistent; i.e., it
converges in probability to β0;

ii) The quantity
√
n (β̂n − β0) converges in distribution to a

zero-mean Normal random variable whose covariance can also be
consistently estimated.

Results also extend to the case of multiple recipients (more work)



Results



Goodness of Fit

Term Df Deviance Resid. Df Resid. Dev

Null 32261 325412
Static 20 50365 32241 275047
Send 8 107942 32233 167105
Receive 8 5919 32225 161186
Sibling 50 3601 32175 157585
2-Send 50 516 32125 157069
Cosibling 50 1641 32075 155428
2-Receive 50 158 32025 155270

• Group-level (static) effects account for 15% of the residual
deviance; network effects account for 37%

• Residual deviance is about 5× residual Df (overdispersion)



Multicast Bias Correction
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Bootstrap residuals normalized by standard errors

• Note (correctable) negative bias in the coefficient estimates



Group-Level vs. Network Effects

Goodness of fit (Observed-vs.-expected, Pearson residuals)



Group-Level Effects

Receiver

Sender L T J F

1
-0.91 -0.36 -0.34 0.04
(0.04) (0.04) (0.04) (0.03)

L
0.63 0.28 0.22 0.15

(0.05) (0.05) (0.04) (0.04)

T
0.32 0.43 0.27 -0.07

(0.07) (0.05) (0.05) (0.05)

J
0.06 0.28 0.37 -0.13

(0.05) (0.04) (0.03) (0.03)

F
0.59 -0.21 -0.09 0.15

(0.05) (0.05) (0.04) (0.03)

Estimated group-level effects: Row(sender) · Col(receiver)



Network Effects

Variate 1{send} 1{rec} 1{2-send} 1{2-rec} 1{sibling} 1{cosib}

Coefficient 3.26 0.97 0.67 0.01 1.06 0.09
(SE) (0.03) (0.02) (0.05) (0.04) (0.05) (0.04)
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Conclusion



Big Picture

• Flows over networks represented by repeated interactions

• Point process representation is simple, flexible, and useful

• Modeling message exchanges in a corporate e-mail network

• Characteristics & behaviors predictive of interaction

• Enables quantitative description of network effects

Further details: See “Point process modeling for directed interaction networks,”

J. Roy. Stat. Soc., B (arXiv:1011.1703). NSF-DMS/MSBS/CISE, DARPA,

ONR, ARO MURI and PECASE support gratefully acknowledged


