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Fundamental question

How do we draw conclusions from and about networks?

IMF Stability Assessment: Size + Interconnectedness ⇒ “Importance”?



Networks as big data

Statistical network modeling allows us to understand big data

Ingredients

1 Mechanisms that generate data

2 Structure that facilitates analysis

3 Tools that can be understood
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Modeling (big) networks

Objects + relationships ⇒
networks

A network is two sets:

• Nodes (‘nouns’): any discrete set of objects

• Links (‘verbs’): a set of pairs of these objects

Examples:

• Social networks: people, friendships

• Complex systems: variables, correlations

• Images: pixel locations, similarities



Networks as (big) data

Adjacency matrices enable visualization of large networks:

(i , j)th entry =

{
1 if node i links to node j ,

0 otherwise.

Their structure reveals information:

• Links as (biased) coin tosses • How to couple the tosses?



The simplest random network

Decoupled coin tosses

• Links as repeated tosses of the same coin, Pr(Heads = 1
100 )

• How many connections will form as the network grows?

• Emergence of triangles or other structure?



Clusters and connectedness

Strongly coupled coin tosses

• Random scattering of nodes

• Nodes connect to others nearby

• As the network grows, will it eventually become connected?



Limiting behavior in large networks

Cluster models

• Suppose n network nodes divide into k
‘regular’ groups (Szemerédi, Gowers, Tao)

• Thm: If k grows like
√
n, with edges added

faster than n grows, then we can recover groups

Graph limits

• Suppose a network is like a noisy ‘image’
f in the infinite limit (digital → analog)

• Thm: As n→∞, network yields ‘oracle’
information on f at a rate of at least n−1/4

• Brute force algorithms needed to reveal this
information. . . but many special cases possible



Making sense of clusters

Political blog network (Adamic, 2005)

• What is the network equivalent of clustering?

• If the data are not generated by a cluster model, can we still
approximate the generating mechanism (nonparametrics)?

• How to establish correct interpretation for nonparametrics?



Example: likelihood-based clustering

Survey data on high-school friendships (Add Health, 1994):

students grouped by
year (black lines)

students grouped by
race (blue lines)

by race (blue lines) and
then clustered (red)

Implication: how do we interpret the notion of “clusters”?



Main result

• Assume the network to be generated nonparametrically, and
then fit via likelihood-based clustering

• The resulting estimate approaches an optimal
piecewise-constant approximation to the generative model

Implication: significantly broadens the interpretation of “clusters”:
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Fig. 3. Results of logit blockmodel fitting to the data of Fig. 2 for each of K 2 {4, 5, 6, 7} classes. Top row: Adjacency
structure of the data, ordered by grade and by block assignment within each grade, for K 2 {4, 5, 6, 7}. Solid and
dashed lines respectively denote grade and block boundaries. Second row: Adjacency structure of data ordered by
block assignment, and corresponding estimates ✓̂, with Kullback–Leibler divergence bounds 0·012, 0·014, 0·017, and

0·019. Bottom row: Racial identity of students whose grouping remained constant over these four values of K

roughly constant, with 234 students whose meta-group membership did not change at all as K
ranged from 4 to 7. The two meta-groups have similar grade and nodal degree distributions, with
a two-sample Kolmogorov-Smirnov test returning p-values of 0·63 and 0·08 for grade and degree
respectively. The bottom row of Fig. 3 shows differing racial compositions for the meta-groups,
with race 2 concentrated almost exclusively in meta-group 2. However, membership was not
determined solely by race; we note that race 1 students in the second meta-group had a higher
density of friendships with race 2 than did the race 1 students in the first meta-group by a factor
of 10, justifying their inclusion in the second meta-group.
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APPENDIX

Proofs of Theorems 1 and 2
Proof of Theorem 1. To begin, observe that for any fixed class assignment z, every ✓̂ab is a sum of nab

independent Bernoulli random variables, with corresponding mean ✓̄ab. A Chernoff bound (Dubhashi &



Generative model

Example: Lovasz, Very Large Graphs (AMS, 2012):

Generative model Adjacency matrix



Formal description

1 Specify ω˜ : [0, 1]3 → [0, 1]

2 Generate latent variable α ∼ Uniform(0, 1)

3 Generate latent variables ξ = (ξ1, . . . , ξm) and
ζ = (ζ1, . . . , ζn) ∼ Uniform(0, 1)

4 Let Aij be Bernoulli with parameter ωα ≡ ω˜(α, ξi , ζj).
Connect nodes i and j if Aij = 1.



Approximating the generative model

Qn: Can we fit a piecewise-constant approximation, ωφ, to ωα?

Parameters φ ≡ (µ, ν, θ) describe ωφ:

• Vectors µ, ν : boundaries of the piecewise-constant regions

• Matrix θ: heights of the piecewise-constant regions



Fitting criteria

We can fit φ = (µ, ν, θ) to an observed adjacency matrix A by
various criteria:

Likelihood: LA(µ, ν, θ) = max
S,T

∑
i , j

logP(Aij | θS(i)T (j))

Mean-squared error: RA(µ, ν, θ) = min
S ,T

∑
i , j

∣∣Aij − θS(i)T (j)

∣∣2
Mappings S and T assign nodes to K clusters, and are constrained
to have assignment proportions matching µ and ν.



Risk measures

Fitting criteria correspond to risk functionals that measure
agreement with an equivalence class induced by the unknown ω.

Let Π be the set of all measure-preserving bijective maps of [0, 1]
to itself. Then we can minimize mean-squared error:

Rω(φ) = inf
π1,π2∈Π

∫∫
(0,1)2

|ω (π1(x), π2(y))− ωφ(x , y)|2 dx dy ,

or maximize the corresponding likelihood as

Lω(φ) = sup
π1,π2∈Π

∫∫
(0,1)2

[ω (π1(x), π2(y)) logωφ(x , y)

+ {1− ω (π1(x), π2(y))} log {1− ωφ(x , y)}] dx dy .



Technical result

For the least squares co-blockmodel M-estimator

φ̂ = argmin
φ∈Φ

{
min

S∈Qm
µ ,T∈Qn

ν

1

mn

m∑
i=1

n∑
j=1

∣∣θS(i)T (j) − Aij

∣∣2}

relative to the L2 risk

Rω(φ) = sup
π1,π2∈Π

∫∫
(0,1)2

|ω (π1(x), π2(y))− ωφ(x , y)|2 dx dy ,

we have that

Rω(φ̂)− inf
φ∈Φ

Rω(φ) = OP

(
n−1/4

)
.

An analogous result holds for supφ∈Φ Lω(φ)− Lω(φ̂).



Recap (Biometrika, 2012; Ann. Statist., 2013)

Graph limits

• Suppose a network is like a noisy ‘image’
f in the infinite limit (digital → analog)

• Thm: As n→∞, network yields ‘oracle’
information on f at a rate of at least n−1/4

• Brute force algorithms needed to reveal this
information. . . but many special cases possible

Cluster models

• Suppose n network nodes divide into k
‘regular’ groups (Szemerédi, Gowers, Tao)

• Thm: If k grows like
√
n, with edges added

faster than n grows, then we can recover groups



Questions?
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