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• Networks capture high-dimensional yet sparse dependency structure

• Relations, flows, (pairwise) interactions
• Co-occurrences, correlation, closeness in some metric space

• How do we appropriately elicit models for, and draw inferences
about, datasets that take the form of (large) networks?

• One approach is to develop simple null or ‘baseline’ models for such
data, and then check how the data differ from what they predict
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Modeling Simple, Undirected Graphs

Figure: Adjacency matrices of three network datasets

• An undirected, unweighted network on n nodes may be encoded by
an n × n symmetric binary adjacency matrix X

• A simple model specifies {Xij , i < j} as independent coin tosses,
with edge probability P{Xij = 1} = pij , non-edge probability 1− pij

• If all pij are fixed to a single value p, we recover the classical
random graph model posited by Erdős, Rényi, and others



Null Models

• Why (and how) are null models useful?

1 Baseline points of comparison for assessing goodness of fit
(score tests, analysis of variance: explained vs. unexplained)

2 Residuals-based analyses
(exploratory data analysis, detection of outliers, etc.)

• Traditional approach: Elicit a model and prove what happens
when its parameters are estimated from data

• Estimator consistency (recover ‘truth’ as data grow large)

• Leads to classical notion of statistical ‘significance’

• Null model approach: Specify a simplistic baseline model
intended to capture ‘uninteresting’ variability in the data

• Inspect residuals—‘observed-minus-expected’ values

• Simpler to specify, easier (hopefully) to fit



Example of a Consistency Result

Consistency results presume the data to follow a particular model.
The ‘stochastic block’ model provides an example:

• Assume all n network nodes form exactly k groups

• Assume coin-toss edges whose probabilities depend
only on the group membership of their pair of nodes

Example of a consistency theorem (Choi, Airoldi, & W, 2010):

• Suppose the number of groups k grows with n at a rate no
greater than

√
n, and that the expected degree of each node

grows with n at a rate greater than the cube of log n.

• Then, as n grows large, it is possible to recover each node’s
group membership with an overall error rate tending toward
zero (convergence in probability under maximum likelihood)



Null Model Approach

• What if we remove the assumption that ‘groups’ gave rise to
the data, and assume only independent coin tosses with
potentially arbitrary coins?

• We cannot fit this model to a single network (why not?), but
if we have a set of ‘candidate’ edge probabilities {pij}i<j in
mind, we can appeal to a null model result as follows:

• We can check if ‘expected’ edge summaries under this model
deviate from the actual edge summaries we observe

• To do this, consider carving up the data into groups of nodes
and averaging the pij ’s as well as the observed edges {Xij}

• Recall that the ‘expected’ edge value at location i , j is pij , so
we are going down the path of ‘observed-minus-expected’



Example of a Deviations Result

• Arrange observed, expected averages into symmetric matrices
θ̂, θ, whose dimension will be equal to the number of groups

• To check whether the observed averages deviate from
expected, we need a ‘distance’ between θ̂ and θ

• The usual choice would be the sum of squared differences
across elements of θ̂ and θ.

• Consider instead the weighted sum
∑

a≤b nabD(θ̂ab||θab), with
nab the block size induced by groups a and b, and

D(p||p′) = p log
p

p′
+ (1− p) log

1− p

1− p′

is a distance-like quantity satisfying D(p||p′) ≥ 2(p − p′)2

• We now obtain a deviations-based theorem as follows. . .



Example of a Deviations Result

Theorem (Choi, Airoldi, & W, 2011)

Let {Xij}i<j be comprised of
(n
2

)
independent Bernoulli(pij) trials,

and let G = {1, . . . , k}n. Then with probability at least 1− δ,

max
g∈G

∑
a≤b

nabD(θ̂
(g)
ab ||θ

(g)
ab ) ≤ n log k + (k2 + k) log

(n

k
+ 1
)

+ log
1

δ

Proof sketch:

• For fixed g , the probability of any realization of θ̂ is first
bounded by exp{−

∑
a≤b nabD(θ̂ab || θab)}

• A counting argument then yields a deviation result in terms of
(n/k + 1)k

2+k

• Finally, a union bound is applied so that the result holds
uniformly over all kn possible choices of g
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Degree Models

• The degree of each network
node refers to its number of
neighbors, which we may write
as Xi+ =

∑n
j=1 Xij . Note that

X++ =
∑n

i=1 Xi+ gives twice
the number of total edges

• Stochastic block models do not
capture degree heterogeneity
often present in network data
(co-authorship network, right)

• An alternative approach is to
model each node’s link-forming
propensity via a latent variable.
We now consider this approach
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A Log-Additive Parameterization

• Consider a simple log-additive latent variable model given by

log pij = αi + αj , 1 ≤ i < j ≤ n,

with vector α specifying n unknown parameters

• Let ε = {εij : i 6= j} be a family of smooth functions mapping
pairs of reals to reals, with εij(x , y)=εji (y , x)

• If we then specify pij as

log pij = αi + αj + εij(αi , αj),

we can extend this model to other link functions; e.g., a
logit-link model has εij(x , y) = − log{1 + exp(x + y)}



The Connection to Degree Models

• When the observed graph is not too star-like, we show that a
maximum likelihood estimate of pij under this model exists
and is close to p̃ij , where

p̃ij =
Xi+ Xj+

X++
,

whenever the functions in ε and their derivatives are controlled

• Furthermore α̃ is close to a maximum likelihood estimate of
parameter vector α, where

α̃i = log Xi+ −
1

2
log X++ for i = 1, . . . , n

such that
p̃ij = exp(α̃i + α̃j)

• Thus we obtain nearly a maximum likelihood estimate of αi

by a monotone transformation of the ith nodal degree Xi+



Intuition

• Intuition: if pij is small, then a Bernoulli(pij) random variable
behaves like a Poisson random variable having the same mean

• Under the log-linear parameterization, the corresponding
Poisson log-likelihood

∑
i<j Xij log pij − pij becomes

∑
i<j

Xij(αi + αj)− exp(αi + αj) =
n∑

i=1

αi Xi+ −
∑
i 6=j

exp(αi + αj),

thus a stationary point must have Xi+ =
∑

j 6=i exp(αi + αj)

• When α is set to α̃, observe∑
j 6=i

exp(α̃i + α̃j) =
Xi+

X++

∑
j 6=i

Xj+ = Xi+

(
1− Xi+

X++

)
,

and so we see that each component of the Poisson score
evaluated at α̃ is precisely X 2

i+/X++.



Formalization

Theorem (Perry & W, 2011)

Consider the family of models log pij = αi +αj + εij(αi , αj), having
the property that for all pairs i , j and all choices of k, l , and m, the
functions εij , ∂εij/∂αk , ∂

2εij/(∂αk∂αl), and ∂3εij/(∂αk∂αl∂αm),
are sub-exponential in αi + αj with constant C0.

Then if all observed degrees Xi+ satisfy 1 ≤ X 2
i+ ≤ ε0 X++, with

ε0 ≤ {15 (C0 + 1)}−2, there exists a solution α̂ to the likelihood
equation under these models such that

‖α̂− α̃‖∞ ≤ 10 (C0 + 1) ε0.

• One can also show that the corresponding estimates of pij are
within a universal constant of their maximizers, as well as the
value of the log-likelihood itself



Example: Co-Authorship Network Shown Earlier
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Figure: Scaled approximation error
(α̂i−α̃i )/(Cε0), with C = 10 (C0+1)
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(dashed), as a function of Xi+

• C0 is equal to 0 for the log link, 1/2 for the complementary
log-log link, and 1 for the logistic function link



Approximation Error Across Popular Datasets

Dataset n X++ max Xi+ Link Valid %
‖α̂−α̃‖2√

n C ε0

‖α̂−α̃‖∞
C ε0

karate 34 156 17 cloglog 0 0.004 0.01
log 0 0.006 0.02
logit 0 0.009 0.03

football 115 1226 12 cloglog 0 0.02 0.02
log 0 0.005 0.01
logit 0 0.02 0.03

jazz 198 5484 100 cloglog 6 0.004 0.02
log 7 0.002 0.02
logit 4 0.005 0.02

celegans 453 4050 237 cloglog 5 5e-04 0.004
log 36 6e-04 0.009
logit 5 6e-04 0.005

polblogs 1224 33430 351 cloglog 42 9e-04 0.006
log 50 0.001 0.02
logit 38 0.002 0.01

netscience 1461 5484 34 cloglog 63 0.002 0.01
log 75 0.003 0.02
logit 46 0.001 0.01

power 4941 13188 19 cloglog 93 0.001 0.01
log 97 0.002 0.02
logit 80 0.001 0.01

hep-th 7610 31502 50 cloglog 87 9e-04 0.01
log 94 0.001 0.02
logit 78 8e-04 0.009
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Modularity and Community Detection

• Our degree-based model posits that edges are independent
and appear with a probability pij depending exclusively on the
corresponding pair of nodal parameters (αi , αj)

• What about variability left unexplained by this model. . . ?
Recall our stochastic block model notion of a nodal partition g

• Newman (2004) suggested to evaluate community structure
for any g based on the notion of network modularity Q:

Q(g) =
∑
i<j

(
Xij −

Xi+Xj+

X++

)
δ(gi , gj),

with δ(gi , gj) = 1 iff gi = gj (nodes i , j are in the same group)

• This boils down to a graph-based residuals analysis with
respect to our earlier family of degree-based models



Generalized Modularity

• The appearance of degree centrality is certainly suggestive of
a ‘null’ model. . . Is there indeed a valid ‘alternative’ model
underlying modularity?

• The key is the following generalization, due to Reichardt &
Stefan (2006), which incorporates a scale parameter γ ≥ 1:

Qγ(g) =
∑
i<j

(Xij − γ p
(0)
ij ) δ(gi , gj)

• Here p
(0)
ij is the probability of edge i ∼ j appearing in the

absence of group structure—as per a degree-based model

• The modularity Qγ(g) of node partition g is hence motivated
as a sum of residuals between the observed within-community
edges and the null expected within-community edges



Modularity Alternate

• The null model featured in modularity Qγ(g) may be defined
by an n-vector α of nodal parameters as seen earlier:

logit p
(0)
ij = αi + αj

(Observed degrees are a sufficient statistic for this model)

• The alternate requires a partition g and strength factor λ > 0:

logit pij = logit p
(0)
ij + λ δ(gi , gj)

• We can show that the corresponding log-likelihood `(λ, g) is
essentially a monotone transformation of Qγ(g), with

γ = γ(λ) =
exp(λ)− 1

λ
≥ 1



Likelihood Formalism of Modularity

Theorem (Perry & W, 2011)

Let the null and alternate models for modularity Qγ(g) be as
defined previously, and consider the difference in log-likelihoods
under models λ > 0 vs. λ = 0, where γ = γ(λ) = [exp(λ)− 1]/λ.

If eventually maxij{p
(0)
ij } is small enough, then this difference can

be written as

`(g , λ)− `(g , 0) = λQγ(g) +O(λ2)

• This result justifies modularity as an (approximate) generalized
likelihood ratio test statistic, and opens the door to formal
hypothesis testing, uncertainty quantification, and the like
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