

PROGRAMMING LANGUAGES LAB

Lab Members

Faculty:
 Dr. Deepak D'Souza
 Dr. K V Raghavan

Students:
 Arnab De
 Hari Shankar Gupta
 Raghavendra K R
 Ravichandhran K M
 Sudha Balodia
 Vasanta K

Input:
● Withdrawal/Deposit
● Amount

Reject/ Accept

Testing of Transaction Based Systems

Given system specifications:

●Individual withdrawals have an upper limit of Rs. 20,000.
●Overdrafts (i.e., withdrawing more than the current balance)
are allowed.
●After six overdrafts, no more overdrafts allowed until 12
normal withdrawals are completed. Overdraft not allowed:
 When balance is below negative Rs. 40,000,
 When previous three withdrawals were overdrafts.

Tragets for Testing Tool – Anomalies of the system:
- Withdrawal with amount = 0 is counted as normal withdrawal. So 6 overdrafts
followed by 12 such withdrawals will allow further overdrafts.
- Balance of - Rs 39,000 will allow further overdrafts and balance can go below -
Rs 40,000.

Finding null dereference bugs in
Java Programs

Millions of lines of
code

with null
dereference

bugs

Highly
Scalable

Precise &
Accurate

Good
coverage

y = false ;
if(x) {

y= true;
r = null;

}
if(y)

r.foo();

r.foo() will result in a
null pointer
exception

Null dereference
bug finder

Verification of Information Security

Model Checking Information Flow properties on abstract systems

System Model
(finite-state)

Non-interference
property

Model Checker

Yes

No

Undecidable for push-down systems

SEAL: Framework for Verifying Access Control Models

Access Control Model
in SEAL

Safety Queries

SEAL compiler

Yes

No

Counter-example
Automaton

Ongoing work: Verifying Security for Programs

Analysis of Shared-memory Concurrent
Programs

lock l;

p = NULL;

p = &b;

unlock l;

lock l;

c = *p;

unlock l;

x = y = 0

x = 1;
r1 = y;

y = 1;
r2 = x;

Most processors may produce
r1 == r2 == 0!

 Reordering needed for
performance.

 May produce unexpected
behaviors!

 What is the ideal semantics of shared-
memory concurrent programs?

 How to verify properties of programs with
weak semantics?

 Proposed an easy-to-understand
operational semantics that also allows
efficient implementation.

 Developed a model-checker based on the
semantics.

Efficiency!
Programmability!!

p = &a;

Given the program is well-
synchronized, can we
prove absence of null-
deref efficiently?

 Are well-synchronized programs easy to
analyze?

 Goal: Developing a technique for dataflow
analysis for well-synchronized programs.

Source. Dest. Action
C D Accept
A Anywhere Accept

Anywhere D Drop

Violation 1 !!!!
Packets from A to data

storage(D) will be allowed

Problem : Automatic Testing of
“Firewall rule Configurations”

Is this
configuration

correct?

Issues which need to be addressed are:

1. Rule misconfigurations (fig2).

2. IP Spoofing (fig3).
3. NATing (Network Address Translation).

4. Distributed Firewalls (Packets has to
pass more then one firewall).

Expected Results:
1. Detect violation1.
2. Detect violation2.
3. All other errors.

As Complexity of configuring firewalls has
grown significantly, automatic testing is
required to ensure conformance with the
required policy.

Fig3. IP Spoofing ex.

Packet reaches
firewall interface

Does it match the rule?

Take the specified action

Go to the first rule

Next Rule

Fig1. Filtering process

Violation 2 of the stated policy!!!!

Fig2. Rule misconfiguration

This is the
policy

Collaborations and Selected Projects

 A Theory of Conflict-Tolerant Features (with General Motors ISL, Bangalore)

 Constraint Temporal Logics (Indo-France project Timed-DISCOVERI)

 Model-Checking Information flow properties

 Java Memory Model aware Software Validation

(with Abhik Roychoudhury, National University of Singapore)

 Mining services from monolithic code (With Infosys)

 Converting batch programs to online programs (With IBM Research India)

 Inferring logical data models from legacy applications (With Microsoft Research India)

Selected Publications
 Conflict-Tolerant Features, Deepak D'Souza and Madhu Gopinathan, Int. Conference on Computer

Aided Verification (CAV) 2008

 Conflict-Tolerant Real-Time Features, Deepak D'Souza, Madhu Gopinathan, S. Ramesh, and
Prahladavaradan Sampath, Int. Conference on the Quantitative Evaluation of Systems (QEST) 2008

 Conflict-Tolerant Specifications in Temporal Logic, Sumesh Divakaran, Deepak D'Souza and Raj
Mohan M., India Software Engineering Conference (ISEC) 2010

 An Automata-Theoretic Approach to Constraint LTL, Stéphane Demri and Deepak D'Souza,
Information and Computation (2007)

 Model-Checking Information Flow Properties, Deepak D' Souza, Raveendra Holla, Raghavendra K.
Ramesh and Barbara Sprick, Journal of Computer Security (2010)

 Java Memory Model aware Software Validation, Arnab De, Abhik Roychoudhury and Deepak
D'Souza, PASTE 2008 Workshop.

 Deep Packet Inspection Using Message Passing Networks, Divya Jain, K.Vasanta Lakshmi and
Priti Shankar, Recent Advances in Intrusion Detection (RAID) 2008

Why is research in programming languages important?

Increasing size and complexity of software

Emerging areas with programmable systems

Need for reliable software

Adriane 5 explosion due to incorrect software

Notable contributions of PL research

Languages
Optimizing compilers

Languages

Bug detection

Verification

Refactoring
Five of last ten Turing Awards are for research in PL!

