

PROGRAMMING LANGUAGES LAB

Lab Members

Faculty:
 Dr. Deepak D'Souza
 Dr. K V Raghavan

Students:
 Amogh Margoor
 Aravind Acharya N
 Arnab De
 Girish M R
 Pranav Modi
 Raghavendra K R
 Sachin Kale
 Vasanta K

Input:
● Withdrawal/Deposit
● Amount

Reject/ Accept

Testing of Transaction Based Systems

Given system specifications:

●Individual withdrawals have an upper limit of Rs. 20,000.
●Overdrafts (i.e., withdrawing more than the current balance)
are allowed.
●After six overdrafts, no more overdrafts allowed until 12
normal withdrawals are completed. Overdraft not allowed:
 When balance is below negative Rs. 40,000,
 When previous three withdrawals were overdrafts.

Tragets for Testing Tool – Anomalies of the system:
- Withdrawal with amount = 0 is counted as normal withdrawal. So 6 overdrafts
followed by 12 such withdrawals will allow further overdrafts.
- Balance of - Rs 39,000 will allow further overdrafts and balance can go below -
Rs 40,000.

Finding null dereference bugs in
Java Programs

Millions of lines of
code

with null
dereference

bugs

Highly
Scalable

Precise &
Accurate

Good
coverage

y = false ;
if(x) {

y= true;
r = null;

}
if(y)

r.foo();

r.foo() will result in a
null pointer
exception

Null dereference
bug finder

Access Control Model
in SEAL

Safety Queries

SEAL compiler

Yes

No

Counter-example
Automaton

Ongoing work: Verifying Security for Programs

Analysis of Shared-memory Concurrent
Programs

lock l;

p = NULL;

p = &b;

unlock l;

lock l;

c = *p;

unlock l;

x = y = 0

x = 1;
r1 = y;

y = 1;
r2 = x;

Most processors may produce
r1 == r2 == 0!

 Reordering needed for
performance.

 May produce unexpected
behaviors!

 What is the ideal semantics of shared-
memory concurrent programs?

 How to verify properties of programs with
weak semantics?

 Proposed an easy-to-understand
operational semantics that also allows
efficient implementation.

 Developed a model-checker based on the
semantics.

Efficiency!
Programmability!!

p = &a;

Given the program is well-
synchronized, can we
prove absence of null-
deref efficiently?

 Are well-synchronized programs easy to
analyze?

 Goal: Developing a technique for dataflow
analysis for well-synchronized programs.

Collaborations and Selected Projects

 A Theory of Conflict-Tolerant Features (with General Motors ISL, Bangalore)

 Constraint Temporal Logics (Indo-France project Timed-DISCOVERI)

 Quantified Information Leakage in Programs

 Java Memory Model Aware Software Validation

 (with Abhik Roychoudhury, National University of Singapore)

 Mining Services From Monolithic Code (with Infosys)

 Re-architechting legacy financial applications (with Tata Consultancy Services).

Selected Publications
 Dataflow Analysis for Datarace-Free Programs, Arnab De, Deepak D'Souza and Rupesh Nasre,

European Symposium on Programming, 2011

 Model-Checking Information Flow Properties, Deepak D' Souza, Raveendra Holla, Raghavendra K.
Ramesh and Barbara Sprick, Journal of Computer Security, 2011

 A Case Study in Matching Service Descriptions to Implementations in an Existing System, Hari S
Gupta, Deepak D' Souza, K V Raghavan and Girish M Rama, Int. Conference on Software
Maintainance, 2010

 Conflict-Tolerant Real-Time Specifications in Metric Temporal Logic, Sumesh Divakaran, Deepak
D'Souza and Raj Mohan M., TIME, 2010

 Analysing Message Sequence Graph Specifications, Deepak D'Souza, Joy Chakraborty and K.
Narayan Kumar, IsoLA, 2010.

 Deep Packet Inspection Using Message Passing Networks, Divya Jain, K.Vasanta Lakshmi and
Priti Shankar, Recent Advances in Intrusion Detection, 2008

 Conflict-Tolerant Real-Time Features, Deepak D'Souza, Madhu Gopinathan, S. Ramesh, and
Prahladavaradan Sampath, Int. Conference on the Quantitative Evaluation of Systems, 2008

Why is research in programming languages important?

Increasing size and complexity of software

Emerging areas with programmable systems

Need for reliable software

Ariane 5 explosion due to incorrect software Five of last ten Turing Awards are for research in PL!

Notable contributions of PL research

Languages Optimizing compilers

Analyzing Information Security

Model Checking Information Flow properties on abstract systemsModel Checking Information Flow properties on abstract systemsModel Checking Information Flow properties on abstract systemsModel Checking Information Flow properties on abstract systemsModel Checking Information Flow properties on abstract systems

System Model
(finite-state)

Information Flow
property

Model
Checker

Yes

No

Undecidable for push-down systems

Quantifying Information Leakage of Programs

Bank App,
Sensitive Db,
Trojan Horses

...
Program

Private Public

Private Public

Theory of
Abstract

Interpretation

Safe bounds
on entropy

Program a random variable
Entropy measure of information leakage

Verification

Bug Detection Refactoring

Verification of Requirement Specifications

What can be my
minimum balance?

How many maximum overdrafts can
I do before an overdraft getting rejected?

Given system specifications:

●Individual withdrawals have an
upper limit of Rs. 20,000.
●Overdrafts (i.e., withdrawing more
than the current balance) are
allowed.
●After six overdrafts, no more
overdrafts allowed until 12 normal
withdrawals are completed.
Overdraft not allowed:
 When balance is below negative
Rs. 40,000,
 When previous three withdrawals
were overdrafts.

Automated Testing of
Database-Driven Systems

Goal: To automatically generate database instances and
user inputs so that the program covers all paths within a
certain bound.

If I have Rs 20,000 in my account and
I had done one overdraft in the past, what is

the maximum amount I can withdraw?

input

output

Null dereference
bug

	Slide 1

