# Compiler Lab





### Department of Computer Science and Automation

#### The Hot Path SSA Form

- Extension of Static Single Assignment (SSA) Form
- Only hot reaching definitions along frequent acyclic paths in program profile reach respective uses
- Highly useful for Speculative Analyses and Optimizations
- Proposes an algorithm to construct Hot Path SSA
- Demonstrate effectiveness by designing analysis phase of a novel optimization (*Speculative Sparse Conditional Constant Propagation*, extension of Wegman and Zadeck's sparse conditional constant progogation)

## **Profiling k-Iteration Paths: A Generalization of Ball-Larus Profiling Algorithm:**

- Ball-Larus Path Profiling An Efficient technique to collect acyclic path frequencies of programs
- k-Iteration Paths: A Generalization of Ball-Larus Paths



Two Iteration Loop Unrolled DAG for 2-Iteration Path Profiling

#### **Other Major Research Areas:**

- Dynamic Voltage Frequency Scaling
- A new programming language for better exploitation of both inter-node and intra-node parallelism
- Transactional Memory performance optimization
- Power optimizations for VLIW architectures

### **Worst Case Execution Time (WCET) Analysis**



Image-Courtesy: The Compiler Design Handbook – Optimizations and Machine Code Generation; Second Edition; CRC Press; Edited by Y.N.Srikant and Priti Shankar

- Knowledge of WCET
  - Critical in Real Time System Design
  - WCET also helps in effective resource scheduling.

#### **Special Focus:**

#### 1. Formulation of WCET:

- Considers execution time as product of Instruction
   Count (IC) and Cycles Per Instruction (CPI)
- WCET = Max(IC) X Max(CPI)
- Estimates Max(IC) Statically, and Max(CPI) by measurement
- Viewing execution time in terms of CPI helps exploits
   *Program Phase Behaviour* in reducing instrumentation overhead without reducing accuracy
- Insight into Program IC and CPI relation helps in
  - Benchmark Classification in context of WCET Analysis
  - Optimizing beyond Max(IC) X Max(CPI)
- 2. Cache analysis for Multi-Level Data Caches:
  - Uses Static Program Analysis
  - Non-trivial for Multi-level data caches due to writebacks
  - Proposes an abstract lattice to make analysis more precise
  - Also improves original may-analysis for single level caches
  - Detects and rectifies serious flaw in original persistence analysis for single level caches

# Simple Abstractions for Concurrent Programming:



#### **Goals:**

- 1. Identification of Interactions between Programming Models, Application Domains and Hardware
- 2. Designing Simple, High Level Abstractions for Concurrent Programming for Streaming Applications
- 3. Optimizing Application Performance, leveraging information from abstractions designed/adopted
- 4. Design a high-level Parallel Programming Model to reduce programmer overhead i.e. discover parallelism, communication management, for a complete streaming/multimedia application.

# Adaptive Power Optimization in SNUCA Cache on Tiled Chip Multicores using Remap Policy





L1C - L1 Cache Controller, L2C - L2 Cache Controller
TLB - Translation Lookaside Buffer, VA - Virtual Address

### Adaptive Power Optimization in NUCA caches on Chip Multicores

- Leakage power consumption in caches contributes to major power dissipation in memory subsystem of the processor
- We propose a new method to estimate working set size of an application
- In case of over-allocation of cache, propose to switch off farther L2 cache banks and merge data from farther banks into nearer L2 banks
- This is done using remap policy on a tiled chip multicore platform
- Achieves improvement in execution time and energy savings

#### **Publications:**

- *TCP: Thread Contention Predictor*, Aparna Mandke, Bharadwaj Amrutur, Y. N. Srikant and Chiranjib Bhattacharyya, To appear in *PDP 2012*
- Adaptive Power Optimization of On-Chip SNUCA Cache on Tiled Chip Multicore Architectures using Remap Policy, Aparna Mandke, Bharadwaj Amrutur and Y. N. Srikant, IEEE workshop associated with SBAC-PAD 2011
- *Applying Genetic Algorithms to optimize power in tiled SNUCA Chip Multicore Architectures*, Aparna Mandke, Bharadwaj Amrutur and Y. N. Srikant, *SAC 2011*
- Petrinet based Performance Modeling for effective DVS for multi-threaded programs, Arun R and Y. N. Srikant, SAC 2011
- Evaluation of Dynamic Voltage and Frequency Scaling for Stream Programs, Arun R and Y. N. Srikant, CF 2011
- Relative Roles of IC and CPI in WCET Estimation, Archana Ravindar and Y.N. Srikant, ICPE 2011
- *Probabilistic data-flow analysis using path profiles on structure graphs*, Arun Ramamurthi and Y. N. Srikant, *SIGSOFT FSE 2011*

- Implications of Program Phase Behaviour on Timing Analysis, Archana Ravindar and Y.N. Srikant, INTERACT workshop associated with HPCA 2011
- Compiler assisted power optimizations for clustered VLIW architectures, Rahul Nagpal and Y. N. Srikant, Parallel Computing 2011
- Integrated energy aware cyclic and acyclic scheduling for clustered VLIW processors, Jimmy Bahuleyan, Rahul Nagpal and Y. N. Srikant, IPDPS workshops, 2010
- *Accelerating Multi-Core Simulators*, Aparna Mandke, Keshavan Varadarajan, Amrutur Bharadwaj and Y.N. Srikant, *SAC 2010*
- The Hot Path SSA Form: Extending the Static Single Assignment Form for Speculative Optimizations, Subhajit Roy and Y.N. Srikant, CC 2010
- Probabilistic Modeling of Data Cache Behaviour, Vinayak Puranik and Y.N. Srikant, EMSOFT 2009
- Profiling k-Iteration Paths: A Generalization of the Ball-Larus Profiling Algorithm, Subhajit Roy and Y.N. Srikant, CGO 2009)

