
RESEARCH POSTER PRESENTATION DESIGN © 2011

www.PosterPresentations.com

Parallel Computation Of 2D Morse-Smale Complexes

Department Of Computer Science And Automation, IISc, Bangalore

Nithin Shivashankar, Senthilnathan Maadaswamy and Vijay Natarajan

Parallel computation of the Morse-

Smale complex designed for multi-core

and GPU environments.

Computation for datasets that don’t

fit in Memory.

Input: Scalar (real valued) function

Example: 2D plane sin(x)+sin(y).

Gradient curves: Curves that trace the

direction of steepest descent

Critical Points: Points of

origin/destination of gradient curves

Morse-Smale complex: Partition based

on origin/destination of gradient
curves.

INPUT: Domain as a Cell complex and a scalar

function sampled at vertices.

1.Compute discrete gradient

KEY RESULT: Computing discrete gradient is

independent of order. Can be done in parallel.

2. Traverse the gradient field to compute the MS

complex.

Parallel Morse-Smale(MS) Complex Algorithm

Extract

Geometry

Large Data: Divide and conquer.

Divide

Merge

Traverse

merge

History

KEY RESULT: Order of merging does not affect the result

Experiments with synthetic and real

world datasets on 2D grids.

Observed near linear scaling with data

size and number of cores.

Data fits in

CPU but

not GPU

Data fits

neither in

CPU nor

GPU.

Computed

in CPU. Data

does not fit in

CPU.

Size: 8Kx8K.

WGAUSS
dataset

Evaluation

Reference

Shivashankar, N. Maadaswamy, S. and Natarajan, V.,

Parallel Computation of 2D Morse-Smale Complexes,

IEEE Transactions on Visualization and Computer

Graphics (To Appear).

Contact and Acknowledgements

nithin@csa.iisc.ernet.in

senthilnathan.m@intel.com

vijayn@csa.iisc.ernet.in

Work supported by Intel and DST.

Objective

The Morse-Smale Complex

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts
mailto:nithin@csa.iisc.ernet.in
mailto:nithin@csa.iisc.ernet.in
mailto:senthilnathan.m@intel.com
mailto:vijayn@csa.iisc.ernet.in

Computing Reeb Graphs as a Union of Contour Trees

Visualization and Graphics Lab, Indian Institute of Science, Bangalore
http://vgl.serc.iisc.ernet.in

Harish Doraiswamy Vijay Natarajan

Acknowledgements
Harish Doraiswamy was supported by Microsoft Corporation and Microsoft Research India

under the Microsoft Research India PhD Fellowship Award. This work was supported by the

Department of Science and Technology, India, under Grant SR/S3/EECE/048/2007

The Reeb graph of a scalar function is obtained by mapping each connected
component of its level sets to a point

1. Efficient: has a running time of O(n log n + sn)
 n - # triangles
 s - # saddles

2. Generic: works without any modifications on d-
manifolds and non-manifolds

3. Easy to implement
4. Handles data that do not fit in memory
5. At least an order of magnitude faster than

existing generic algorithms

Properties

Identifying Loop Saddles

Lemma
Let GR be the Reeb graph of the given input scalar
function f. Consider the join tree TJ of f. Any join
saddle that ends a loop in GR appears as a degree-2
node in TJ.

The ReCon Algorithm

1. Identify the loop saddles of the input

2. Split the input at a function value infinitesimally
above that of the loop saddles to obtain a set of
simply connected interval volumes

3. Compute the contour trees for each interval
volume

4. Construct the Reeb graph by computing the
union of these contour trees

2D Model # Triangles # Loops
Time taken (sec)

ReCon Online OS Rand

Awakening 4M 1643 2.4 6.72 41.4 51.8

Day 6M 2161 4.3 10.3 91.3 67.5

Dawn 6.6M 757 4.5 11.5 73.2 71.8

Lucy 28M 15 34.2 60.1 Mem Mem

Performance for 2D Input

3D Model # Triangles # Loops
Time taken (sec)

ReCon LS OS Rand

Skull 0.34M 2 0.1 0.3 3.4 2.2

Post 1.24M 0 0.4 0.9 13.0 14.5

Plasma 2.64M 0 1.5 1.9 396.3 132.6

SF Earthquake 4.19M 0 2.4 2.8 598.1 166.9

Performance for 3D Input

Model # Triangles # Loops Time taken (sec)

s4d-7 0.78M 1 X 105 0.7

s5d-6 0.93M 1 X 105 0.7

s4d-8 3.9M 5.8 X 105 3.6

s5d-7 5.6M 5.6 X 105 4.4

s6d-6 4.1M 2.9 X 105 2.9

Lucy 28.0M 15 34.2

s6d-7 28.8M 2 X 106 21.2

Scalability with increasing loop size
Time taken

Model # Triangles Function ReCon Online

David 56M

x 3.6 m 4.7 m

y 3.8 m 4.8 m

z 3.2 m 16.6 m

St. Matthew 372M

x 26.9 m 40 m

y 26.7 m 4.2 hrs

z 25.2 m 41 m

Atlas 507M

x 41.5 m *

y 38.5 m *

z 42.6 m *

Handling Large data

Applications
Topology based shape matching. Hilaga et al. SIGGRAPH 2001

 Transfer function design. Weber et al. TVCG 2007

 User Interface. Bajaj et al. Vis 1997

Contact

Harish Doraiswamy: harishd@csa.iisc.ernet.in

Vijay Natarajan: vijayn@csa.iisc.ernet.in

Split the InputInput

1 2

34

Find Loop Saddles

Compute
contour trees

Union of the
contour trees

gives the Reeb
graph

Loop in the input Augmented Reeb
graph

Join Tree

Performance for higher dimensional input

4D 5D 6D

Input – 4D, 5D, and 6D Sierpinski simplexes of various sizes

• Pascucci et al. ACM Trans. Graph 2007 (Online)

• Doraiswamy et al. IEEE TVCG 2011 (OS)

References

• Tierny et al. IEEE TVCG 2009 (LS)

• Harvey et al. SCG 2010 (Rand)

Preeti Malakar (preeti@csa.iisc.ernet.in)

Vijay Natarajan (vijayn@csa.iisc.ernet.in)

Sathish S. Vadhiyar (vss@serc.iisc.ernet.in)

Efficient Online Visualization and Simulations for

Large-scale Applications

APPLICATION

MANAGER

Processors

Output Frequency

F
R

A
M

E

R
E

C
E

IV
E

R

SIMULATION

Stall if no

disk space

Network

Storage

A
D

A
P

T
IV

E
F

R
A

M
E

 S
E

N
D

E
R

Frame Selection Algorithms

Framework for Adaptive Simulation and Online Visualization

Results

Simulation-Visualization Lag

User Input

Decision Algorithm

Output
Frames

VISUALIZATIONFRAME SELECTION

ALGORITHM

 Most-recent

• Transfer the most-recently simulated frame

 Auto-clustering

• Modified k-means for temporal clustering to

select the most-representative frames

 Adaptive

• Transfer full or reduced frames within

acceptable lag boundIllustration of increasing visualization lag

S2 S3 S4 S5S1

V1 V2 V3

LAG1

LAG2

LAG3

Problem Statement

Develop an adaptive integrated steering

framework that

 allows simultaneous simulation and online

visualization

 spawns high-resolution simulation

dynamically over desired region-of-interest

 supports optimal processor allocation for

simulation

 supports optimal frequency of output for

visualization

S6

Time

http://garl.serc.iisc.ernet.in/

http://vgl.serc.iisc.ernet.in/

Lag reduced

by 90%

Symmetry in Scalar Field Topology

Dilip Thomas Vijay Natarajan
dilip@csa.iisc.ernet.in vijayn@csa.iisc.ernet.in

Symmetric structures in EM image

of RuBisCO molecule

Four types of symmetric

regions identified

Classify subtrees of

the contour tree

Motivation Technique Applications

Scalar fields contain repeating patterns

Provide insights on scientific phenomena

Classify subtrees of the contour tree

Similarity measure to compare subtrees

Symmetry-aware isosurface extraction

Symmetry-aware transfer function design

Visualization and

Graphics Lab

Indian Institute of Science,

Bangalore

http://vgl.serc.iisc.ernet.in

