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Parallel computation of the Morse-

Smale complex designed for multi-core 

and GPU environments. 

Computation  for datasets that don’t  

fit in Memory. 

Input: Scalar (real valued) function

Example: 2D plane sin(x)+sin(y).

Gradient curves: Curves that trace the 

direction of steepest descent

Critical Points: Points of 

origin/destination of gradient curves

Morse-Smale complex: Partition  based 

on origin/destination of gradient 
curves. 

INPUT: Domain as a Cell complex and a scalar 

function sampled at vertices.

1.Compute discrete gradient

KEY  RESULT: Computing discrete gradient is 

independent of order. Can be done in parallel.   

2. Traverse the gradient field to compute the MS 

complex. 

Parallel Morse-Smale(MS) Complex Algorithm

Extract 

Geometry

Large Data: Divide and conquer.

Divide

Merge

Traverse 

merge 

History

KEY RESULT: Order of merging does not affect the result

Experiments with synthetic and real 

world datasets on 2D grids.

Observed near linear scaling with data 

size and number of cores. 

Data fits in 

CPU but 

not GPU

Data fits 

neither in 

CPU nor 

GPU. 

Computed 

in CPU. Data 

does not fit in 

CPU. 

Size: 8Kx8K.

WGAUSS 
dataset

Evaluation
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The Reeb graph of a scalar function is obtained by mapping each connected
component of its level sets to a point

1. Efficient: has a running time of O(n log n + sn)
 n - # triangles
 s - # saddles

2. Generic: works without any modifications on   d-
manifolds and non-manifolds

3. Easy to implement
4. Handles data that do not fit in memory
5. At least an order of magnitude faster than 

existing generic algorithms

Properties

Identifying Loop Saddles

Lemma
Let GR be the Reeb graph of the given input scalar
function f. Consider the join tree TJ of f. Any join
saddle that ends a loop in GR appears as a degree-2
node in TJ.

The ReCon Algorithm

1. Identify the loop saddles of the input

2. Split the input at a function value infinitesimally
above that of the loop saddles to obtain a set of
simply connected interval volumes

3. Compute the contour trees for each interval
volume

4. Construct the Reeb graph by computing the
union of these contour trees

2D Model # Triangles # Loops
Time taken (sec)

ReCon Online OS Rand

Awakening 4M 1643 2.4 6.72 41.4 51.8

Day 6M 2161 4.3 10.3 91.3 67.5

Dawn 6.6M 757 4.5 11.5 73.2 71.8

Lucy 28M 15 34.2 60.1 Mem Mem

Performance for 2D Input

3D Model # Triangles # Loops
Time taken (sec)

ReCon LS OS Rand

Skull 0.34M 2 0.1 0.3 3.4 2.2

Post 1.24M 0 0.4 0.9 13.0 14.5

Plasma 2.64M 0 1.5 1.9 396.3 132.6

SF Earthquake 4.19M 0 2.4 2.8 598.1 166.9

Performance for 3D Input

Model # Triangles # Loops Time taken (sec)

s4d-7 0.78M 1 X 105 0.7

s5d-6 0.93M 1 X 105 0.7

s4d-8 3.9M 5.8 X 105 3.6

s5d-7 5.6M 5.6 X 105 4.4

s6d-6 4.1M 2.9 X 105 2.9

Lucy 28.0M 15 34.2

s6d-7 28.8M 2 X 106 21.2

Scalability with increasing loop size
Time taken

Model # Triangles Function ReCon Online

David 56M

x 3.6 m 4.7 m

y 3.8 m 4.8 m

z 3.2 m 16.6 m

St. Matthew 372M

x 26.9 m 40 m

y 26.7 m 4.2 hrs

z 25.2 m 41 m

Atlas 507M

x 41.5 m *

y 38.5 m *

z 42.6 m *

Handling Large data

Applications
Topology based shape matching. Hilaga et al. SIGGRAPH 2001

 Transfer function design. Weber et al. TVCG 2007

 User Interface. Bajaj et al. Vis 1997
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Split the InputInput

1 2

34

Find Loop Saddles

Compute 
contour trees

Union of the 
contour trees 

gives the Reeb 
graph

Loop  in the input Augmented Reeb 
graph

Join Tree

Performance for higher dimensional input

4D 5D 6D

Input – 4D, 5D, and 6D Sierpinski simplexes of various sizes

• Pascucci et al. ACM Trans. Graph 2007 (Online)

• Doraiswamy et al. IEEE TVCG 2011 (OS)
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Efficient Online Visualization and Simulations for 

Large-scale Applications

APPLICATION

MANAGER
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Frame Selection Algorithms

Framework for Adaptive Simulation and Online Visualization

Results

Simulation-Visualization Lag 

User Input

Decision Algorithm

Output 
Frames

VISUALIZATIONFRAME SELECTION

ALGORITHM

 Most-recent

• Transfer the most-recently simulated frame

 Auto-clustering

• Modified k-means for temporal clustering to 

select the most-representative frames

 Adaptive

• Transfer full or reduced frames within 

acceptable lag boundIllustration of increasing visualization lag

S2 S3 S4 S5S1

V1 V2 V3

LAG1

LAG2

LAG3

Problem Statement

Develop an adaptive integrated steering 

framework that

 allows simultaneous simulation and online 

visualization

 spawns high-resolution simulation 

dynamically over desired region-of-interest

 supports optimal processor allocation for 

simulation

 supports optimal frequency of output for 

visualization

S6

Time
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Lag reduced 

by 90%
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Symmetric structures in EM image 

of RuBisCO molecule

Four types of symmetric 

regions identified 

Classify subtrees of  

the contour tree

Motivation Technique Applications

Scalar fields contain repeating patterns 

Provide insights on scientific phenomena

Classify subtrees of the contour tree

Similarity measure to compare subtrees

Symmetry-aware isosurface extraction

Symmetry-aware transfer function design
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