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MPC: Emulating Trusted 
Computation

Encryption/Authentication allow us to emulate a trusted 
channel


Secure Multi-Party Computation (MPC): to emulate a 
source of trusted computation


Trusted means it will not “leak” a party’s information to 
others


And it will not cheat in the computation


Emulate: there is no trusted party!
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Quiz

What’s  the complexity of the following 3 functions (defined 
over say [0,100] × [0,100]), w.r.t, passive secure MPC?


max(x,y)


[x < y]


(max(x,y), [x < y] )
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Simulation-Based Security

Secure (and 
correct) if: 
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Impossibility of UC Security

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.
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F has a UC-secure protocol 
only if F is “splittable”


Very few are splittable!



Splittable Functionalities
F splittable if ∃T ∀Z the outputs of Z in the following two 
experiments are negligibly far from each other:  
 
 
 
 
 

Splittable functionality essentially involve only communication and 
local computation. All splittable functionalities have UC-secure 
protocols.


Most interesting functionalities are unsplittable. E.g., coin-tossing, 
commitment, XOR, OT, decomposable functions with depth > 1, … 

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7



A Map of 2-Party Functions

Decomposable

Splittable

* OR

* Max  
(no ties)

* x

Uniquely  
Decomposable

Saturated

* XOR * “(x+5y)/2”



P NP

PH

PSPACE

NP-HARD
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A Map of 2-Party Functions
Non-Simple

Decomposable

Splittable

* OR

* Max  
(no ties)

* x

Uniquely  
Decomposable

Saturated

* XOR * “(x+5y)/2”

* “Spiral”



 



Quiz

What’s the complexity of the following  
3 functions, w.r.t, passive secure MPC?


max(x,y)


[x < y]


(max(x,y), [x < y] )

0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

0 1 2 3

0 0 1 2 3

1 1’ 1 2 3

2 2’ 2’ 2 3

3 3’ 3’ 3’ 3

0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

Complete

Complete

Trivial

(Passive and 

Standalone/Active)
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