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Abstract—Programming for parallel architectures that do not
have a shared address space is extremely difficult due to the
need for explicit communication between memories of different
compute devices. A heterogeneous system with CPUs and multiple
GPUs, or a distributed-memory cluster are examples of such
systems. Past works that try to automate data movement for
distributed-memory architectures can lead to excessive redundant
communication. In this paper, we propose an automatic data
movement scheme that minimizes the volume of communica-
tion between compute devices in heterogeneous and distributed-
memory systems. We show that by partitioning data dependences
in a particular non-trivial way, one can generate data movement
code that results in the minimum volume for a vast majority of
cases. The techniques are applicable to any sequence of affine loop
nests and works on top of any choice of loop transformations,
parallelization, and computation placement. The data movement
code generated minimizes the volume of communication for
a particular configuration of these. We use a combination of
powerful static analyses relying on the polyhedral compiler
framework and lightweight runtime routines they generate, to
build a source-to-source transformation tool that automatically
generates communication code. We demonstrate that the tool
is scalable and leads to substantial gains in efficiency. On a
heterogeneous system, the communication volume is reduced by
a factor of 11× to 83× over state-of-the-art, translating into
a mean execution time speedup of 1.53×. On a distributed-
memory cluster, our scheme reduces the communication volume
by a factor of 1.4× to 63.5× over state-of-the-art, resulting in a
mean speedup of 1.55×. In addition, our scheme yields a mean
speedup of 2.19× over hand-optimized UPC codes.

Keywords—communication optimization, data movement, poly-
hedral model, distributed memory, heterogeneous architectures.

I. INTRODUCTION

Different compute devices of a heterogeneous system with
CPUs and multiple GPUs or a distributed-memory cluster
do not typically share a global address space. Parallelizing
code for such architectures is difficult due to the need for
explicit communication between devices. If the compiler has
to deal with partitioning and scheduling computation on such
distributed-memory architectures, it has to address the problem
of moving data between memories. The problem of generating
efficient data movement code is common to both heteroge-
neous and distributed-memory systems. It is a key part of the
larger parallelization problem for such systems, which involves
other orthogonal sub-problems, such as computation and data
transformations, computation placement and scheduling.

Most recent academic and industrial efforts in the area
of compilation for heterogeneous architectures have been on
building compilers for parallel programming models such as
CUDA and OpenCL. Recent efforts such as OpenACC and
C++ AMP [1] raise the level of abstraction and provide
productivity, while programming accelerators, similar to that
with OpenMP. Some proprietary compilers from PGI [2] and
CAPS [3] also offer similar programming support. However,
none of the known compilers for the above models support
automatic distribution of loop computations across different
devices in a heterogeneous system. They require programmers
to explicitly move data in such a scenario. If any of the
above programming models or compilers are to be extended to
parallelize for synergistic execution on multiple devices while
taking care of data movement automatically, they will have to
deal with problems that we have addressed in this paper.

The techniques we develop are applicable to any sequence
of arbitrarily nested loops with affine bounds and accesses,
also known as affine loop nests. Affine loop nests form
the compute-intensive core of computations like stencil-style
computations, linear algebra kernels, alternating direction im-
plicit (ADI) integrations. Past works on distributed-memory
compilation deal with input more restrictive than affine loop
nests [4], [5]. The schemes proposed in works which handle
arbitrary affine loop nests while automating data movement
for distributed-memory architectures [6]–[9] or for multi-
device heterogeneous architectures [10] can lead to excessive
redundant communication, as we explain later. Hence, there is
no precise and efficient automatic data movement scheme at
present which handles affine loop nests for distributed-memory
or multi-device heterogeneous architectures.

The techniques we present rely on a combination of pow-
erful static analyses employing the polyhedral compiler frame-
work and lightweight runtime routines generated using them.
Our approach statically determines data to be transferred be-
tween compute devices with a goal to move only those values
that need to be moved in order to preserve program semantics.
We show that by partitioning polyhedral data dependences in a
particular non-trivial way, and determining communication sets
and their receivers based on those partitions, one can determine
communication data precisely, while avoiding both unneces-
sary and duplicate data from being communicated – a notori-
ously hard problem and a limitation of all previous polyhedral
data movement works. Our scheme can handle any choice of
loop transformations and parallelization. The code it generates



is parametric in problem size symbols and number of proces-
sors, and valid for any computation placement (static or dy-
namic). The data movement code generated minimizes the vol-
ume of communication, given a particular choice of all these.

Our contributions can be summarized as follows:

• We describe two new static analysis techniques to gen-
erate efficient data movement code between compute
devices that do not share an address space.

• We implement these techniques in a source-level
transformer to allow automatic distribution of loop
computations on multiple CPUs and GPUs of a hetero-
geneous system, or on a distributed-memory cluster.

• We experimentally evaluate our techniques and com-
pare it against existing schemes showing significant
reduction in communication volume, translating into
significantly better scaling and performance.

The rest of the paper is organized as follows. Section II
provides background on the polyhedral model and existing
communication schemes. Section III and Section IV describe
our static analysis techniques to address the data movement
problem. Section V describes our implementation. Experimen-
tal evaluation is presented in Section VI. Section VII discusses
related work and conclusions are presented in Section VIII.

II. BACKGROUND

A. Polyhedral Model

The polyhedral compiler framework provides a representa-
tion that captures the execution of a sequence of arbitrarily
nested affine loop nests in a mathematical form suitable
for analysis and transformation using machinery from linear
algebra and linear programming. The iteration space of every
statement can be represented as the set of integer points inside
a (convex) polyhedron. The polyhedron is typically represented
by a conjunction of affine inequalities. The dimensions of the
polyhedron correspond to surrounding loop iterators as well
as program parameters. Program parameters are symbols that
do not vary in the portion of the code we are representing;
they are typically the problem sizes. Each integer point in
the polyhedron, also called an iteration vector, contains values
for induction variables of loops surrounding the statement
from outermost to innermost. The data dependence graph,
DDG = (S, E) is a directed multi-graph with each vertex
representing a statement in the program and edge e from Si

to Sj representing a polyhedral dependence from a dynamic
instance of Si to one of Sj . Every edge e is characterized
by a polyhedron De, called dependence polyhedron which
precisely captures dependences between dynamic instances of
Si and Sj . The dependence polyhedron is in the sum of the
dimensionalities of the source and target iterations spaces, and
the number of program parameters. The reader is referred to
the Clan user guide [11] for a more detailed explanation of
the polyhedral representation.

During analysis and transformation, one might end up
with a union of convex polyhedra. Polylib [12], Omega [13],
and ISL [14] are three libraries that provide operations to
manipulate such a union of polyhedra. The latter two are
precise and deal with integer points. All of the sets that we

for ( t=1; t<=T−1; t++)
for ( i=1; i<=N−2; i++)

a[ t ][ i]=a[ t−1][i−1]+a[t−1][i]+a[t−1][i+1];

Fig. 1: Jacobi-style stencil code

for (k=0; k<=N−1; k++)
for ( i=0; i<=N−1; i++)

for ( j=0; j<=N−1; j++)
a[ i ][ j ]=(( a[ i ][k]+a[k][ j])<a[i ][ j ])?( a[ i ][k]+a[k][ j ]): a[ i ][ j ];

Fig. 2: Floyd-Warshall code

describe and compute in subsequent sections are unions of
convex polyhedra, and any of the above libraries can be used
to manipulate them.

B. Existing communication schemes

It is known that anti (WAR) dependences and output
(WAW) dependences do not necessitate communication; only
the flow (RAW) dependences necessitate communication [9],
[15]. Previous research [6] has also shown that it is essential
for any communication scheme to perform communication
coalescing, which reduces redundant communication by com-
bining the data to be communicated due to multiple data
accesses or dependences.

We provide a brief description of an existing communi-
cation scheme, termed flow-out (FO) scheme [9], that our
schemes build upon. To illustrate the working of this scheme
and our schemes, we use two examples – Jacobi-style stencil
code in Fig. 1 and Floyd-Warshall code in Fig. 2, which are
tiled and parallelized.

Bondhugula [9] describes static analysis techniques using
the polyhedral compiler framework to determine data to be
transferred between compute devices parametric in problem
size symbols and number of processors, which is valid for
any computation placement (static or dynamic). The key idea
is that since code corresponding to a single iteration of
the distributed loop will always be executed atomically by
one compute device, communication parameterized on that
iteration can be determined statically. So, an iteration of the
distributed loop represents an atomic computation tile, on
which communication is parameterized; the computation tile
may or may not be a result of loop tiling.

Overview of FO scheme: For each distributed loop,
consider its iteration vector ~i. For each data variable x, that
can be a multidimensional array or a scalar, the following is
determined parameterized on ~i:

• Flow-out set, FOx(~i): the set of elements that need
to be communicated from iteration ~i.

• Receiving iterations, RIx(~i): the set of iterations
of distributed loop(s) that require some element in
FOx(~i).

Flow-out set: The set of all values which flow from a
write in an iteration to a read outside the iteration due to a
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Fig. 3: Jacobi-style stencil example

RAW dependence is termed as the per-dependence flow-out
set corresponding to that iteration and dependence. For a RAW
dependence polyhedron D of data variable x whose source
statement is in~i, the per-dependence flow-out set DFOx(~i,D)
is determined by computing the region of data x written by
those source iterations of D whose writes are read outside ~i.
The flow-out set of an iteration is the set of all values written
by that iteration, and then read outside the iteration. Therefore:

FOx(~i) =
⋃
∀D

DFOx(~i,D) (1)

Since the flow-out set combines the data to be communicated
due to multiple dependences, communication coalescing is
implicitly achieved.

Receiving iterations: RIx(~i) are the iterations ~i′ of dis-
tributed loop(s) that read values written in ~i (~i′ 6= ~i). For
each RAW dependence polyhedron D of data variable x whose
source statement is in ~i, RIx(~i) is determined by projecting
out dimensions inner to~i in D and scanning the target iterators
while treating the source iterators as parameters. Since the
goal is to determine the compute devices to communicate
with, code is generated for a pair of helper functions π(~i) and
receiversx(~i). π(~i) returns the compute device that executes
~i, while receiversx(~i) returns the set of compute devices
that require at least one element in FOx(~i). π is the place-
ment function which maps an iteration of a distributed loop
to a compute device. It is the inverse of the computation
distribution function which maps a compute device to a set
of iterations of the distributed loop(s) (which it executes).
So, π can be easily determined from the given computation
distribution function. Since π is evaluated only at runtime,
the computation placement (or distribution) can be chosen
dynamically. receiversx(~i) enumerates the receiving iterations
and makes use of π on each receiving iteration to aggregate
the set of distinct receivers (π(~i) /∈ receiversx(~i)).

Packing and unpacking: The flow-out set of an iteration
could be discontiguous in memory. So, at runtime, the gener-
ated code packs the flow-out set of each iteration executed by
the compute device to a single buffer. The data is packed for
an iteration ~i only if receiversx(~i) is a non-empty set. The
packed buffer is then sent to the set of receivers returned by
receiversx(~i) for all iterations~i executed by it. After receiving
data from other compute devices, the generated code unpacks
the flow-out set of each iteration executed by every compute
device other than itself from the respective received buffer.
The data is unpacked for an iteration ~i only if receiversx(~i)
is a non-empty set, and if some data has been received from
the compute device that executed ~i. Both the packing code
and the unpacking code traverse the iterations executed by
a compute device, and the flow-out set of each iteration in
the same order. Therefore, the offset of an element in the
packed buffer of the sending compute device matches that in
the received buffer of the receiving compute device. In order
to allocate buffers for sending and receiving, reasonably tight
upper bounds on the required size of buffers can be determined
from the communication set constraints, but we do not present
details on it due to space constraints.

Communication volume: All the elements in the flow-out
set of an iteration might not be required by all its receiving
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(d) FOP scheme using multicast-pack

Fig. 4: Floyd-Warshall example (CSi sets are used only for illustration; communication sets are determined as described in text)

iterations. As illustrated in Fig. 3a, if RT1 and RT3 are exe-
cuted by different compute devices, then unnecessary data is
communicated to those compute devices. Similarly, in Fig. 4b,
if RT1 and RT2 are executed by different compute devices,
then unnecessary data is communicated to the compute device
that executes RT2. Thus, this scheme could communicate large
volume of unnecessary data since every element in the packed
buffer need not be communicated to every receiver compute
device; different receivers might require different elements in
the packed buffer.

III. FLOW-OUT INTERSECTION FLOW-IN (FOIFI) SCHEME

FO scheme [9] could send unnecessary data since it only
ensures that at least one element in the communicated data is
required by the receiver. The goal, however, is that all elements
in the data sent from one compute device to another compute
device should be required by the receiver compute device. The
problem in determining this at compile-time is that placement
of iterations to compute devices is not known, even for a static
computation distribution (like block-wise), since problem sizes
and number of processes are not known. Nevertheless, data that
needs to be sent from one iteration to another, parameterized on
a sending iteration and a receiving iteration, can be determined
precisely at compile-time.

Overview: For each distributed loop, consider its iteration
vector ~i. For each data variable x, the set of elements that
need to be communicated from iteration ~i to iteration ~i′ of a
distributed loop, termed flow set – Fx(~i → ~i′), is determined
at compile-time. For each iteration ~i executed by the compute
device c and iteration ~i′ ∈ RIx(~i) that will be executed by
another compute device c′ = π(~i′) (c′ 6= c), the generated

code packs Fx(~i→ ~i′) into the local buffer associated with c′.
The packed buffers are then sent to their respective compute
devices, and data is received from other compute devices. For
each iteration~i executed by another compute device c′ (c′ 6= c)
and iteration ~i′ ∈ RIx(~i) that will be executed by the compute
device c (π(~i′) = c), the generated code unpacks Fx(~i → ~i′)
from the received buffer associated with c′. Both the packing
code and the unpacking code traverse the iterations ~i executed
by a compute device, the receiving iterations ~i′ ∈ RIx(~i), and
the elements in Fx(~i→ ~i′) in the same order.

Flow-in set: The set of all values which flow to a read
in an iteration from a write outside the iteration due to a
RAW dependence is termed as the per-dependence flow-in
set corresponding to that iteration and dependence. For a RAW
dependence polyhedron D of data variable x whose target
statement is in ~i, the per-dependence flow-in set DFIx(~i,D)
is determined by computing the region of data x read by those
target iterations of D whose reads are written outside ~i. The
flow-in set of an iteration is the set of all values read by that it-
eration, and previously written outside the iteration. Therefore:

FIx(~i) =
⋃
∀D

DFIx(~i,D) (2)

Flow set: The flow set from an iteration~i to an iteration ~i′
(~i 6= ~i′) is the set of all values written by ~i, and then read by
~i′. For each data variable x, the flow set Fx from an iteration~i
to an iteration ~i′ is determined at compile-time by intersecting
the flow-out set of ~i with the flow-in set of ~i′:

Fx(~i→ ~i′) = FOx(~i) ∩ FIx(~i′) (3)



Hence, this communication scheme is termed as the flow-
out intersection flow-in (FOIFI) scheme. Since the flow set
combines the data to be communicated due to multiple depen-
dences, communication coalescing is implicitly achieved.

Communication volume: When each receiving iteration is
executed by a different compute device, FOIFI scheme ensures
that every element of the communicated data is required by
the receiver, unlike FO scheme. The placement of iterations
to compute devices, however, cannot be assumed. Different
iterations can receive the same elements from the same sending
iteration. So, when different receiving iterations of an iteration
will be executed by the same compute device, this scheme
could lead to duplication of data since it accumulates the flow
sets to the buffer associated with the receiver compute device.
For example, in Fig. 3b, if RT1 and RT2 are executed by the
same compute device, then F2 is sent twice to that compute
device. Similarly, in Fig. 4c, if RT1, RT2 and RT4 are executed
by the same compute device, then F2 is sent thrice to that
compute device; the amount of duplication depends on the
number of iterations a compute device executes in j dimension
with the same i and k. Thus, this scheme could communicate
a significantly large volume of duplicate data. The amount of
redundancy cannot be theoretically bounded, and can be more
than that of a naive scheme in the worst case.

IV. FLOW-OUT PARTITIONING (FOP) SCHEME

FO scheme does not communicate duplicate data, but
ignores whether a receiver requires most of the communication
set or not. On the other hand, FOIFI scheme precisely com-
putes the communication set required by a receiving iteration,
but could lead to huge duplication when multiple receiving
iterations are executed by the same compute device. A better
approach is one that avoids communication of both duplicate
and unnecessary elements. We show that this can be achieved
by partitioning the communication set in a particular non-
trivial way, and sending each partition to only its receivers.

The motivation behind partitioning the communication set
is that different receivers could require different elements in
the communication set. So ideally, the goal should be to
partition the communication set such that all elements within
each partition are required by all receivers of that partition.
However, the receivers are not known at compile-time and
partitioning at runtime is expensive. RAW dependences de-
termine the receiving iterations, and ultimately, the receivers.
Hence, we partition the communication set at compile-time,
based on RAW dependences. To this end, we introduce new
classifications for RAW dependences below.

Definition 1: A set of dependences is said to be source-
identical if the region of data that flows due to each depen-
dence in the set is the same.

Consider a set of RAW dependence polyhedra SD of an
iteration ~i. If SD is source-identical, then:

DFOx(~i,D1) = DFOx(~i,D2) ∀D1, D2 ∈ SD (4)

Definition 2: Two source-identical sets of dependences are
said to be source-distinct if the regions of data that flow due
to the dependences in different sets are disjoint.

If two source-identical sets of RAW dependence polyhedra S1
D

and S2
D of an iteration ~i are source-distinct, then:

DFOx(~i,D1) ∩DFOx(~i,D2) = ∅
∀D1 ∈ S1

D, D2 ∈ S2
D

(5)

Definition 3: A source-distinct partitioning of depen-
dences partitions the dependences such that all dependences
in a partition are source-identical and any two partitions are
source-distinct.

Overview: For each distributed loop, consider its iteration
vector~i. For each data variable x, a source-distinct partitioning
of RAW dependence polyhedra, whose source statement is in
~i, is determined at compile-time. For each source-identical set
(partition) of RAW dependence polyhedra SD, the following
is determined parameterized on ~i:

• Partitioned flow-out set, PFOx(~i, SD): the set of
elements that need to be communicated from iteration
~i due to SD.

• Partitioned flow set, PFx(~i → ~i′, SD): the set of
elements that need to be communicated from iteration
~i to iteration ~i′ due to SD.

• Receiving iterations of the partition, RIx(~i, SD): the
set of iterations of distributed loop(s) that require some
element in PFOx(~i, SD).

Using these parameterized sets, code is generated to execute
the following in each compute device c at runtime:

• For each source-identical set of RAW dependence
polyhedra SD and iteration ~i executed by c, execute
one of these:
◦ multicast-pack: for each other compute

device c′ (c′ 6= c) that will execute some
~i′ ∈ RIx(~i, SD), i.e., c′ = π(~i′), pack
PFOx(~i, SD) into the local buffer associated
with c′,

◦ unicast-pack: for each iteration
~i′ ∈ RIx(~i, SD) that will be executed by
another compute device c′ = π(~i′) (c′ 6= c),
pack PFx(~i → ~i′, SD) into the local buffer
associated with c′,

• Send the packed buffers to the respective compute
devices, and receive data from other compute devices,

• For each source-identical set of RAW dependence
polyhedra SD and iteration ~i executed by another
compute device c′ (c′ 6= c), execute one of these:
◦ unpack corresponding to multicast-pack:

if c will execute some ~i′ ∈ RIx(~i, SD), i.e.,
π(~i′) = c, unpack PFOx(~i, SD) from the
received buffer associated with c′,

◦ unpack corresponding to unicast-pack:
for each iteration ~i′ ∈ RIx(~i, SD) that will
be executed by c, i.e., π(~i′) = c, unpack
PFx(~i→ ~i′, SD) from the received buffer as-
sociated with c′.

Both the packing code and the unpacking code traverse the sets
of RAW dependence polyhedra SD, the iterations~i executed by



a compute device, the receiving iterations ~i′ ∈ RIx(~i, SD), and
the elements in PFOx(~i, SD) or PFx(~i→ ~i′, SD) in the same
order. Therefore, the offset of an element in the packed buffer
of the sending compute device matches that in the received
buffer of the receiving compute device.

Algorithm 1: source-distinct partitioning of dependences

Input: RAW dependence polyhedra Di and Dj

(IS , AS)← source (iterations, access) of Di1
(IT , AT )← source (iterations, access) of Dj2
D ← dependence from (IS , AS) to (IT , AT )3
if D is empty then4

DS ← DT ← empty5
return6

(I′S , I
′
T )← (source, target) iterations of D7

DS ← source I′S and target unconstrained8
DT ← source I′T and target unconstrained9
Output: source-distinct partitions

{Di −DS}, {Dj −DT }, {Di ∩DS , Dj ∩DT }

Partitioning of dependences: In order to partition depen-
dences, it is necessary to determine whether the regions of data
that flow due to two dependences overlap, i.e., whether the re-
gion of data written by the source iterations of one dependence
overlaps with that of the other. This can be determined by an
explicit dependence test between the source iterations of one
dependence and the source iterations of another dependence.
Such a dependence might not be semantically valid (e.g.,
when there is overlap in the regions of data that flow due to
dependences with the same source statement). It is just a virtual
dependence between two dependences, that captures the over-
lap in the regions of data that flow due to those dependences.

Algorithm 1 partitions two dependence polyhedra using
this ‘dependence between dependences’ concept. If a virtual
dependence does not exist between the two dependences, then
they are source-distinct. Otherwise, the virtual dependence
polyhedron contains the source iterations of each dependence
polyhedron that access the same region of data. A new depen-
dence polyhedron is formed from each dependence polyhedron
by restricting the source iterations to their corresponding
source iterations in the virtual dependence polyhedron. These
two new dependences are source-identical. From the original
dependence polyhedra, their corresponding source iterations in
the virtual dependence polyhedron are subtracted out. These
modified original dependences and the source-identical set of
the new dependences are source-distinct.

Before partitioning dependences whose source statement
is in ~i, each RAW dependence polyhedron D is restricted to
those source iterations of D whose writes are read outside ~i.
Initially, each dependence is in a separate partition. For any
two partitions, Algorithm 1 is used as a subroutine for each
pair of dependences in different partitions; the source-identical
set of new dependences, if any, formed by all of these pairs
is a new partition. This is repeated until no new partitions
can be formed, i.e., until all partitions are source-distinct.
The number of dependences in each new partition is the sum
of those in the two partitions, and cannot be more than the
number of initial dependences. The source iterations in each
new dependence polyhedron keep monotonically decreasing.
So, the partitioning should terminate, and a source-distinct
partitioning always exists for any set of dependences. This

simple approach can be improved upon and optimized; it is
presented as is for clarity of exposition.

Partitioned communication sets: If SP is the set of
source-distinct partitions of RAW dependence polyhedra
whose source statement is in ~i, then ∀SD ∈ SP :

PFOx(~i, SD) =
⋃

∀D∈SD

DFOx(~i,D)

= DFOx(~i,D) ∀D ∈ SD (from (4))
(6)

PFx(~i→ ~i′, SD) = PFOx(~i, SD) ∩ FIx(~i′) (7)

From Equation (5) and (6):

PFOx(~i, S
1
D) ∩ PFOx(~i, S

2
D) = ∅

∀S1
D, S

2
D ∈ SP | S1

D 6= S2
D

(8)

From Equation (1) and Definition 3:

FOx(~i) =
⋃

∀SD∈SP

PFOx(~i, SD) (9)

Hence, this communication scheme is termed as flow-out parti-
tioning (FOP) scheme. Since the flow-out partitions are disjoint
and each of them combines the data to be communicated
due to multiple dependences, this scheme reduces duplication,
thereby achieving communication coalescing.

Receiving iterations of the partition: For iteration ~i and
each RAW dependence polyhedron D in the set of RAW
dependence polyhedra SD, RIx(~i, SD) is determined by pro-
jecting out dimensions inner to ~i in D and scanning the target
iterators while treating the source iterators as parameters. The
generated code makes use of π on each receiving iteration
of this partition to aggregate the set of distinct receivers that
require at least one element in PFOx(~i, SD).

Packing and unpacking: For each iteration and partition,
either multicast-pack or unicast-pack is executed,
the choice of which could be determined either at compile-
time or at runtime. Since the method of packing determines
the communication volume, the goal of choosing the method of
packing is to minimize redundant communication. We choose:

• unicast-pack at compile-time if the set of de-
pendence polyhedra determining the partition contains
only one dependence polyhedron such that each source
iteration in it has at most one target iteration dependent
on it: each element in the partition is required by only
one receiving iteration of the partition, and therefore,
there is no duplication in the communicated data for
any placement of iterations to compute devices.

• multicast-pack at compile-time if the flow-in of
the partition is independent of the parallel dimen-
sion(s): each element in the partition is required by
all receiving iterations of the partition, and therefore,
unnecessary data is not communicated for any place-
ment of iterations to compute devices.

• unicast-pack at runtime if each receiving iteration
of the executed iteration and partition is allocated to
a different compute device: there is no duplication
in the communicated data since each element of the



communicated data is required by only one iteration
that will executed by the receiving compute device.

• multicast-pack at runtime if all the receiving
iterations of the executed iteration and partition are
allocated to the same compute device: unnecessary
data is not communicated since each element of the
communicated data is required by some iteration that
will be executed by that compute device.

These conditions ensure no redundancy in communication. In
the absence or failure of these non-redundancy conditions,
we choose multicast-pack since unicast-pack could
lead to more redundant communication in the worst case.

Communication volume: The flow (RAW) dependence
polyhedra for the Floyd-Warshall example in Fig. 2, where
(k, i, j) is the source iteration and (k

′
, i

′
, j

′
) the target iteration,

are: (the bounds on i, j, k are omitted for brevity)

D1 = {k
′
= k + 1, i

′
= i, j

′
= j}

D2 = {k
′
= k + 1, i

′
= i, j = k + 1, 0 <= j

′
<= N − 1}

D3 = {k
′
= k + 1, i = k + 1, j

′
= j, 0 <= i

′
<= N − 1}

The source-distinct partitioning of these dependence polyhedra
yields four partitions: P1 containing subsets of D1, D2 and D3;
P2 containing subsets of D1 and D2; P3 containing subsets of
D1 and D3; P4 containing a subset of D1. As shown in Fig. 4d,
PFO1, PFO2, PFO3 and PFO4 are the partitioned flow-out sets
of P1, P2, P3 and P4 respectively, which are sent to their
respective receivers using multicast-pack. There is no
redundancy in communication for any placement of iterations
to compute devices.

For the Jacobi-style stencil example in Fig. 1, where (t, i)
is the source iteration and (t

′
, i

′
) the target iteration, the flow

(RAW) dependence polyhedra are:
(the bounds on t, i are omitted for brevity)

D1 = {t
′
= t+ 1, i

′
= i+ 1}

D2 = {t
′
= t+ 1, i

′
= i}

D3 = {t
′
= t+ 1, i

′
= i− 1}

The source-distinct partitioning of these dependence polyhedra
yields three partitions: P1 containing subsets of D1, D2 and
D3; P2 containing subsets of D1 and D2; P3 containing a
subset of D1. As shown in Fig. 3c, PFO1, PFO2 and PFO3

are the partitioned flow-out sets of P1, P2 and P3 respectively.
If unicast-pack is chosen for PFO1 as shown in Fig. 3d
when RT1 and RT2 are allocated to different compute devices,
and multicast-pack is chosen otherwise (Fig. 3c), then
there is no redundancy in communication for any placement
of iterations to compute devices.

In general, if unicast-pack is used for all parti-
tions, then FOP scheme behaves similar to FOIFI scheme.
If multicast-pack is used for all partitions, then the
communication volume of FOP scheme cannot be more than
that of FO scheme. Depending on the method of packing, FOP
scheme is at least as good as FO and FOIFI schemes. FOP
scheme is effective in minimizing redundant communication
since the partitions of the communication set reduce the

granularity at which receivers are determined. To further min-
imize redundant data movement, FOP schemes uses the non-
redundancy conditions to choose between unicast-pack
and multicast-pack; the communication set partitions
also reduce the granularity at which these conditions are ap-
plied. Hence, FOP scheme minimizes communication volume
better than FO and FOIFI schemes.

V. IMPLEMENTATION

Our framework is fully implemented as part of a publicly
available source-to-source polyhedral tool chain. Clan [11],
ISL [14], Pluto [16], and Cloog-isl [17] are used to perform
polyhedral extraction, dependence testing, automatic transfor-
mation, and code generation, respectively. Polylib [12] is used
to implement the polyhedral operations in Sections II-B, III
and IV. ISL [14] is used to eliminate transitive dependences
and compute last writers or the exact dataflow. This ensures
that when there are multiple writes to a location before a
subsequent read due to transitively covered RAW dependences,
only the last write to the location is communicated to the
compute device that reads it.

The input to our framework is sequential code contain-
ing arbitrarily nested affine loop nests, which is tiled and
parallelized using the Pluto algorithm [18], [19]; loop tiling
helps reduce the bookkeeping overhead at runtime while being
precise in communication. Our framework then automatically
generates code for distributed-memory systems from this trans-
formed code using techniques described in the work of Bond-
hugula [9]. The entire data is initially made available in every
compute device, and the final result is collected at the master
compute device, without violating sequential semantics. FO,
FOIFI and FOP schemes take the parallelized code as input and
insert data movement code soon after each parallelized loop
nest. So, at runtime, data movement code is executed after each
distributed phase. In FOP, partitions with the same receiving
tile constraints are merged and partitions with constant volume
are merged at compile-time so as to minimize the bookkeeping
overhead at runtime without sacrificing communication vol-
ume. Asynchronous MPI primitives are used to communicate
between nodes in the distributed-memory system.

For heterogeneous systems, the host CPU acts both as a
compute device and as the orchestrator of data movement be-
tween compute devices, while the GPU acts only as a compute
device. The data movement code is automatically generated in
terms of OpenCL calls invoked from the host CPU. Each com-
pute device has an associated management thread on the host
CPU. This thread is responsible for launching computation
kernels and handling data movement to and from the compute
device it is managing. The computations are distributed onto
each device at the granularity of tiles. Once all the tiles are
executed on a compute device, the management thread for that
device calls the copyOut function which copies the commu-
nication set for each computed tile from the source device onto
the host CPU. Once copyOut() completes, the management
thread issues the copyIn function which copies the commu-
nication set now residing on the host CPU onto the destination
compute devices. On heterogeneous systems, packing function-
ally corresponds to copyOut() and unpacking corresponds
to copyIn(). We notice that, for most of the cases, the data
to be communicated is in a rectangular region of memory.



OpenCL 1.1 provides clEnqueueReadBufferRect()
and clEnqueueWriteBufferRect() to copy such rect-
angular regions of data in a single call. We make use of these
functions everywhere to minimize the number of OpenCL calls
and thereby minimize the associated call overheads.

VI. EXPERIMENTAL EVALUATION

We compare FOP, FOIFI and FO schemes using the same
parallelizing transformation. This implies that the frequency
of communication is the same for them. The schemes differ
only in the communication volume, and in the way the data
is packed and unpacked. Since everything else is the same,
comparing the total execution times of these communication
schemes directly compares their efficiency.

A. Distributed-memory architectures

Setup: The experiments were run on a 32-node InfiniBand
cluster of dual-SMP Xeon servers. Each node on the clus-
ter consists of two quad-core Intel Xeon E5430 2.66 GHz
processors with 12 MB L2 cache and 16 GB RAM. The
InfiniBand host adapter is a Mellanox MT25204 (InfiniHost III
Lx HCA). All nodes run 64-bit Linux kernel version 2.6.18.
The cluster uses MVAPICH2-1.8 as the MPI implementation.
It provides a point-to-point latency of 3.36 µs, unidirectional
and bidirectional bandwidths of 1.5 GB/s and 2.56 GB/s
respectively. All codes were compiled with Intel C compiler
(ICC) version 11.1 with flags ‘-O3 -fp-model precise’. All
Unified Parallel C (UPC) codes were compiled with Berkeley
Unified Parallel C compiler [20] version 2.16.0.

Benchmarks: We present results for Floyd Warshall
(floyd), LU Decomposition (lu), Alternating Direction Im-
plicit solver (adi), 2-D Finite Different Time Domain Kernel
(fdtd-2d), Heat 2D equation (heat-2d) and Heat 3D
equation (heat-3d) benchmarks. The first four are from
the publicly available Polybench/C 3.2 suite [21]; heat-2d
and heat-3d are widely used stencil computations [22]. All
benchmarks were manually ported to UPC, while sharing data
only if it may be accessed remotely and incorporating UPC-
specific optimizations like localized array accesses, block copy,
one-sided communication, where applicable. The outermost
parallel loop in heat-2d, heat-3d and adi was marked as
parallel using OpenMP, and given as input to OMPD [4]; since
the data to be communicated in floyd and lu is dependent
on the outer serial loop, OMPD does not handle them. In our
tool which implements FOP, FOIFI and FO, the benchmark
itself was the input and tile sizes were chosen such that the
performance on a single node is optimized, as listed in Table I.
All benchmarks use double-precision floating-point operations.
Problem sizes used are listed in Table I.

Evaluation: Though our tool generates MPI+OpenMP
code, we ran all the benchmarks with one OpenMP thread
per process and one MPI process per node to focus on the
distributed-memory part. Table I compares the total communi-
cation volume of FO, FOIFI and FOP. Table II compares the
total execution time of hand-optimized UPC codes with that
of OMPD, FO, FOIFI and FOP. seq – sequential time, is the
time taken to run the serial code compiled with ICC. Execution
time of FO, FOIFI and FOP on one node is different from seq
time due to tiling and other loop transformations performed by
our tool on the sequential code.

Across all benchmarks and number of nodes, FOP reduced
communication volume by a factor of 1.4× to 63.5× over FO.
This translates to a huge improvement in execution time, ex-
cept for heat-2d, where the communication time is a minor
component of the total execution time (less than 2% in most
cases). For adi and floyd which are communication inten-
sive, the reduction in communication volume for FOP gives up
to 15.9× speedup over FO. For floyd and lu, FOIFI com-
municates 1.5× to 31.8× more volume of data than FOP due to
duplication in communicated data when multiple receiving iter-
ations are placed on the same node. This yields 1.1× to 1.84×
speedup of FOP over FOIFI. In summary, FOP gives a mean
speedup of 1.55× and 1.11× over FO and FOIFI respectively.

OMPD communicates the same volume of data as FOP for
adi. However, OMPD incurs some additional overhead since
it determines the communication sets at runtime. Moreover,
our tool automatically tiles the parallel loop. For heat-2d
and heat-3d, our tool transforms and tiles the code to yield
both locality and load balance [19]. OMPD cannot handle such
transformed code since the communication set is dependent on
the outer serial loop. Even though OMPD is communicating
the minimum volume of data for the non-transformed codes,
FOP gives a mean speedup of 3.06× over OMPD since it
handles transformed codes with lesser runtime overhead.

Manually developed UPC codes communicate the same
volume of data for fdtd-2d and floyd as FOP. Since the
data to be communicated is contiguous in global memory,
UPC code has no additional overhead, and so, performs
slightly better than FOP. On the other hand, the data to be
communicated for adi is not contiguous in global memory.
FOP packs and unpacks such non-contiguous data with very
little runtime overhead while UPC incurs significant runtime
overhead to handle such multiple shared memory requests to
non-contiguous data. So, even though the data to be com-
municated is the same, FOP outperforms UPC code. For lu,
heat-2d and heat-3d, writing UPC code incorporating the
transformations automatically used by our tool is not trivial;
without such transformations, UPC code performs poorly. Due
to these limitations of UPC, FOP gives a mean speedup of
2.19× over hand-optimized UPC codes.

For the transformations and placement chosen in the bench-
marks, we manually verified that FOP was achieving the mini-
mum communication volume, resulting in the best performance
and facilitating the benchmarks to scale well. As shown in
Fig. 5, execution times of FOP decrease as the number of nodes
are increased for all benchmarks, except for lu going from
16 to 32 nodes. In this case, performance does not improve
by much due to the large volume of data that is required to
be communicated. Nevertheless, floyd with the existing FO
could not scale beyond 4 nodes, while FOP enables scaling
similar to hand-optimized UPC codes as shown in Fig. 6.

B. Heterogeneous architectures

Intel-NVIDIA system setup: The Intel-NVIDIA system
consists of an Intel Xeon multicore server consisting of 12
Xeon E5645 cores running at 2.4 GHz. The server has 4
NVIDIA Tesla C2050 graphics processors connected on the
PCI express bus, each having 2.5 GB of global memory.
NVIDIA driver version 304.64 supporting OpenCL 1.1 was



TABLE I: Total communication volume on distributed-memory cluster – FO and FOIFI normalized to FOP

Benchmark Problem Tile 4 nodes 8 nodes 16 nodes 32 nodes
sizes sizes FOP FOIFI FO FOP FOIFI FO FOP FOIFI FO FOP FOIFI FO

floyd 81922 642 1.51GB 31.8× 63.5× 3.53GB 15.9× 63.5× 7.56GB 7.9× 63.5× 15.62GB 4.0× 63.5×
lu 40962 642 0.45GB 5.3× 1.4× 0.99GB 3.0× 1.4× 1.88GB 1.9× 1.4× 2.59GB 1.5× 1.5×
fdtd-2d 1024x40962 162 0.21GB 1.0× 14.3× 0.47GB 1.0× 15.1× 0.97GB 1.0× 15.5× 1.97GB 1.0× 15.7×
heat-2d 1024x81922 2563 0.75GB 1.0× 2.0× 1.74GB 1.0× 2.0× 3.73GB 1.0× 2.0× 7.72GB 1.0× 2.0×
heat-3d 256x5123 164 5.61GB 1.0× 2.0× 13.09GB 1.0× 2.0× 28.07GB 1.0× 2.0× 58.01GB 1.0× 2.0×
adi 128x81922 2562 191.24GB 1.0× 4.0× 223.11GB 1.0× 8.0× 239.05GB 1.0× 16.0× 247.02GB 1.0× 32.0×

TABLE II: Total execution time on distributed-memory cluster – FOIFI, FO, OMPD and UPC normalized to FOP

(a) floyd – seq time is 2012s

Nodes FOP FOIFI FO UPC
1 2065.2s 1.01× 1.00× 0.97×
4 521.4s 1.10× 1.20× 0.97×
8 263.9s 1.18× 1.75× 0.97×
16 137.6s 1.33× 3.93× 0.97×
32 81.1s 1.46× 11.18× 0.93×

(b) lu – seq time is 82.9s

Nodes FOP FOIFI FO UPC
1 29.5s 1.00× 1.00× 2.86×
4 9.1s 1.42× 1.02× 2.42×
8 5.4s 1.70× 1.05× 2.30×
16 4.1s 1.84× 1.05× 1.50×
32 3.9s 1.58× 1.00× 1.25×

(c) fdtd-2d – seq time is 351.7s

Nodes FOP FOIFI FO UPC
1 359.5s 1.00× 1.00× 0.98×
4 90.8s 1.00× 1.03× 1.26×
8 66.9s 1.00× 1.04× 1.01×
16 33.8s 1.00× 1.09× 1.01×
32 16.8s 1.00× 1.24× 0.99×

(d) heat-2d – seq time is 796.4s

Nodes FOP FOIFI FO OMPD UPC
1 228.3s 1.00× 1.00× 3.42× 5.33×
4 59.8s 1.00× 1.01× 3.29× 5.11×
8 31.4s 1.00× 1.02× 3.92× 5.47×
16 17.3s 1.00× 1.03× 3.58× 5.00×
32 10.2s 1.00× 1.04× 3.06× 4.25×

(e) heat-3d – seq time is 590.6s

Nodes FOP FOIFI FO OMPD UPC
1 235.5s 1.00× 1.00× 2.51× 2.68×
4 65.4s 1.00× 1.05× 2.39× 2.46×
8 36.1s 1.00× 1.15× 2.82× 2.54×
16 21.4s 1.00× 1.23× 2.58× 2.21×
32 14.1s 1.00× 1.33× 2.29× 1.78×

(f) adi – seq time is 2717s

Nodes FOP FOIFI FO OMPD UPC
1 422.7s 1.00× 0.95× 6.27× 7.90×
4 231.7s 1.00× 2.11× 3.55× 4.68×
8 143.6s 1.00× 4.00× 3.43× 4.29×
16 78.6s 1.00× 7.87× 2.88× 4.47×
32 41.0s 1.00× 15.9× 2.95× 5.22×
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Fig. 5: FOP – strong scaling on distributed-memory cluster
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used as the OpenCL runtime. Double-precision floating-point
operations were used in all benchmarks. The host codes were
compiled with gcc version 4.4 with -O3.

AMD system setup: The AMD system consists of a AMD
A8-3850 Fusion APU, consisting of 4 CPU cores running at
2.9 GHz and an integrated GPU based on the AMD Radeon
HD 6550D architecture. The system has two ATI FirePro
V4800 discrete graphics processors connected on the PCI
express bus, each having 512 MB of global memory. Since
these GPUs do not support double-precision floating-point
operations, we use single-precision floating-point operations in
all benchmarks. AMD driver version 9.82 supporting OpenCL
1.2 was used as the OpenCL runtime. The host codes were
compiled with g++ version 4.6.1 with -O3.

Benchmarks: We evaluate FO and FOP for floyd, lu,
fdtd-2d, heat-2d and heat-3d benchmarks. All these

benchmarks have an outer serial loop containing a set of inner
parallel loops. Wherever multiple nested parallel loops existed,
the outermost among them was distributed across devices.
The OpenCL kernels were manually written by mapping the
parallel loops in a DOALL manner onto the OpenCL work
groups and work items.

Evaluation: We consider the following combination of
compute devices: (1) 1 CPU, (2) 1 GPU, (3) 1 CPU + 1 GPU,
(4) 2 GPUs, (5) 4 GPUs. We evaluate FO and FOP on the Intel-
NVIDIA system for all these cases. On the AMD system, we
evaluate FO and FOP for (1), (2) and (4) cases, using only the
discrete GPUs. In the first two cases, the devices run the entire
OpenCL kernel. For cases (3), (4) and (5), kernel execution is
partitioned across devices. For (4) and (5), the computation
is equally distributed (block-wise). Since the CPU and GPUs
have different compute powers, the computation distributions



TABLE III: Results on the Intel-NVIDIA system

Benchmark Problem sizes Tile sizes Device Total execution time Total communication volume
combination - FOP FO Speedup FOP FO Reduction

floyd 10240x10240 32x32
1 CPU (12 cores) 890s – – – – – –
1 GPU 113s – – – – – –
1 CPU + 1 GPU – 148s 180s 1.22 0.8 GB 25.0 GB 32
2 GPUs – 65s 104s 1.60 1.6 GB 51.0 GB 32
4 GPUs – 43s 107s 2.49 3.1 GB 102.0 GB 32

lu 11264x11264 256x256
1 CPU (12 cores) 412s – – – – – –
1 GPU 77s – – – – – –
1 CPU + 1 GPU – 92s 132s 1.43 0.9 GB 63 GB 70
2 GPUs – 64s 147s 2.30 0.7 GB 62.0 GB 83
4 GPUs – 60s 208s 3.47 1.2 GB 63.0 GB 51

fdtd-2d 4096x10240x10240 32x32
1 CPU (12 cores) 1915s – – – – – –
1 GPU 397s – – – – – –
1 CPU + 1 GPU – 580s 603s 1.03 0.9 GB 11.0 GB 11
2 GPUs – 207s 236s 1.14 0.9 GB 22.0 GB 22
4 GPUs – 117s 164s 1.40 2.2 GB 62.0 GB 28

heat-2d 4096x10240x10240 32x32
1 CPU (12 cores) 1112s – – – – – –
1 GPU 266s – – – – – –
1 CPU + 1 GPU – 242s 255s 1.05 0.6 GB 21.0 GB 32
2 GPUs – 138s 157s 1.14 0.6 GB 21.0 GB 32
4 GPUs – 80s 124s 1.55 1.9 GB 62.0 GB 32

heat-3d 4096x512x512x512 32x32x32
1 CPU (12 cores) 3080s – – – – – –
1 GPU 1932s – – – – – –
1 CPU + 1 GPU – 1718s 2018s 1.17 16.0 GB 512.0 GB 32
2 GPUs – 1086s 1379s 1.26 16.0 GB 512.0 GB 32
4 GPUs – 670s 1658s 2.47 49.0 GB 1535.4 GB 32

TABLE IV: Results on the AMD system

Benchmark Problem sizes Tile sizes Device Total execution time Total communication volume
combination - FOP FO Speedup FOP FO Reduction

floyd 10240x10240 32x32
1 CPU (4 cores) 1084s – – – – – –
1 GPU 512s – – – – – –
2 GPUs – 286s 305s 1.07 0.8 GB 25.0 GB 32

fdtd-2d 4096x5120x5120 32x32
1 CPU (4 cores) 1529s – – – – – –
1 GPU 241s – – – – – –
2 GPUs – 133s 242s 1.82 0.2 GB 2.15 GB 17

heat-2d 4096x8192x8192 32x32
1 CPU (4 cores) 3654s – – – – – –
1 GPU 256s – – – – – –
2 GPUs – 142s 353s 2.49 0.25 GB 8.0 GB 32

were chosen to be asymmetric for case (3). For all benchmarks,
case (3) had 10% of computation distributed onto the CPU and
90% onto the GPU.

Results: Table III shows results obtained on the Intel-
NVIDIA system. For all benchmarks, the running time on
1 GPU is much lower than that on the 12-core CPU. This run-
ning time is further improved by distributing the computation
onto 2 and 4 GPUs. For all benchmarks, we see that FOP sig-
nificantly reduces communication volume over FO. The com-
putation tile sizes directly affects the communication volume
(e.g., 32× for floyd). For the transformations and placement
chosen for these benchmarks, we manually verified that FOP
achieved the minimum communication volume. This reduction
in communication volume results in a corresponding reduction
in execution time facilitating strong scaling of these bench-
marks, as shown in Fig. 7 – this was not possible with the ex-
isting FO. For example, FO for heat-3d has very high com-
munication overhead and does not scale beyond two GPUs. For
floyd and lu, FO scales up to 2 GPUs, but not beyond it.
However, FOP easily scales up to 4 GPUs for all benchmarks.
For floyd, lu and fdtd-2d, CPU’s performance becomes
the bottleneck, even when it only executed 10% of the compu-

tation. Hence, we observe 1 CPU + 1 GPU performance to be
worse than 1 GPU performance for these benchmarks. On the
other hand, 1 CPU + 1 GPU gives 9% and 11% improvement
over 1 GPU for heat-2d and heat-3d respectively.

Table IV shows results obtained on the AMD system.
The OpenCL functions used to transfer rectangular regions of
memory are crucial for copying non-contiguous (strided) data
efficiently. We found these functions to have a prohibitively
high overhead on this system. This compelled us to use only
those functions which could copy contiguous regions of mem-
ory. Hence, we present results only for floyd, heat-2d and
fdtd-2d since the data to be moved for these benchmarks is
contiguous. For all benchmarks, the running time on 1 GPU
is much lower than that on the 4-core CPU. We could not
evaluate them on 1 CPU + 1 GPU since the OpenCL data
transfer functions crashed when CPU was used as an OpenCL
device. FO does not perform well on 2 GPUs for heat-2d
and fdtd-2d since these benchmarks have a low compute-
to-copy ratio and the high volume of communication in FO
leads to a slowdown. The FOP scheme, on the other hand,
performs very well on 2 GPUs, yielding a near-ideal speedup
of 1.8× over 1 GPU for all benchmarks.
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VII. RELATED WORK

Works from literature closely related to communication
code generation for distributed-memory architectures
are: LWT – Amarasinghe and Lam [5]; dHPF – Adve
and Mellor-Crummey [6], and Chavarrı́a-Miranda and
Mellor-Crummey [7]; CLGR – Claßen and Griebl [8]; FO –
Bondhugula [9]; OMPD – Kwon et al. [4]. These abbreviations
will be used to refer these works. LWT, dHPF, CLGR and
FO statically determine the data to be communicated and
generate code for it, whereas OMPD determines the data to
be communicated primarily using a runtime dataflow analysis
technique. LWT handles only perfectly nested loops; OMPD
handles only those affine loop nests which have a repetitive
communication pattern (i.e., those which transfer the same set
of data on every invocation of the parallel loop); dHPF, CLGR
and FO are based on the polyhedral framework, like our
schemes, and can handle any sequence of affine loop nests.
Our framework builds upon and subsumes the state-of-the-art
automatic distributed-memory code generation framework [9],
while generalizing it to target heterogeneous architectures.

LWT, dHPF and CLGR use a virtual processor to physical
processor mapping to handle symbolic problem sizes and
number of processors. If iterations of the distributed loop(s) are
treated as virtual processors, then FOIFI statically determines
the communication set between two virtual processors, and
uses π at runtime as a mapping function from virtual to
physical processors. Thus, FOIFI also uses a virtual proces-
sor model. For all these schemes, the communication code
is generated such that virtual processors communicate with
each other only when they are mapped to different physical
processors. In spite of this, when the data being sent to
different virtual processors is not disjoint and when some
of those virtual processors are mapped to the same physical
processor, the common portion of the data is sent multiple
times to that physical processor. dHPF [7] overcomes some
of this redundancy by statically coalescing data required by
multiple loop nests. FOP and FO also achieve communication
coalescing across multiple loop nests by determining the
communication set for all dependences, i.e., for all dependent
loop nests. Moreover, instead of a virtual processor approach,
FOP and FO determine the set of receivers precisely so as to
not communicate duplicate data.

dHPF determines communication code by analyzing data
accesses as opposed to dependences in a way that lacks exact

dataflow information. dHPF could be either pulling the data
just before it is consumed or pushing the data soon after it is
produced. In the former scenario, when there are multiple reads
to the same location that are spread across distributed phases,
the read in each distributed phase gets the data in that location
from the owner processor, though only the first read is required
to get it. In the latter scenario, when there are multiple writes to
the same location that are spread across distributed phases, the
write in each distributed phase is sent to all processors which
read that location, though only the last write is required to be
sent. In contrast, FOP, FOIFI and FO use the last writer prop-
erty of flow dependences to communicate only the last write.

As for communication coalescing, LWT and CLGR do not
perform it for arbitrary affine accesses, unlike FOP, FOIFI and
FO. So, they could communicate duplicate data when there are
multiple references to the same data.

FO unnecessarily communicates the entire communication
set when different receivers require different elements in the
communication set. FOP reduces such unnecessary commu-
nication by partitioning the communication set and precisely
determining the set of receivers for each partition.

Thus, LWT, dHPF, CLGR, FO and FOIFI schemes could
lead to substantially larger volume of redundant communi-
cation than FOP scheme. Since FOIFI precisely determines
the data which needs to be communicated between virtual
processors by analyzing multiple dependences simultaneously,
it is theoretically at least as good as schemes that use the virtual
processor model, like LWT, dHPF and CLGR. Our evaluation
shows that FOP clearly outperforms OMPD, FO, FOIFI, and
consequently, LWT, dHPF and CLGR.

Among existing works that support distributing computa-
tion on multiple devices of a heterogeneous system [2], [3],
[10], [23], [24], the work of Kim et al. [10] is the only one
which completely automates data movement. Their input is
an OpenCL program for a single device, which is distributed
across multiple compute devices. The kernels in the program
can only have affine array accesses. They determine the first
and last memory location accessed by a computation partition
and then send the entire data in that range to the compute
device which would execute that partition. This could lead
to false sharing since there could be many memory locations
within the range that are not required by the associated
partition. Thus, their scheme communicates significantly large
volume of redundant data. To ensure consistency, they maintain
a separate virtual buffer in the host, which is ‘diff’ed and
‘merge’d with the GPUs’ buffers at runtime when required.
This introduces additional runtime overhead. FOP, on the
other hand, precisely determines memory locations that need
to be communicated through static analyses and with min-
imal runtime overhead. However, we are unable to present
an experimental comparison with their scheme as it is not
available. Leung et al. [23] describe an automatic source-
level transformer in the RSTREAM compiler [25] which
generates CUDA code from serial C code. Their work targets
systems with multiple GPUs, but no details on inter-device data
movement or results on multiple GPUs are provided. Song and
Dongarra [24] execute linear algebra kernels on heterogeneous
GPU-based clusters. They develop a multi-level partitioning
and distribution method, which is orthogonal to the problem
we address. Their communication scheme is not automatic, but



specific to the kernels addressed. Communication is driven by
data dependences between atomic tasks. Since they send the
entire output data of a task to any task that reads at least
one value in that output data, they could send unnecessary
data like FO. In contrast, FOP minimizes such redundant
communication for the chosen distribution. Among production
compilers, PGI [26] and CAPS [3] have a proprietary direc-
tive based accelerator programming model, and also support
OpenACC. However, to the best of our knowledge, they do
not automatically distribute loop computations across different
devices of a heterogeneous system. So, the issues of automatic
data movement or synchronization between different devices
do not arise.

CGCM [27], DyManD [28], and AMM [29] are recent
works that support only a single GPU device, but automate data
movement between CPU and GPU. They allocate the entire
data on every device. Data is transferred at the granularity of an
allocation unit in CGCM and DyManD, and at the granularity
of a CUDA X10 Rail in AMM, which could lead to redundant
communication. FOP, by contrast, is precise in determining
data to be transferred at the granularity of array elements.
However, our approach is for affine array accesses and is thus
complementary to CGCM and DyManD that are designed to
also handle pointers and recursive data structures respectively.

VIII. CONCLUSIONS

We proposed compilation techniques to free programmers
from the burden of moving data on architectures that do
not have a shared address space. We were able to generate
efficient data movement code statically using a source-distinct
partitioning of dependences. Minimum communication volume
was achieved with a majority of dependence patterns and for
all benchmarks considered. To the best of our knowledge,
our tool is the first one to parallelize affine loop nests for
a combination of CPUs and GPUs while providing precision
of data movement at the granularity of array elements. On
a heterogeneous system, we showed that our scheme (FOP)
reduces the communication volume by a factor of 11× to
83×, resulting in a mean execution time speedup of 1.53×
over the best existing scheme (FO). For communication-
intensive benchmarks like Floyd-Warshall, when running on
4 GPUs, we demonstrated that our data movement scheme
yields a mean speedup of 2.56× over 1 GPU. On a distributed-
memory cluster, we showed that our scheme (FOP) reduces the
communication volume by a factor of 1.4× to 63.5×, resulting
in a mean speedup of 1.72× over the best existing scheme
(FO). Our scheme gave a mean speedup of 3.06× over another
existing scheme (OMPD) and a mean speedup of 2.19× over
hand-optimized UPC versions of these codes. We believe that
our techniques will be able to provide OpenMP-like program-
mer productivity for distributed-memory and heterogeneous
architectures if implemented in compilers.
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