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Introduction

Distributed-memory compilation

Manual parallelization for distributed-memory is extremely
hard (even for affine loop nests)

Objectives

Automatically generate MPI code from sequential C affine
loop nests
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Introduction

Distributed-memory compilation – why again?

Large amount of literature already exists through early 1990s
1 Past works: limited success
2 Still no automatic tool has been available
3 However, we now have new polyhedral libraries, transformation

frameworks, code generators, and tools
4 The same techniques are needed to compile for CPUs-GPU

heterogeneous multicores
5 Can be integrated with emerging runtimes

Make a fresh attempt to solve this problem
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Introduction

Why do we need communication?

Communication during parallelization is a result of data
dependences

No data dependences ⇒ (∼) no communication

Parallel loop implies no dependences satisfied by it

Communication is due to dependences that are satisfied
outside but have (non-zero) components on the parallel loop
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Introduction

Dependences and Communication
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Figure : Inner parallel loop, j : hyperplane (0,1)

The inner loop can be executed in parallel with
communication for each iteration of the outer sequential loop
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Introduction

A polyhedral optimizer – various phases

1 Extracting a polyhedral representation (from sequential C)

2 Dependence analysis

3 Transformation and parallelization

4 Code generation (getting out of polyhedral extraction)
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Introduction

Distributed-memory parallelization

Involves a number of sub-problems

1 Finding the right computation partitioning

2 Data distribution and data allocation (weak scaling)

3 Determining communication sets given the above

4 Packing and unpacking data

5 Determining communication partners given the above
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Distributed-memory code generation The problem, challenges, and past efforts

Distributed-memory code generation

What to send?

Whom to send to?

Difficulties

For non-uniform dependences, not known how far
dependences traverse

Number of iterations (or tiles) is not known at compile time

Number of processors may not be known at compile time
(portability)

Virtual to physical processor approach: are you sending to two
virtual processors that are the same physical processor?
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Distributed-memory code generation The problem, challenges, and past efforts

A near-neighbor computation example

for (t=1; t<=T−1; t++){
for ( j=1; j<=N−1; j++){
u[t%2][j ] = 0.333∗(u[(t−1)% 2][j−1]

+ u[(t−1)%2][j] + u[(t−1)%2][j+1]);
}

}
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Distributed-memory code generation The problem, challenges, and past efforts

Floyd-Warshall example

Use to compute all-pairs shortest-paths in a directed graph

for (k=0; k < N; k++) {
for (y=0; y < N; y++) {
for (x=0; x < N; x++) {
pathDistanceMatrix[y ][ x] = min(pathDistanceMatrix[y][k] +

pathDistanceMatrix[k ][ x ], pathDistanceMatrix[y ][ x ]);
}

}
}

Figure : Floyd-warshall algorithm
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Distributed-memory code generation The problem, challenges, and past efforts

Floyd-Warshall communication pattern
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Figure : Communication for Floyd-Warshall: at outer loop iteration
k − 1, processor(s) updating the k th row and k th column broadcast them
to processors along their column and row respectively.
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Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation: example – 2-d seidel

Performing distributed memory code generation after
transformation

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

Distance vectors: (0,1,1), (0,1,0), (0,1,-1), (0,0,1), (0,1,-1),
(1,-1,1), (1,0,-1), (1,-1,0), (1,-1,-1)

14 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation: example – 2-d seidel

Performing distributed memory code generation after
transformation

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

Distance vectors: (0,1,1), (0,1,0), (0,1,-1), (0,0,1), (0,1,-1),
(1,-1,1), (1,0,-1), (1,-1,0), (1,-1,-1)

14 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation: example – 2-d seidel

Performing distributed memory code generation after
transformation

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

Distance vectors: (0,1,1), (0,1,0), (0,1,-1), (0,0,1), (0,1,-1),
(1,-1,1), (1,0,-1), (1,-1,0), (1,-1,-1)

14 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

15 / 46



Distributed-memory code generation The problem, challenges, and past efforts

Code generation after transformation

Performing distributed memory code generation on
transformed code

for (t=0; t<=T−1; t++) {
for ( i=1; i<=N−2; i++) {
for ( j=1; j<=N−2; j++) {

a[ i ][ j ] = (a[ i−1][j−1] + a[i−1][j] + a[i−1][j+1] + a[i ][ j−1] +
a[ i ][ j ] + a[i ][ j+1] + a[i+1][j−1] + a[i+1][j ] + a[i+1][j+1])/9.0;

}
}

}

Distance vectors: (0,1,1), (0,1,0), (0,1,-1), (0,0,1), (0,1,-1),
(1,-1,1), (1,0,-1), (1,-1,0), (1,-1,-1)

T (t, i , j) = (t, t + i , 2t + i + j)

Tile all dimensions

Create a tile schedule, and identify loop to be parallelized

Generate communication primitives on this code
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Distributed-memory code generation The problem, challenges, and past efforts

Computing data accessed

if ((N >= 3) && (T >= 1)) {
for (t1=0;t1<=floord(N+2∗T−4,32);t1++) {
lbp=max(ceild(t1,2), ceild (32∗t1−T+1,32));
ubp=min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1);

#pragma omp parallel for
for (t2=lbp;t2<=ubp;t2++) {
for (t3=max(ceild(64∗t2−N−28,32),t1);t3<=min(min(min(min(floord(N+T−3,16),floord(32∗t1−32∗t2+N+29,16)),flo
for (t4=max(max(max(32∗t1−32∗t2,32∗t2−N+2),16∗t3−N+2),−32∗t2+32∗t3−N−29);t4<=min(min(min(min
for (t5=max(max(32∗t2,t4+1),32∗t3−t4−N+2);t5<=min(min(32∗t2+31,32∗t3−t4+30),t4+N−2);t5++) {
for (t6=max(32∗t3,t4+t5+1);t6<=min(32∗t3+31,t4+t5+N−2);t6++) {
a[−t4+t5][−t4−t5+t6]=(a[−t4+t5−1][−t4−t5+t6−1]+a[−t4+t5−1][−t4−t5+t6]+a[−t4+t5−1][−t4−

}
}

}
}

}
/ ∗ communication code should go here ∗/

}
}

Image of (−t4 + t5,−t4− t5 + t6) over an integer set

Straightforward to accomplish via polyhedral libraries

ISL: just create an isl map
Polylib: use polylib image function or projections
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Distributed-memory code generation The problem, challenges, and past efforts

Computing data accessed – parametric

What we are interested in: data accessed for a given t1, t2 for
example

Parametric in t1, t2, N (don’t eliminate t1, t2 from the
system)

Yields data written to or being read in a given iteration

For previous code, given t1, t2, N, we get:

1 ≤ d2 ≤ N − 2
max(1, 32t2 − 31) ≤ d1 ≤ min(T − 2, 32t2 + 31)
64t2 − 32t1 − 31 ≤ d1 ≤ 64t2 − 32t1 + 31
−31 ≤ 32t1− 32t2 ≤ N − 1

d1 can be bounded
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Distributed-memory code generation The problem, challenges, and past efforts

Past approaches

1 Access function based [dHPF PLDI’98, Griebl-Classen
IPDPS’06]

2 Dependence-based [Amarasinghe-Lam PLDI’93]

Our approach is dependence-based

+ Dependence information is already available (last writer
property would mean some of the analysis need not be redone)

+ Natural

− May not be the right granularity
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Distributed-memory code generation Our approach (Pluto distmem)

1 Introduction

2 Distributed-memory code generation
The problem, challenges, and past efforts
Our approach (Pluto distmem)

3 Experimental Evaluation

4 Conclusions
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Distributed-memory code generation Our approach (Pluto distmem)

Pluto-distmem: Dependences and Communication Sets

Flow dependences lead to communication (anti and output
dependences do not)

The flow-out set of a tile is the set of all values that are
written to inside the tile, and then next read from outside the
tile

The write-out set of a tile is the set of all those data
elements to which the last write access across the entire
iteration space is performed in the tile

Construct flow-out sets using flow dependences
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Distributed-memory code generation Our approach (Pluto distmem)

Flow-out set

for (t=1; t<=T−1; t++)
for ( j=1; j<=N−1; j++)
u[t%2][j ] = 0.333∗(u[(t−1)%2][j−1] + u[(t−1)%2][j] + u[(t−1)%2][j+1]);

t

i

Dependences Tiles Flow-out set of ST

FO(ST) is sent to {π(RT1) ∪ π(RT2) ∪ π(RT3)}

ST

RT1 RT2

RT3FO
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Distributed-memory code generation Our approach (Pluto distmem)

Computing flow-out set for variable x

Input Depth of parallel loop: l ; set Sw of 〈write access, statement〉 pairs for
variable x

1: F x
out = ∅

2: for each 〈Mw , Si 〉 ∈ Sw do

3: for each dependence e(Si → Sj) ∈ E do

4: if e is of type RAW and source access of e is Mw then

5: El =
{

t i1 = t
j
1 ∧ t i2 = t

j
2 ∧ . . . ∧ t il = t

j
l

}

6: C t
e = DT

e ∩ El

7: I te = project out
(

C t
e ,mSi + 1,mSj

)

8: Ot
e = project out

(

DT
e ,mSi + 1,mSj

)

\ I te

9: F x
out = F x

out ∪ Ip(M
Si
w ,Ot

e , l)
10: end if

11: end for

12: end for

Output F x
out
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Distributed-memory code generation Our approach (Pluto distmem)

Determining communication partners

1 A compiler-assisted runtime technique

Define two functions as part of the output code for each data
variable, x . If t1, . . . , tl is the set of sequential dimensions
surrounding parallel dimension tp:

2 σx(t1, t2, . . . , tl , tp): set of processors that need the flow-out
set for data variable x from the processor calling this function

3 π(t1, t2, . . . , tl , tp): rank of processor that executes (t1, t2,
. . . , tl , tp)

24 / 46



Distributed-memory code generation Our approach (Pluto distmem)

Determining communication partners

1 A compiler-assisted runtime technique

Define two functions as part of the output code for each data
variable, x . If t1, . . . , tl is the set of sequential dimensions
surrounding parallel dimension tp:

2 σx(t1, t2, . . . , tl , tp): set of processors that need the flow-out
set for data variable x from the processor calling this function

3 π(t1, t2, . . . , tl , tp): rank of processor that executes (t1, t2,
. . . , tl , tp)

24 / 46



Distributed-memory code generation Our approach (Pluto distmem)

Determining communication partners

1 A compiler-assisted runtime technique

Define two functions as part of the output code for each data
variable, x . If t1, . . . , tl is the set of sequential dimensions
surrounding parallel dimension tp:

2 σx(t1, t2, . . . , tl , tp): set of processors that need the flow-out
set for data variable x from the processor calling this function

3 π(t1, t2, . . . , tl , tp): rank of processor that executes (t1, t2,
. . . , tl , tp)

24 / 46



Distributed-memory code generation Our approach (Pluto distmem)

Determining communication partners

1 A compiler-assisted runtime technique

Define two functions as part of the output code for each data
variable, x . If t1, . . . , tl is the set of sequential dimensions
surrounding parallel dimension tp:

2 σx(t1, t2, . . . , tl , tp): set of processors that need the flow-out
set for data variable x from the processor calling this function

3 π(t1, t2, . . . , tl , tp): rank of processor that executes (t1, t2,
. . . , tl , tp)

24 / 46



Distributed-memory code generation Our approach (Pluto distmem)

The sigma function

Dependence: a relation between source and target iterations
(~s → ~t)

For each such RAW dependence:
(s1, s2, . . . , sp, . . . , sm) → (t1, t2, . . . , tp, . . . , tm)

Project out intra-tile iterators to obtain inter-tile dependences:
(s1, s2, . . . , sp) → (t1, t2, . . . , tp)

Scanning (t1, t2, . . . , tp) parametric in (s1, s2, . . . , sp)
enumerates receiver tiles for a given sending tile

Apply π function to determine your receivers

Code generated at compile-time: at runtime, we have the
identities of the receivers for a flexible π
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Distributed-memory code generation Our approach (Pluto distmem)

Packing and unpacking data

Use a linearized counted buffer

for (d0=max(max(1,32∗t1−32∗t3),32∗t3−N+32);
d0<=min(T−2,32∗t1−32∗t3+30);d0++) for
d1=max(1,32∗t3−d0+30);d1<=min(N−2,32∗t3−d0+31);d1++) {

send buf u[send count u++] = u[d0][d1];

if (t1 <= min(floord(32∗t3+T−33,32),2∗t3−1)) {
for (d1=−32∗t1+64∗t3−31;d1<=min(N−1,−32∗t1+64∗t3);d1++)
send buf u [send count u++] = u[32∗t1−32∗t3+31][d1];

}
}

Unpacking – just reverse the assignment
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Distributed-memory code generation Our approach (Pluto distmem)

Determining Communication Partners

σx(s1, s2, . . . , sl , sp) = {π(t1, t2, . . . , tl , tp) | ∃e ∈ E on x ,

DT
e (s1, .., sp, .., t1, .., tp, .., ~p, 1)}

DT
e is the dependence polyhedron corresponding to e
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Distributed-memory code generation Our approach (Pluto distmem)

Strengths and Limitations

t

i

Dependences Tiles Flow-out set of ST

FO(ST) is sent to {π(RT1) ∪ π(RT2) ∪ π(RT3)}

ST

RT1 RT2

RT3FO

+ Good for broadcast or multicast style communication

+ A processor will never receive the same data twice

− Okay for disjoint point-to-point communication

− A processor could be sent data that it does not need
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Distributed-memory code generation Our approach (Pluto distmem)

Sub-problems

1 Constructing communication sets

2 Packing and unpacking data

3 Determining receivers

4 Generating actual communication primitives
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Distributed-memory code generation Our approach (Pluto distmem)

Improvement over previous approaches

Based on last-writer dependences, more precise

Avoids redundant communication due to virtual-physical
processor mapping in several cases

Works with all polyhedral transformations on affine loop nests

Further refinements possible: flow-out intersection flow-in,
flow-out set partitioning, and data movement for
heterogeneous systems (CPU/GPU) [Dathathri et al. PACT
2013]
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Distributed-memory code generation Our approach (Pluto distmem)

Driven by Computation / Data flow

Code generation is for a given computation transformation /
distribution

Data moves as dictated by (last-writer) dependences for the
computation partitioning specified

There is no owning processor for data

Data distribution only affects communication at start, and is
needed for weak scaling and allocation purposes

We use a push model (synchronous with clear separation
between computation and communication phases)
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Experimental Evaluation

1 Introduction

2 Distributed-memory code generation

3 Experimental Evaluation

4 Conclusions
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Experimental Evaluation

Experimental evaluation

Code generation support implemented in the Pluto tool
(http://pluto-compiler.sourceforge.net)

Experiments on a 32-node InfiniBand cluster running
MVAPICH2 (running 1 process per node)

Codes experimented capture different communication styles
(near-neighbor, broadcast style, multicast style)

All codes automatically transformed

Generated codes were compiled with icc -fast (-O3 -ipo
-static) version 11.1
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Experimental Evaluation

Performance summary

Benchmark seq pluto-seq Execution time for our (number of procs) Speedup: our-32

(icc) 1 2 4 8 16 32 seq our-1

strmm 30.4m 247s 240s 124.6s 63.5s 33.6s 17.3s 9.4s 194 26.3
trmm 35.5m 91.8s 96.4s 51.3s 27.4s 15.3s 7.14s 3.74s 570 24.5
dsyr2k 127s 39s 38.8s 22.4s 13.5s 6.80s 3.80s 1.57s 80.8 24.7
covcol 462s 30.9s 30.7s 16.7s 8.8s 4.60s 2.48s 1.30s 355 23.8
seidel 17.3m 643.5s 692s 338.7s 174.3s 94s 65.6s 33.0s 31.0 20.8
jac-2d 21.9m 206.7s 218s 111.2s 62.3s 40.7s 29.3s 21.5s 61.3 9.6
fdtd-2d 139s 129.7s 95.2s 70.7s 40.3s 25.3s 16.8s 11.7s 11.9 11.0
2d-heat 19m 266s 280s 157s 81s 52s 33s 24.0s 47.5 11.7
3d-heat 590.6s 222s 236s 118s 68.7s 41.5s 26.3s 18.8s 31.4 12.6

lu 82.9s 28s 29.5s 18.8s 9.28s 5.67s 4.3s 3.9s 21.3 7.56
floyd-warshall 2012s 2012s 2062s 1041s 527s 273s 153s 112s 18.0 18.0

Mean (geometric) speedup of 60.7× over icc-seq and of
15.9× over pluto-seq

A more detailed comparison with manually written code and
HPF in the paper

Often hard to write such code by hand even for simple affine
loop nests (non-rectangularlity, tiling, discontiguity)
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Experimental Evaluation

Tool available (BETA)

Available publicly at: http://pluto-compiler.sourceforge.net

$ ../../polycc floyd.c –distmem –commreport –mpiomp –tile
–isldep –lastwriter –cloogsh -o seidel.distopt.c

$ mpicc -O3 -openmp floyd.distopt.c sigma.c pi.c -o distopt
-lpolyrt -lm

DISCLAIMER: beta release, not responsible for crashing your
cluster!
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Conclusions

Conclusions and future work

First source-to-source tool for MPI code generation for affine
loop nests

Improves over previous distributed memory code generation
approaches

When coupled with prior work in polyhedral transformation, a
fully automatic distributed-memory parallelizer

Future work: integrating it with dynamic scheduling runtimes
and enabling data-flow style parallelization: asynchronous
communication and overlap of computation and
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