A Journey of Randomness Extractors

Kai-Min Chung

Academia Sinica, Taiwan

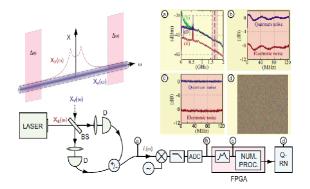
Outline

- Basic concepts
 - Statistical distance
 - Min-entropy
 - Randomness Extractors
- Leftover Hash Lemma:
 - An efficient extractor based on universal hash functions
- Average-case Extractors:
 - Randomness extraction in presence of side information
- (Optional) Quantum-proof Extractors
 - Extraction in presence of quantum side information

Quest for Perfect Randomness

- Randomness is powerful resource
 - Crypto requires truly uniform bits to generate keys
 - Randomized algorithm assumes access to truly uniform bits
- In reality, random sources are not perfect
 - Correlated and biased bits
- Can we turn imperfect source into (almost) uniform bits?

Imperfect random source:



Examples

 IID-Bit source: X = X₁, X₂,..,X_n ∈ {0,1} identical & independent, but biased: for each i, Pr[X_i = 1] = δ for some unknown δ

- idea: consider X in pairs,

$$X_{i}, X_{i+1} = \begin{cases} 01 \implies \text{output } 0\\ 10 \implies \text{output } 1\\ 00/11 \implies \text{discard} \end{cases}$$

- Independent-bit source: $X = X_1, X_2, ..., X_n \in \{0, 1\}$ independent, but with different biased: $\Pr[X_i = 1] = \delta_i$ for different δ_i , where $0 < \delta \le \delta_i \le 1 - \delta$ for some constant δ
 - idea: output parity of each t bits

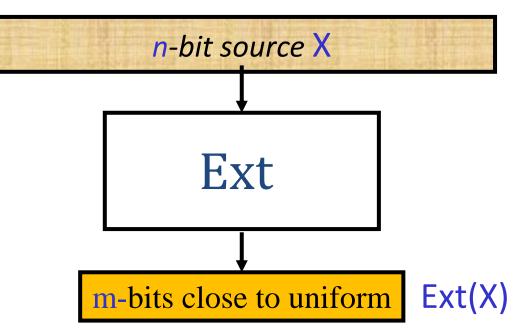
 $|\Pr[\bigoplus_{i=1}^{t} \mathsf{X}_{i} = 1] - \frac{1}{2}| \leq 2^{-\Omega(t)}$

Randomness Extraction

- Source: random variable X over $\{0,1\}^n$ in certain class \mathcal{C}
 - $\text{IndBits}_{n,\delta}$: X = X₁,X₂,..,X_n \in {0,1} independent bits, Pr[X_i = 1] = δ_i where $0 < \delta \le \delta_i \le 1 \delta$
 - $IndBits_{n,\delta}$: additionally assume all δ_i are equal
- (Deterministic) extractor: a function Ext: {0,1}ⁿ → {0,1}^m s.t.
 ∀ source X ∈ C, Ext(X) is "ε-close" to uniform

Deterministic Extractors

(Deterministic) extractor: a function Ext: {0,1}ⁿ → {0,1}^m s.t.
 ∀ source X ∈ C, Ext(X) is "ε-close" to uniform



- single function works for all sources in $\ensuremath{\mathcal{C}}$
- only one sample X is available
- need to define "
 e-close" to uniform

Statistical Distance

• **Def.** Let X, Y be rand. var. over range U, statistical distance between X, Y is defined as

 $\Delta(X, Y) \stackrel{\text{\tiny def}}{=} (1/2) \cdot \sum_{u \in U} |\Pr[X = u] - \Pr[Y = u]|$

- View X, Y as vectors over $\mathbb{R}^{|U|}$, it's simply the L1-distance

• **Def.** We say X is ε -close Y if $\Delta(X, Y) \le \varepsilon$

Example: X = (.15, .09, .10, .06, .16, .09, .11, .03, .08, .04, .078, .002)Y = (.03, .04, .07, .03, .11, .09, 04, .04, .16, .13, .18, .08)

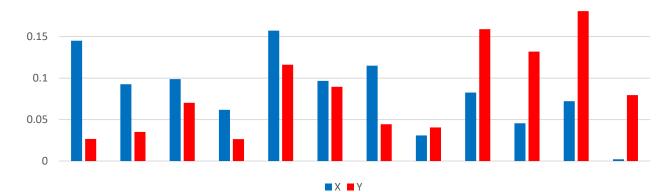


Important Properties

Operational meaning: max advantage to distinguish X, Y

 $\Delta(X, Y) = \max_{T \subset U} (\Pr[X \in T] - \Pr[Y \in T])$ - In particular, if X is ε -close Y, then for any event T, $\Pr[X \in T] \le \Pr[Y \in T] + \varepsilon$

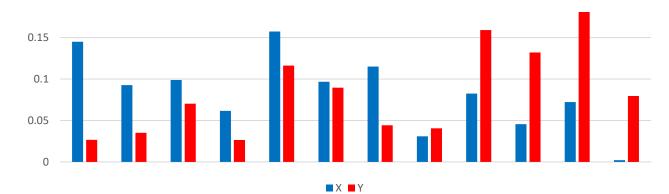
Example: X = (.15, .09, .10, .06, .16, .09, .11, .03, .08, .04, .078, .002)Y = (.03, .04, .07, .03, .11, .09, 04, .04, .16, .13, .18, .08)



Important Properties

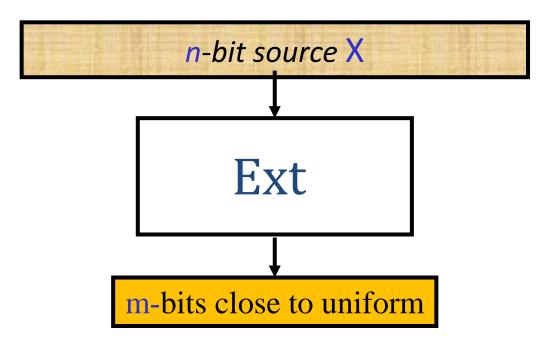
- Post-processing inequality: for any function f, $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$
 - I.e., post-processing only decreases statistical distance
 - Equality holds when f is injective

Example: X = (.15, .09, .10, .06, .16, .09, .11, .03, .08, .04, .078, .002)Y = (.03, .04, .07, .03, .11, .09, 04, .04, .16, .13, .18, .08)



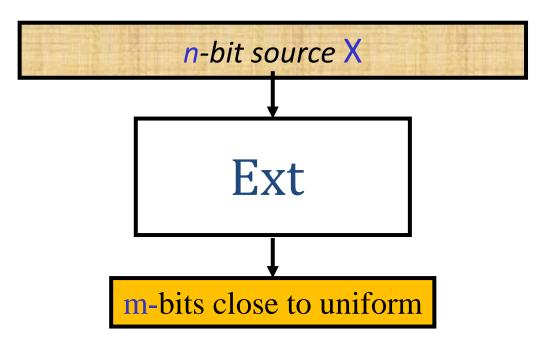
Extractor for IndBits_{n, δ}

- Thm. ∀ constant δ, ∀ n, m ∈ N, ∃ Ext: {0,1}ⁿ → {0,1}^m for IndBits_{n,δ} source with error ε = m· 2^{-Ω(n/m)}
 - Ext(X) breaks X into m blocks of length $\lfloor n/m \rfloor$ and outputs the parity of each block



Extractor for General Sources?

- Can we extract truly uniform bits from any sources?
 No, if the source is not random, e.g., X = 0ⁿ w.p. 1
- Hope: Ext works whenever X has sufficient "entropy"

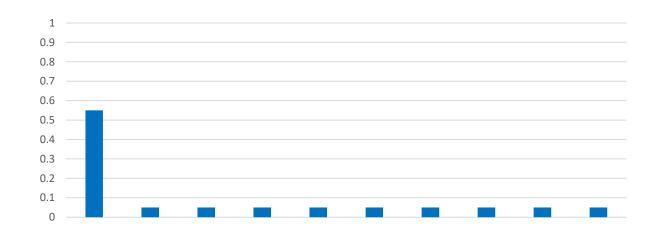


1st Attempt: Shannon Entropy

Def. Shannon entropy H_{sh}(X)

 $H_{sh}(X) \stackrel{\text{\tiny def}}{=} \sum_{x} \Pr[X = x] \log \frac{1}{\Pr[X = x]} = E_{x \leftarrow X} \left[\log \frac{1}{\Pr[X = x]} \right]$

- Not good, consider X defined as follows:
 - w.p. ½, set X = 0ⁿ
 - w.p. ½, sample X = uniform on {0,1}ⁿ
- $H_{sh}(X) \ge n/2$ but $Pr[X=0^n] > \frac{1}{2}$; can't extract from X

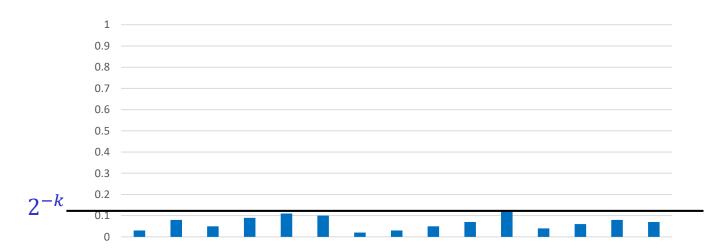


2nd Attempt: Min-Entropy

Def. Min-entropy H_{min}(X)

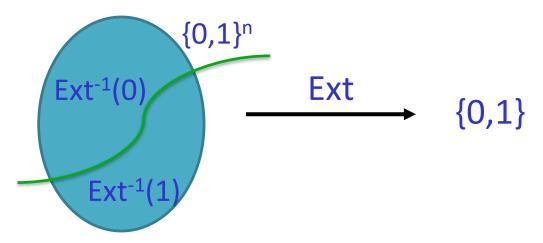
$$H_{\min}(X) \stackrel{\text{\tiny def}}{=} \max_{x} \left\{ \log \frac{1}{\Pr[X=x]} \right\}$$

- $H_{\min}(X) \ge k$ if for every x, $\Pr[X = x] \le 2^{-k}$
- Worst-case notion; possible for extraction
- **Def.** X is k-source if $H_{min}(X) \ge k$
- Extractor for the class of k-sources?



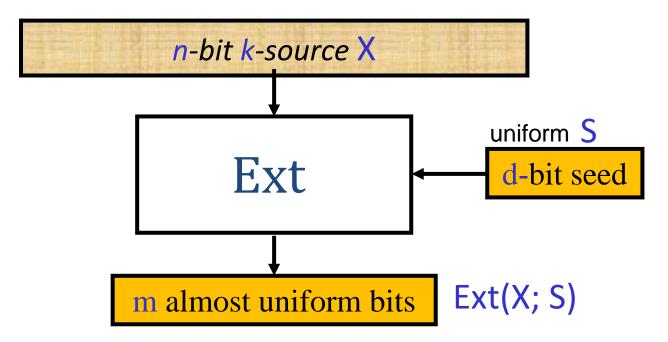
Impossibility of Deterministic Extraction

- Thm. For any Ext: {0,1}ⁿ → {0,1}, there exists an (n-1)-source X s.t. Ext(X) = constant
- **Proof.** Consider X_b = uniform on Ext⁻¹(b)
 - Ext(X_b) = constant
 - Either $H_{min}(X_0)$ or $H_{min}(X_1) \ge n-1$
- Deterministic extractor for k-source is impossible even for extracting 1 bit and even for k = n-1



Seeded Extractors

• Add *short* uniform seed as catalyst for extraction



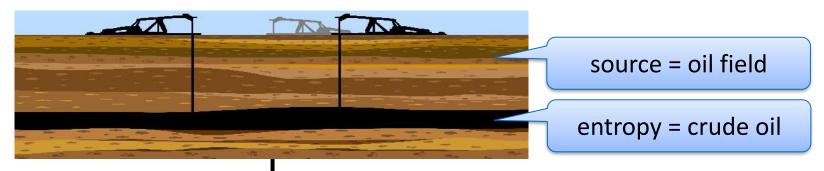
Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -seeded extractor if \forall k-source X, Ext(X; S) is ε -close uniform U_m

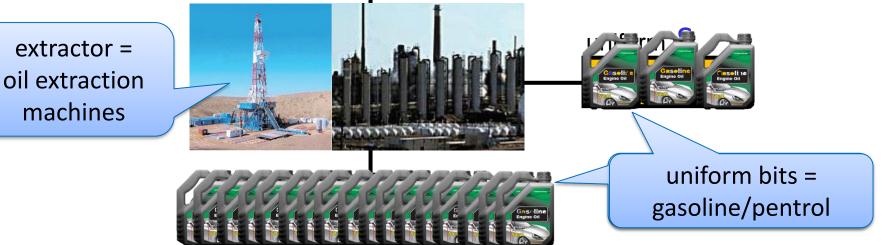
Pervasive Applications

- Diverse topics in Theoretical Computer Science
 - Cryptography, Derandomization & pseudorandomness
 [Sis88, NZ93,...], Distributed algorithms [WZ95], Data structures [Ta02], Hardness of Approximation [Zuc93,...]

- Many applications in Cryptography
 - Privacy amplification [BBR88], Bounded-storage model [Lu02,V03], PRG [HILL89], Biometrics [DRS04], Leakage-resilient crypto [DP09]...

An Analogy: Oil Extraction





Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -seeded extractor if \forall k-source X, Ext(X; S) is ε -close uniform U_m

Desiderata

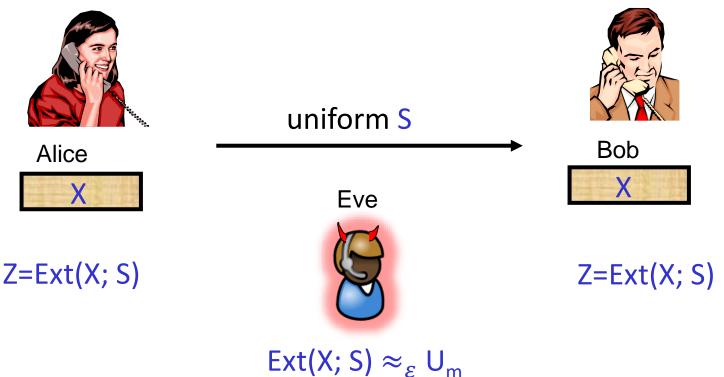
- Minimize seed length d
 - Minimize initial gasoline investment
- Maximize output length m, ideally close to min-entropy k
 Extract and distill all crude oil to gasoline
- Extraction even for small entropy rate k/n
 - i.e., even when oil field has low crude oil content
- Explicit construction: efficient polynomial time extractor
 - Cost-efficiency of oil extraction machines

What We Can Achieve?

- Non-constructively, ∀ n, k, ε, ∃ (k,ε)-seeded extractor with seed length d = log (n-k) + 2 log(1/ε) + O(1) output length m = k + d 2 log(1/ε) O(1)
 - use logarithmic-length seed
 - extract almost all min-entropy out
 - for any small entropy rate
 - However, not an explicit construction
- Proof: use probability method. See Salil's book.
- Research goal: find explicit construction with above parameters seed length d = O(log n) + O(log(1/ε)) output length m = 0.99k

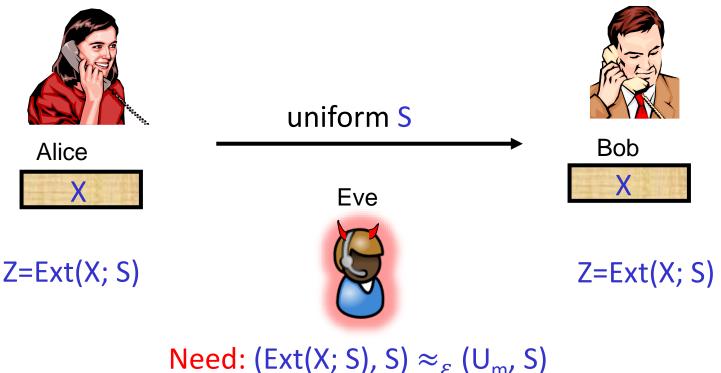
Privacy Amplification

- Alice & Bob share secret weak random source X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel
- Issue: Eve learns seed S, may leak info about Ext(X; S)



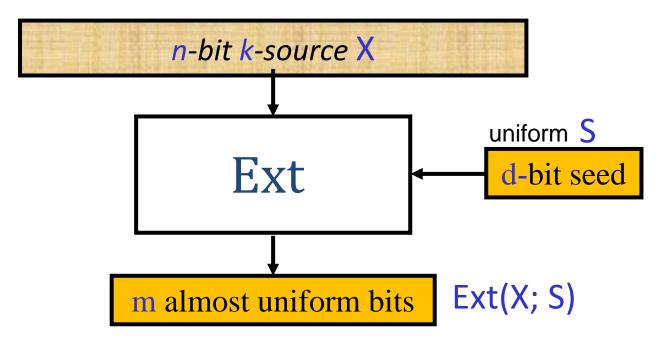
Privacy Amplification

- Alice & Bob share secret weak random source X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel
- Issue: Eve learns seed S, may leak info about Ext(X; S)



Strong Seeded Extractors

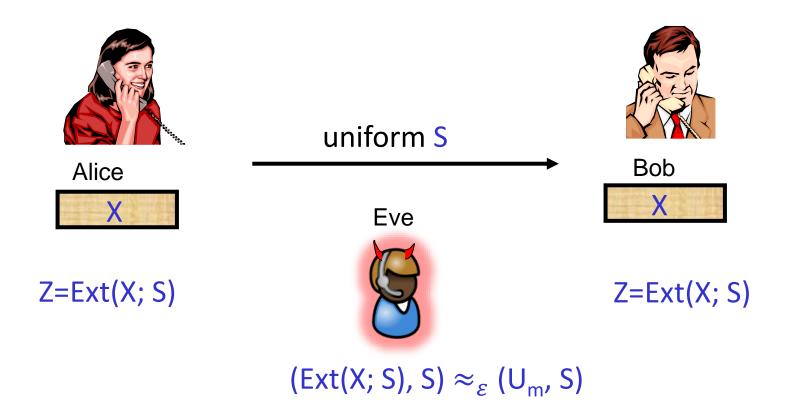
• Require Ext(X; S) close to uniform even given the seed S



Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -strong seeded extractor if \forall k-source X, (Ext(X; S), S) \approx_{ε} (U_m, S)

Privacy Amplification

- Alice & Bob share secret weak random source X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel



Parameters for Strong Extractors

- Non-constructively, ∀ n, k, ε, ∃ (k,ε)-seeded extractor with seed length d = log (n-k) + 2 log(1/ε) + O(1) output length m = k + d 2 log(1/ε) O(1)
 - use logarithmic-length seed
 - extract almost all min-entropy out
 - for any small entropy rate
 - However, not an explicit construction
- Proof: use probability method. See Salil's book.
- Research goal: find explicit construction with above parameters seed length d = O(log n) + O(log(1/ε)) output length m = 0.99k

Parameters for Strong Extractors

- Non-constructively, ∀ n, k, ε, ∃ (k,ε)-strong seeded extractor with seed length d = log (n-k) + 2 log(1/ε) + O(1) output length m = k + e' 2 log(1/ε) O(1)
 - use logarithmic-length seed
 - extract almost all min-entropy out
 - for any small entropy rate
 - However, not an explicit construction
- Proof: use probability method. See Salil's book.
- Research goal: find explicit construction with above parameters seed length d = O(log n) + O(log(1/ε)) output length m = 0.99k
- Strong property is usually important in crypto

An Explicit Strong Extractor ----Leftover Hash Lemma

Leftover Hash Lemma

Thm. ∀ n, k, ε, ∃ efficient (k,ε)-strong seeded extractor with seed length d = n

output length m = k - $2 \log(1/\epsilon)$

- use linear-length seed
- extract almost all min-entropy out
- for any small entropy rate
- explicit construction
- Extremely useful in cryptography!

Universal Hash Functions

• Let $\mathcal{H} = \{ h: \{0,1\}^n \rightarrow \{0,1\}^m \}$ be a family of hash functions.

– Let H denote a random hash function from ${\mathcal H}$

• **Def.** We say \mathcal{H} is *universal* if for every $x \neq x' \in \{0,1\}^n$,

 $\Pr[H(x) = H(x')] \le 2^{-m}$

- i.e., prob. of hash collision on x and x' is small for every $x \neq x'$

- Example: $\mathcal{H} = \{ h_s : s \in GF(2^n) \}$, where $h_s(x) = \text{first } m \text{ bits of } s \cdot x$
 - Note that $h_s(x) = h_s(x')$ implies $s \cdot (x-x') = 0^m z$ for some $z \in \{0,1\}^{n-m}$.
 - Each z determines $s = (0^m z)/(x-x')$, so at most 2^{n-m} out of $2^n h_s$.
 - So Pr[H(x) = H(x')] $\leq 2^{n-m}/2^n = 2^{-m}$.

Extractor Construction

• Let $\mathcal{H} = \{ h: \{0,1\}^n \rightarrow \{0,1\}^m \}$ be a family of hash functions.

– Let ${\sf H}$ denote a random hash function from ${\mathcal H}$

• **Def.** We say \mathcal{H} is universal if for every $x \neq x' \in \{0,1\}^n$,

 $\Pr[H(x) = H(x')] \le 2^{-m}$

- i.e., prob. of hash collision on x and x' is small for every $x \neq x'$

- Define Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ by Ext(x, h) = h(x)
 - i.e., use seed h to select a hash function to hash x
 - need seed length d = n

Why Does It Work?

- Define Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ by Ext(x, h) = h(x), where h is from universal hash family $\mathcal{H} = \{h: \{0,1\}^n \rightarrow \{0,1\}^m\}$ $Pr[H(x) = H(x')] \leq 2^{-m}$ for every $x \neq x' \in \{0,1\}^n$
- Want to show $(Ext(X; H), H) \approx_{\varepsilon} (U_m, H)$, or $(H, H(X)) \approx_{\varepsilon} (H, U_m)$
- Analyze via "collision probability"
 - Step 1. Z has small "collision probability" \Rightarrow Z is close to uniform
 - Step 2. Show (H, H(X)) has small "collision probability"

Collision Probability

- Def. Let Z be a rand. var. over [M]. Define *collision probability* of Z as CP(Z)^{def} Pr[Z = Z'], where Z' is an independent copy of Z.
 E.g., for uniform distribution U_[M], CP(U_[M]) = 1/M
- View Z as vector v ∈ ℝ^M, i.e., v_i = Pr[Z = i], then CP(Z) is the square of L2-norm of v.

- CP(Z) = Pr[Z = Z'] = $\sum_i Pr[Z = Z' = i] = \sum_i v_i^2 = ||v||_2^2$

- Intuition: uniform distribution minimize collision probability. If $CP(Z) \approx CP(U_{[M]})$, then Z is close to $U_{[M]}$
- Lemma. $CP(Z) \le (1+\varepsilon)/M \Longrightarrow \Delta(Z, U_{[M]}) \le \sqrt{\varepsilon}/2$

Small CP \Rightarrow Close to Uniform

Lemma. $CP(Z) \le (1+\varepsilon)/M \Longrightarrow \Delta(Z, U_{[M]}) \le \sqrt{\varepsilon}/2$ **Proof.** Define $w \in \mathbb{R}^M$ by $w_i = (v_i - 1/M)$.

- Note $\Delta(Z, U_{[M]}) = \frac{1}{2} \cdot ||w||_1$
- Let's compute $||w||_2^2 = \sum_i (v_i 1/M)^2$ = $\sum_i v_i^2 - \sum_i (2v_i/M) + \sum_i (1/M)^2$ = CP(Z) - 1/M
- Thus, $||w||_2^2 \le \varepsilon/M$, or $||w||_2 \le \sqrt{\varepsilon/M}$
- By relation between L1 and L2-norm $\|w\|_1 \le \sqrt{M} \cdot \|w\|_2 \le \sqrt{\epsilon}$
- So $\Delta(Z, U_{[M]}) \leq \sqrt{\varepsilon}/2$

CP(H, H(X)) is Small

Lemma. $CP(H,H(X)) \le (1/D) \cdot ((1/M) + (1/K))$

- Notation: D = 2^d, M = 2^m, K = 2^k
- **Proof.** CP(H,H(X)) = Pr[(H,H(X)) = (H', H'(X'))]

= $Pr[H = H'] \cdot Pr[H(X) = H(X')|H = H']$

= $(1/D) \cdot (Pr[X=X'] \cdot Pr[H(X) = H(X') | H = H' \land X=X'] +$

 $\Pr[X \neq X'] \cdot \Pr[H(X) = H(X') | H = H' \land X \neq X'])$

 $\leq (1/D) \cdot (CP(X) + (1/M))$

• $CP(X) = \sum_{x} Pr[X = x]^2 \le (\max_{x} Pr[X = x]) (\sum_{x} Pr[X = x]) \le 1/K$

Put Things Together

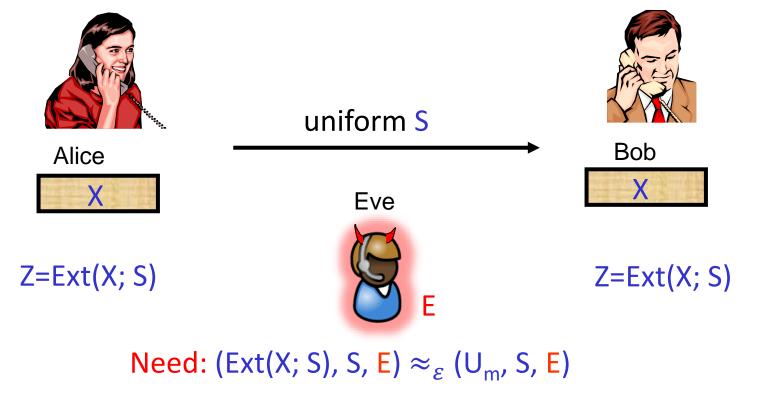
- Lemma. $CP(Z) \le (1+\varepsilon)/M \Longrightarrow \Delta(Z, U_{[M]}) \le \sqrt{\varepsilon}/2$
- Lemma. $CP(H,H(X)) \le (1/D) \cdot ((1/M) + (1/K))$
- Recall we set $m = k 2 \log(1/\epsilon)$, so $(1/K) = (\epsilon^2/M)$
- So $\Delta((H,H(X)), (H,U_m)) \le \varepsilon/2$

Thm. \forall n, k, ε , \exists efficient (k, ε)-strong seeded extractor with seed length d = n output length m = k - 2 log(1/ ε)

Average-case Extractors

Privacy Amplification

- Alice & Bob share secret weak random source X
 - Since Eve may learn some leakage information E about X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel

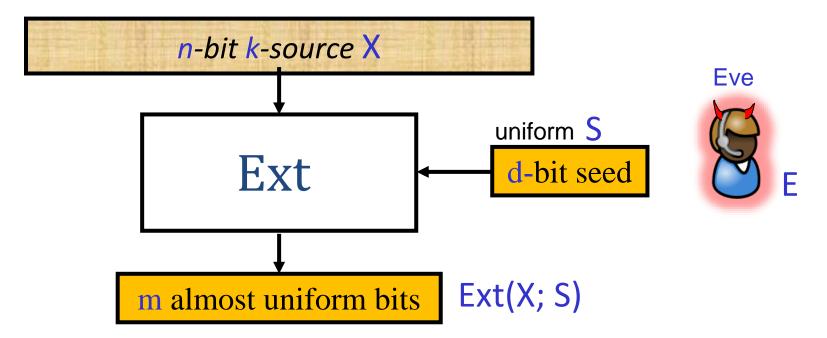


Conditional Min-Entropy

- How to measure min-entropy of X given side information E?
- Guessing Probability: P_{guess}(X|E)
 P_{guess}(X|E) ^{def} max Pr[guess X correctly given E]
- Conditional Min-Entropy: $H_{min}(X | E) \stackrel{\text{def}}{=} \log 1/P_{guess}(X | E)$
- Sanity check: $P_{guess}(X) = max_x Pr[X=x]$, so $H_{min}(X) = log 1/P_{guess}(X)$
- In general: $P_{guess}(X | E) = E_{e \leftarrow E}[\max_{x} Pr[X=x | E=e]]$
- Conditional min-entropy \approx unpredictability of the source given E

Average-Case Strong Extractors

• Extract conditional min-entropy from X given E

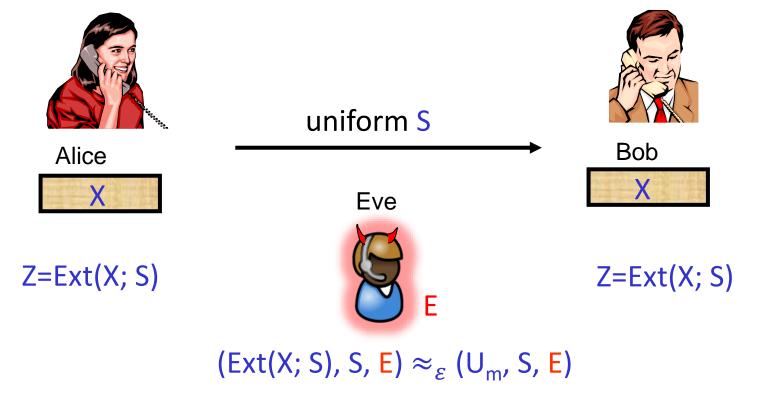


Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -average-case strong extractor if $\forall (X, E)$ with $H_{min}(X | E) \ge k$,

 $(Ext(X; S), S, E) \approx_{\varepsilon} (U_m, S, E)$

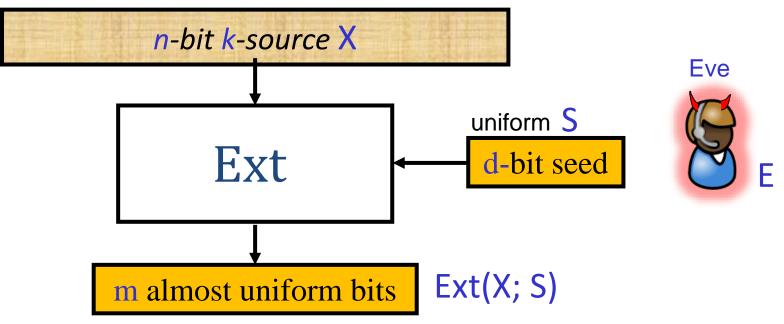
Privacy Amplification

- Alice & Bob share secret weak random source X
 - Since Eve may learn some leakage information E about X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel



Interpretation

- Conditional min-entropy ≈ unpredictability
- Statistical distance ≈ distinguishing advantage



- Extractor: distill unpredictability to indistinguishability
 - Can't predict source \Rightarrow can't distinguish output from uniform

Every Extractor is Average-Case Ext.

Thm. If Ext: $\{0,1\}^n \ge \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -strong extractor, then Ext is $(k+\log(1/\varepsilon), 2\varepsilon)$ -average-case strong extractor.

Lemma. If in (X, E), X has conditional min-entropy k conditioned on E, then w.p. $1-\varepsilon$ over $e \leftarrow E$, X|_{E=e} is a (k-log(1/ ε))-source.

Lemma \Rightarrow Thm:

- Ext works for good $X|_{E=e}$ with error ε
- Ext may fail on bad $X|_{E=e}$ but $X|_{E=e}$ bad w.p. at most ε
- \Rightarrow Ext works for (X, E) with error $\leq 2\varepsilon$

Lemma. If in (X, E), X has conditional min-entropy k conditioned on E, then w.p. $1-\varepsilon$ over $e \leftarrow E$, X |_{E=e} is a (k-log(1/ ε))-source.

Proof. Suppose not, i.e., w.p. > ε over $e \leftarrow E$, $H_{min}(X|_{E=e}) \le k - \log(1/\varepsilon)$ $\Rightarrow P_{guess}(X|_{E=e}) \ge 2^{k}/\varepsilon$

 $\Rightarrow \mathsf{P}_{\mathsf{guess}}(\mathsf{X} \,|\, \mathsf{E}) > \varepsilon \cdot 2^{\mathsf{k}} / \varepsilon > 2^{\mathsf{k}}$

 \Rightarrow H_{min}(X|E) < k, a contradiction.

In Fact, Can Do Better!

Leftover hash lemma:

Thm. \forall n, k, ε , \exists efficient (k, ε)-average-case strong extractor with seed length d = n output length m = k - 2 log(1/ ε)

- Use "conditional collision probability" in analogous way

In general:

Thm. Any (k,ε) -strong extractor is a $(k,3\varepsilon)$ -average-case strong extractor

Summary

- Conditional min-entropy ≈ unpredictability
- Statistical distance ≈ distinguishing advantage
- Extractor: distill unpredictability to indistinguishability
 - Oil extraction analogy
 - Features: strong, average-case, "quantum-proof", "non-malleable"

Non-constructively, ∀ n, k, ε, ∃ (k,ε)-strong extractor with seed length d = log (n-k) + 2 log(1/ε) + O(1) output length m = k - 2 log(1/ε) - O(1)

Summary

Leftover hash lemma: ∀ n, k, ε, ∃ explicit (k,ε)-extractor with seed length d = n

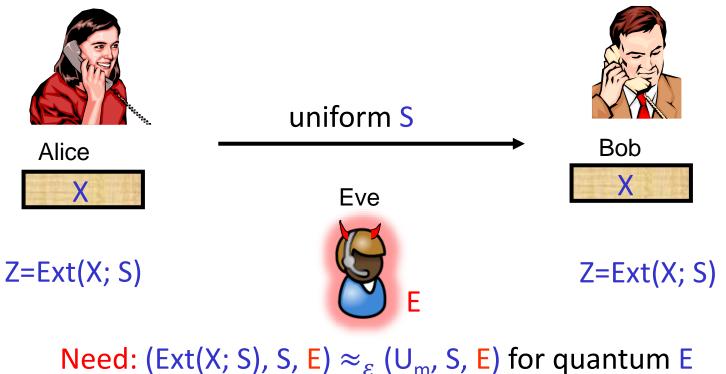
output length m = k - $2 \log(1/\epsilon)$

- Collision prob.: useful way to bounds distance to uniform
- Best-known explicit construction seed length d = O(log n) + O(log(1/ε)) output length m = 0.99k

Quantum-Proof Extractors

Privacy Amplification

- Alice & Bob share secret weak random source X
- Goal: extract uniform key Z against eavesdropper Eve using public authenticated channel
- What if the side information **E** is quantum?



How to Think about Quantum?

- Some physical resource generalizes classical world and is sometime more powerful
 - Quantum information: generalize classical information and sometimes more useful
 - Quantum computation: generalize classical computation and sometimes much more powerful! (e.g., Shor's algorithm)
- Randomness extraction in presence of quantum side information
 - Harder task since Eve holds more useful information
 - Operational definition generalizes

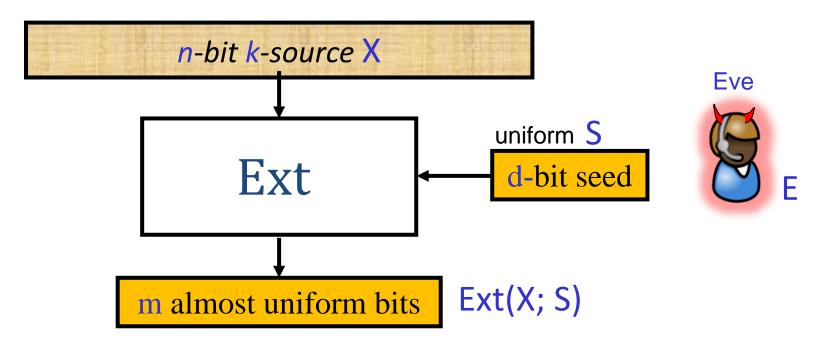
Operational Definitions Generalize

- Entropy measure: conditional min-entropy
 - Cond. Min-entropy: $H_{min}(X|E) = \log 1/P_{guess}(X|E)$, where
 - Guessing Probability:

 $P_{guess}(X | E) \stackrel{\text{def}}{=} max \Pr[guess X correctly given E]$

- Min-entropy \approx unpredictability
- Distance measure: trace distance
 - Trace distance \approx max distinguishing advantage
- Extractor: distill unpredictability to indistinguishability
 - Can't guess source \Rightarrow can't distinguish output from uniform
 - (Ext(X; S), S, E) \approx_{ε} (U_m, S, E) for quantum E

Quantum-Proof Strong Extractors



Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is (k,ε) -quantum-proof strong extractor if $\forall (X, E)$ with $H_{min}(X | E) \ge k$, $(Ext(X; S), S, E) \approx_{\varepsilon} (U_m, S, E)$ for quantum E

What Remains True in Quantum?

- Conditional min-entropy ≈ unpredictability
- Statistical distance ≈ distinguishing advantage

- Extractor: distill unpredictability to indistinguishability
 - Oil extraction analogy
- Non-constructively, ∀ n, k, ε, ∃ (k,ε)-strong extractor with seed length d = log (n-k) + 2 log(1/ε) + O(1) output length m = k 2 log(1/ε) O(1)

What Remains True in Quantum?

Leftover hash lemma: ∀ n, k, ε, ∃ explicit (k,ε)-extractor with seed length d = n output length m = k - 2 log(1/ε)

- Collision prob.: useful way to bounds distance to uniform
- Best-known explicit construction seed length d = O(log n) + O(log(1/ε)) output length m = 0.99k

