
Using Neighborhood Preserving Projections for

Comparing Protein Structures

Sourangshu Bhattacharya Chiranjib Bhattacharyya

IISC-CSA-TR-2004-14
http://archive.csa.iisc.ernet.in/TR/2004/14/

Computer Science and Automation
Indian Institute of Science, India

October 2004

Using Neighborhood Preserving Projections for Comparing Protein
Structures

Sourangshu Bhattacharya and Chiranjib Bhattacharyya
Dept. of Computer Science & Automation,

Indian Institute of Science,
Bangalore -560012, India.

{ sourangshu, chiru } @ csa.iisc.ernet.in

Abstract

This paper reports a new protein structure comparison algorithm, Matchprot, which is based on com-
parison of optimal neighborhood preserving 1-dimensional projection of the structure. A novel similarity
measure based on the above idea is suggested and is used to obtain a set of equivalences between the
residues of the two proteins by a local alignment based formulation. The algorithm makes connection
with spectral graph theory, which in turn suggests a interesting link between weighted graph matching
and protein structure comparison. Matchprot runs in O(n3) time when two proteins of n residues are
compared. Empirical testing shows that the method identifies the correct alignment when the protein
pairs are structurally similar. Moreover, it discovers the complete structural alignment even when the
protein sequences are related by circular permutations, which are not detected by many standard protein
structure comparison programs.

Keywords: Protein structure comparison, Circular Permutations, Distance matrices

1 Introduction

Structures of proteins are more descriptive of their functions and evolutionary history than sequences. Struc-
tural similarity can often shed light on a common function or the same origin of different proteins. Compar-
ing proteins is thus an important task for structural biologists. The rapid growth of in the no. of entries in the
protein structures databases e.g. PDB[1], calls for development of fast and accurate structure comparison
methods.

The problem of comparing two protein structures is often posed as that of finding an optimal structural
alignment. The structural alignment problem can be understood as that of identifying maximal substructures
from each structure, which have a high structural similarity. A protein structure is often described by the
position of one atom of a residue, typically but not neccessarily the Cα atom. There are two approaches
to determine structural similarity. The first approach determines a rigid transformation (i.e. rotation and
translation) that optimally superimposes the two structures one against the other. After superposition, the
Euclidean distance between the matched atoms of the two proteins is taken as a measure of similarity. The
alternative approach is based on comparing distance matrices. The distance matrix of a protein is consisting
of pairwise euclidean distances of all pairs of residues in a protein. Havel et. al.[2] showed that one can
reconstruct the structure from the distance matrix, but with an ambiguity of the chirality. This implies that
there is enough information about protein structure in the distance matrices and it can serve as a basis for
protein structure comparison. This approach sidesteps the computation of the expensive transformation step
in the former approach. However both the approaches gives rise to extremely hard computational problems.
The work reported in this paper uses distance matrices

1

A wide variety of programs have been reported in literature for comparing protein structures following
both the approaches. SSAP[3, 4], DALI [5, 6], and CE [7] use distance matrices, while LOCK [8, 9] uses
the transformation based approach. These algorithms solve the structural alignment problem using very
clever heuristics. DALI and LOCK use iterative algorithms for solving the optimization problem. ever, due
to the complexity of the function to be optimized, no convergence proofs or bounds on conrevergence rates
can be given. This is unsatisfactory as protein structure comparison programs are basic and are to be used
repetitively in many experiments.

Most of the approaches mentioned here use sequence order information heavily and hence will not be
able to detect non-topological similarity. A simple kind of non-topological similarity occuring in nature
is the case of circularly permuted proteins. A pair of proteins is said to be circularly permuted if the N-
terminal of one protein has significant sequence similarity with C-terminal of the other and vice versa[10].
Many naturally occurring pairs of circularly permuted proteins have been reported [11, 10]. However, SSAP
and CE can align 2 residues only if they appear on the same side of the already aligned residues. They will
detect a portion of the match when there is a circular permutation between the two proteins. A robust protein
structure comparison algorithm should be able to detect such permutations.

In this paper we propose a heuristic algorithm, Matchprot, for structural alignment. We propose to
compare optimal neighborhood preserving 1- dimensional projections of the protein structures instead of
the actual structures. We develop a novel similarity measure based on the above view, that gives a similarity
value to 2 residues, one from each structure. It also makes an important connection between the protein
structure comparison problem and weighted graph matching techniques. Finally, we have proposed a new
method for retrieving optimal equivalences between residues of 2 structures based on the above similarity
measure and the information given by the protein sequences. The proposed algorithm is fast and has a worst
case running time cubic in the size of the proteins. Experimental results show that our algorithm performs
well on diverse types of protein structures as compared to other standard programs. Though the method for
retrieving the equivalences between residues of 2 proteins uses sequence information, it can retrieve them
correctly even in case of a permutation in the sequences. This is further validated by experimental results.

The paper is organized as follows In section 3 the matchprot algorithm is described. Experimental results
are presented in section 4. We conclude with some directions for further research.

2 Preliminaries

In this paper we view proteins as a chain of amino acid residues in 3-dim space. Denote protein A, having
n residues, by A = {x1,x2, . . . ,xn}, where each xi ∈ R

3 is the coordinate of the ith Cα atom. The distance
matrix of protein A is defined as the n× n matrix with elements dA

i j = ‖xi− x j‖ where ‖x‖ denotes the
Euclidean norm. Consider two proteins A = {x1,x2, . . . ,xm} and B = {y1,y2, . . . ,yn} having m and n residues
respectively. The set φ = {(xil ,y jl)|xil ∈ A,y jl ∈ B,1≤ l ≤ K, il 6= ik& jl 6= jk if l 6= k} is called a structural
alignment of length K. In the alignment the residue il of protein A is said to be matched or equivalenced
with residue jl of protein B.

2

3 The Algorithm: Matchprot

3.1 DALI score function

To derive the intuitions for our algorithm it is instructive to understand what alignments DALI[5, 6] might
prefer. DALI defines the score of an alignment φ as follows

SA,B(φ) = ∑K
i=1 ∑K

j=1 φ(i, j)

φ(i, j) =

(

0.2− |d
A
i j−dB

i j|
dAB

i j

)

exp

(

−
(

dAB
i j

20

)2
)

(1)

where dAB
i j = (dA

i j +dB
i j)/2. DALI searches the alignment space for that φ which maximises S. This problem

is extremely difficult and is solved with several heuristics.
There are two properties that make terms in the DALI scoring function (1 contribute high values to the

total score. The first point to be noted is that residues which are spatially far do not contribute much to the
DALI score. See that whenever residues i and residue j are far apart dAB

i j is high, driving the exponential
weighting term to 0 and hence spatially far residues have no impact on the score function. DALI thus
considers only those residues which are spatially close, hence effectively defining a neighbourhood. The
second observation is that DALI will try to match those residues which have a similar neighbourhood. This
is because the DALI score (1) gives a higher score to that φ, whose residues are such that |dA

i j − dB
i j| is

low. Thus DALI tries to pick up alignments whose residues have similar spatial neighbourhoods. Searching
for such alignments in the space of all possible alignments is an extremely difficult problem. The key for
efficiently locating such alignments lies in characterizing the neighbourhood information. In the next section
we discuss one such characterization.

3.2 Optimal neighbourhood preserving projection

A protein is essentially a collection of points in R
3. We propose to project these points on the real line such

that neighbourhood information is preserved. It is hoped that these projected points serve as characterization
of the neighbourhood and should be comaparable across structures. In this section we discuss a formulation
to optimally compute such projections.

Let two points i and j be spatially close in a given protein structure then their projections should also be
close. To parametrize the notion of closeness we define the nearness matrix of a protein A with n residues
by the following nonlinear decreasing function

Ai j = e
−di j

α , α > 0 (2)

of the distance between ith and jth residues. The parameter α governs the rate of decrease of the nearness
value.

Let f = [f1, . . . , fn]
T be the vector of projections of a protein having n residues. We require that whenever

Ai j is high, | fi− f j| should be low. This can be directly translated as the following objective function

min
f∈Rn

n

∑
i=1

n

∑
j=1

Ai j(fi− f j)
2 (3)

An obvious solution to the above minimization problem is f = ce, where c is a scalar and e is a vector of
all 1s. This is not very useful because it results in all residues being projected on the same point on the real

3

line. This can be avoided by imposing the constraint that the solution should be orthogonal to ce. This is
implemented by requiring that f should satisfy

f T e =
n

∑
i=1

fi = 0 (4)

Suppose f ∗ solves formulation (3) with the above constraint then c f ∗ also solve the same problem where c
is any scalar. To deal with this extra degree of freedom one more scaling constraint is introduced, leading to
the following formulation

min f∈Rn ∑n
i=1 ∑n

j=1 Ai j(fi− f j)
2

Subject to
∑n

i=1 fi = 0
∑n

i=1 f 2
i = k

(5)

For a given k > 0 this problem can be efficiently solved by quadratic programming. The optimal solution
of formulation (5) be f ∗ and is the optimal neighbourhood preserving projection of a protein with nearness
matrix A . Given two proteins, A and B, consisting of m and n residues, it is desired that the respective
projections f A and f B be comaparable. As argued before if f ∗ is the optimal projection then one can also
consider c f ∗ as the optimal projection as it will solve (3) with the constraint (4). Thus instead of comparing
f A and f B one may want to compare f A and c f B, where c is some constant. To fix the constant c one
can impose various criterion. One could have required that the range of values for both the proteins are

same which gives c = max f A−min f A

max f B−min f B . Alternatively we define 1
n2 ∑n

i=1 ∑n
j=1(fi− f j)

2 as a measure of average
granularity of the structure. We propose to compute c such that the two structures have the same granularity
and hence the projections are comparable. After computing the projections of two protein structures, f A and
f B consisting of m and n residues respectively, we choose c to be

1
m2

m

∑
i=1

m

∑
j=1

(f A
i − f A

j)2 = c2 1
n2

n

∑
i=1

n

∑
j=1

(f B
i − f B

j)2 (6)

The vectors satisfy the constraints of (5) and we obtain c2 = n
m . Equivalently one can fix k as the number

of residues in formulation (5) i.e. set k = n, and obtain c = 1. We propose to compute the projection of a
protein structure having n residues with nearness matrix A by solving the following

min f∈Rn ∑n
i=1 ∑n

j=1 Ai j(fi− f j)
2

Subject to
∑n

i=1 fi = 0
∑n

i=1 f 2
i = n

(7)

problem which can be solved in O(n3) time. This formulation has an extremely important relation with
algebraic graph theory. We digress to discuss this issue in the next section.

3.3 Protein Structures as Graphs

We start by viewing protein structures as weighted graphs, with residues as the vertices having the nearness
matrix A as the adjacency matrix. For sake of brevity we will call such graphs as nearness graphs.

Following Mohar [12, 13], we define the Laplacian of the nearness graph as L = D−A , where D is a
diagonal matrix defined as Di j = ∑m

k=1 Aik if i = j, 0 otherwise. By straightforward algebra one obtains

f T L f =
m

∑
i=1

m

∑
j=1

Ai j(fi− f j)
2

4

Using the variational characterization of eigenvalues one can show that solving (7) is equivalent to finding
the eigenvector corresponding to the smallest non-zero eigenvalue of L[13]. This eigenvector is extremely
useful in various disciplines, for a review of its applications see [12].

It is clear that, a good match between the nearness graphs of 2 protein structures will give a good
structural match between the corresponding structures and vice versa. Also, it follows from the continuity
of the Euclidean distance function and the nearness function, that small perturbations in the positions of the
Cα atoms of residues, induce small errors in the weights of edges connected in the nodes corresponding to the
residue. Thus, even in presence of small errors, matching nearness graphs will also match the corresponding
structures. This observation suggests that solution to general weighted graph matching problems e.g. [14,
15] maybe of interest for protein structure comparison. This opens a very interesting area of study which
will be taken up elsewhere.

3.4 A measure of similarity

The optimal one dimensional projections by solving (7) can be used to derive a similarity function between
various residues of different structures. In a later section it would be extremely useful in retrieving the
correspondences.

The similarity between 2 points, one from each structure, can be defined as a decreasing function of the
difference between the corresponding projections. If f A and f B are the optimal projections corresponding to
structures A and B, similarity between residue i belonging to structure A and residue j belonging to structure
B is defined as:

s(i, j) = T −| f A
i − f B

j | (8)

This measure essentially tries to characterize the similarity between the neighbourhoods of residue i and
residue j. The most important feature of the above similarity measure is that it can score 2 residues one
from each structure based on purely structural properties (no information about the protein sequence or
secondary structural elements have been used). The DALI [5] and CE [7] scoring functions can give a
measure of similarity, when four residues, 2 from each structure are supplied. With such a scoring function,
a typical strategy of retrieving correspondences is to generate one and test for high score. DALI generates
random equivalences and tries to add them to the existing list, while CE tries to extend a seed alignment using
heuristic cutoffs. Generally, such methods tend to be slow due to the exponential number of possibilities
that are searched.

SSAP [3] proposes a scoring function of the type developed here by using the global alignment scores
with the residues in question constrained to be aligned to each other. However, this can generate differ-
ent alignments for each residue pair, thereby making the scores incomparable. LOCK [8] uses secondary
structure information to construct vectors and derives a scoring measure out of them.

A problem with the scoring function is that the projection values of vertices are evaluated with respect
to vertices in a neighborhood of the original vertex in the graph. Thus, inclusion of too many unmatched
vertices (which do not have any corresponding ones in the other graphs) may hamper the projection value of
the current vertex beyond recognition. Thus, significant difference in size of the structures can have negative
impact on the similarity function.

3.5 Retrieval of Correspondences

Various strategies can be used for retrieving equivalences based on the similarity function derived in 8.
For example, one can use DALI type heuristics to find an alignment φ which maximizes the score S(φ) =

∑k
l=1 s(il, jl), where φ = {(il, jl)|1 ≤ l ≤ k}. However, the similarity function is nondiscriminating, as two

different residues can have same one dimensional projection values. It is worthwhile to consider the se-
quence information along with the similarity function as a basis for determining equivalences.

5

One can compute a structural alignment between two protein structures by aligning the sequences of
the two proteins using s(i, j) as the score function 8. This can be posed as a global alignment problem [16]
which can be efficiently solved. The problem with the above approach is the resultant alignment will be
heavily dependent on the sequence order and hence will not be able to find equivalences if the sequence of
one protein is permuted as compared to the other.

We propose to find subsequences, with high structural similarity. The problem can be posed as that
of finding two subsequences which has the maximum similarity when the score is given by 8, this is also
known as the Local Alignment problem. This can be efficiently solved using dymamic programming [17].
We will call such sequences as High Scoring Fragment Pairs(HSFPs). It can be noted that DALI and CE
also build the alignment from protein fragments rather than residues (hexapeptides in DALI and fragments
of length 8 in CE). In our case, the fragment are of variable size giving more flexibility to the algorithm.

The algorithm operates in 2 stages:
(1) Calculation of the local alignment matrix with similarity score given by equation 4.
(2) Iterative determination of HSFPs and their elimination from the local alignment matrix.
The local alignment matrix L, is computed in the same way as by Smith and Waterman, except that we use
the structure based similarity measure (Eqn. 8. Thus, Li, j is calculated, for 0≤ i≤ m, 0≤ j ≤ n, as:

Li, j =























0 , if i = 0 or j = 0

max















Li−1, j−1 + s(i, j)
Li−1, j−g
Li, j−1−g
0















, otherwise
(9)

Next the highest scoring entry (corresponding to highest scoring fragment) is detected and traced back
to get the highest scoring fragment. The indices corresponding to the residues participating in the current
alignment are eliminated from the matrix and the above step is repeated to get the next highest scoring
fragment. This is stopped when there are no more positive scoring fragments. The steps are given in
Algorithm 1.

Finally, the fragment pairs found above are concatenated to get the whole alignment. To get the equiv-
alences, all the residues aligned to gaps are discarded, and corresponding residue pairs are taken as equiva-
lenced residues. The structural alignment is the set of equivalenced residue pairs obtained above.

Algorithm 1 Retrieving correspondences
1: Alignment← φ.
2: Compute highest = maxi, j Li, j.
3: Compute (p1, p2) = argmaxi, j Li, j.
4: while highest > 0 do
5: Alignment ← Alignment ∪ traceback(p1, p2) {traceback returns the alignment obtained by

tracing back from it’s argument}
6: Mark the rows and columns of L corresponding to the residues returned in the current

alignment done.
7: Compute highest = maxi, j Li, j such that i or j is not marked done.
8: Compute (p1, p2) = argmaxi, j Li, j such that i or j is not marked done.
9: end while

Computation of the (m+1)× (n+1) entries of the local alignment matrix takes O(mn) time. Detection
of alignment fragments is done by searching through the (m+1)×(n+1) matrix for at most min(m,n) times,
which takes O(min(m2n,mn2) time. Thus the overall time complexity of the algorithm is O(max(m3,n3)).
At any point of time, the program stores a constant number of m×m, n× n and m× n matrices. Thus, it
consumes O(max(m2,n2)) memory space.

6

3.6 Superposition, RMSD and Statistical Significance

The root mean square deviation (RMSD) between 2 aligned and superimposed structures is a measure of
closeness between the corresponding residues in 3D space. Let X1,X2, . . . ,Xl and Y1,Y2, . . . ,Yl be the position

vectors of the transformed and aligned residues. RMSD is calculated as RMSD =
√

1
l ∑l

i=1 ‖Xi−Yi‖2 From
the equivalences, we can compute the rigid transformation of one structure into the other that minimizes the
RMSD between the corresponding residues, using the method by Horn [18]. The optimal transformation
can then be applied to the appropriate structure to compute the superposition.

Though, the RMSD is an indicator of the closeness of a given structural match between two structures, it
is not a good measure for the significance of a match. For this reason, we compute the statistical significance
of the match generated. We use the DALI Z-score [19] as a measure of the same. The DALI score is
computed using Eqn. 1. The mean score m(l) as a function of size l is calculated as:
m(l) = 7.95+0.71l−2.59×10−4l2−1.92×10−6l3

where l ≤ 400 and l =
√

lAlB. In case of l > 400, a linear extrapolation above m(400) is used.
The Z-score is calculated as Z(A,B) = 2(S(A,B)−m(l))

m(l)

4 Results and Discussion

In order to verify the accuracy and effectiveness of the algorithm developed above, we implemented the
algorithm in Java on JDK 1.4.0 running on a Linux machine. JMAT [20], a free linear algebra library was
used for the matrix computations. The protein structures were obtained from the PDB [1]. All references to
protein classes, folds, and families are taken from SCOP 1.65 [21]. The images of protein structures were
generated using Rasmol.

The objectives of the experiments were to: (a) benchmark Matchprot with other softwares, (b) study the
effect of parameter variation and (c) to detect circularly permuted proteins. To measure the quality of the
alignments root mean square deviation (RMSD) was used and statistical significance was evaluated with the
DALI Z-score.

4.1 Study and Comparison of Alignments Generated by Matchprot

In order to check the correctness of the alignments generated by Matchprot, we experimented with more
than 30 protein structure pairs. The protein pairs were chosen to ensure variety in terms of the structures and
the degree of similarity in the structures. Also, we compared the alignments generated by Matchprot with
those generated by standard protein structure comparison programs e.g. CE [7], LOCK [8] and Flexprot
[22].

Table 1: Comparison of results for pairwise protein structure comparison from different programs
Protein1 Protein2 C.E. Flexprot LOCK Matchprot Z - score
(length) (length) RMSD (N) RMSD (N) RMSD (N) RMSD (N) Matchprot

1DWT:A (152) 2MM1 (153) 0.7 (152) 0.749 (152) 0.656 (147) 0.749 (152) 23.901
5CNA:A (237) 2PEL:A (232) 1.2 (115) 1.987 (119) 1.068 (160) 1.911 (223) 23.884
2ACT (218) 1PPN (212) 1.0 (211) 2.075 (212) 0.741 (157) 0.877 (210) 29.026
1HTI:A (248) 1TIM:A (247) 0.9 (246) 1.023 (247) 0.844 (235) 1.023 (247) 28.072
3SDH:A (146) 1COL:A (204) 3.9 (124) 2.337 (138) 2.951 (89) 8.868 (116) -8.043

Table 1 shows RMSD and no. of aligned residues for pairwise comparison of 5 protein pairs as reported
by 4 protein structure comparison programs. Also, the DALI Z-score calculated on the alignment generated
by Matchprot is reported. The first 4 protein pairs are taken from 4 different SCOP classes and chosen to be

7

very similar to each other, structurally. Lock generates a very low RMSD due to the core superposition step
which tries to detect a core of residues explicitly minimizing RMSD. The other programs give similar values
for RMSD and no. of aligned residues for 1DWT:A-2MM1, 2ACT-1PPN and 1HTI:A-1TIM:A. Also, note
that LOCK reports a lower no. of aligned residues than the other programs except for 5CNA:A-2PEL:A. The
difference in the alignments in case of 5CNA:A-2PEL:A is due to presence of a circular permutation in the
two sequences. While CE and Flexprot detect only about half of the equivalences, LOCK detects some more
equivalences due to atomic superposition carried out by it. Matchprot detects all the equivalences which
involves nearly the whole structure. The low RMSD and high Z-score further confirms a good alignment.

Figures 1, 2, 3 and 4 show the alignment graphs of structural alignments generated by LOCK, CE, Flex-
prot and Matchprot for the first 4 protein pairs. As a structure alignment is viewed as a set of equivalences
the order of which do not matter, we chose the index of an equivalence after sorting the equivalences on the
basis residue numbers of one of the proteins. In an alignment graph, the equivalence index is plotted on the
X-axis while the residue numbers of the participating residues are plotted on the Y axis. I can be seen that
the equivalences retrieved are almost same in all the cases except 5CNA:A-2PEL:A. The alignment graph
for 5CNA:A-2PEL:A is explained in section 4.3. Figure 5 shows the superpositions generated by Matchprot
for the first four protein pairs.

3SDH:A and 1COL:A have low structural similarity (as shown by RMSDs given by other protein struc-
ture comparison programs). Moreover 1COL:A has about 25% more residues than 3SDH:A. Thus, Match-
prot is unable to detect the optimal alignment in this case as detected by the other programs. However, as
figure 10(b) suggests, it still detects a reasonably close alignment.

4.1.1 Randomly Selected Protein Pairs from 4 SCOP Families

We also performed all-pair comparison on randomly chosen protein pairs from 4 different SCOP families, in
order to ensure a more systematic experimentation. Five proteins were chosen from the SCOP family A.1.1.1
(sunid 46459), seven were chosen from SCOP family B.1.1.1 (sunid 48727), six were chosen from SCOP
family C.1.1.1 (sunid 51352) and six were chosen from SCOP family D.1.1.2 (sunid 81307). So, a total 61
pairwise structure comparisons were made, each comparison being repeated for 1600 different parameter
values making a total of 97600 runs of the program. The results were compared with those obtained from
CE [7]. Percentage aligned is calculated with respect to maximum possible alignment length lm (which is
the minimum of lengths of the two sequences), as (la/lm)×100, la being the actual length of alignment.

Tables 2, 3, 4, and 5 show representative results from the experiments. The average difference in RMSD
values (in Å) given by Matchprot and CE are 1.04 for A.1.1.1, 0.29 for B.1.1.1, 0.07 for C.1.1.1 and 0.009
for D.1.1.2. The average difference in percentage of residues aligned in alignments given by Matchprot and
CE are 9.6 for A.1.1.1, 2.19 for B.1.1.1, 0.67 for C.1.1.1 and 0.25 for D.1.1.2.

The families were chosen from 4 different SCOP classes covering the breadth of the protein fold space,
and structures were chosen randomly from each SCOP family. Thus experimentally, it can be said that
Matchprot generates alignments very close to those generated by CE. The relatively high deviation in the
results in family A.1.1.1 are due to d1mbwa_, which is has high structural divergence from the rest of the
structures (RMSD 3.3, 3.5, 3.5 and 3.7 at % aligned 83, 86, 87 and 89 rpoduced by CE). So, Matchprot
can detect the structural similarity, in case a high (family-level) structural similarity exists between the
structures.

8

Table 2: Minimum RMSD obtained for proteins from SCOP family a.1.1.1
Protein 1 Protein 2 RMSD RMSD % Aligned % Aligned

Matchprot CE Matchprot CE
d1dlya_ d1dlwa_ 1.451 1.06 98.27 99.13
d1idra_ d1dlwa_ 1.174 0.99 99.13 99.13
d1idra_ d1dlya_ 2.024 1.20 94.21 95.04
d1mwba_ d1dlwa_ 5.467 3.33 94.82 86.20
d1mwba_ d1dlya_ 4.400 3.47 96.69 89.25
d1mwba_ d1idra_ 5.248 3.71 13.82 87.80
d1ngka_ d1dlwa_ 2.632 2.28 100.0 100.0
d1ngka_ d1dlya_ 3.409 2.30 96.69 95.86
d1ngka_ d1idra_ 3.245 2.21 91.33 92.06
d1ngka_ d1mwba_ 5.408 3.46 84.55 86.99

Table 3: Minimum RMSD obtained for proteins from SCOP family b.1.1.1
Protein 1 Protein 2 RMSD RMSD % Aligned % Aligned

Matchprot CE Matchprot CE
d12e8l1 d12e8h1 2.552 2.05 92.52 97.19
d15c8h1 d12e8h1 1.594 0.92 99.11 94.95
d15c8h1 d12e8l1 1.901 1.73 96.26 97.19
d1a0qh1 d12e8h1 1.153 0.94 100.0 99.00
d1a0qh1 d12e8l1 1.954 1.93 93.45 90.00
d1a0qh1 d15c8h1 1.004 0.78 98.18 99.00
d1a14h_ d12e8h1 1.005 1.13 98.19 98.33
d1a14h_ d12e8l1 2.632 1.96 95.32 94.39
d1a14h_ d15c8h1 1.499 1.30 98.19 94.95
d1a14h_ d1a0qh1 1.659 1.00 97.27 100.0
d1a2ya_ d12e8h1 2.437 2.02 95.32 98.13
d1a2ya_ d12e8l1 0.759 0.76 100.0 100.0
d1a2ya_ d15c8h1 1.686 1.60 96.26 98.13
d1a2ya_ d1a0qh1 1.864 1.80 93.4 90.00
d1a2ya_ d1a14h_ 2.544 2.17 95.32 98.13

9

Table 4: Minimum RMSD obtained for proteins from SCOP family c.1.1.1
Protein 1 Protein 2 RMSD RMSD % Aligned % Aligned

Matchprot CE Matchprot CE
d8timb_ d8tima_ 0.579 0.61 99.59 100.0
d1amk__ d8tima_ 1.251 1.23 98.38 98.78
d1amk__ d8timb_ 1.335 1.41 97.97 98.78
d1aw1a_ d8tima_ 1.390 1.43 96.76 98.78
d1aw1a_ d8timb_ 1.435 1.54 96.76 98.38
d1aw1a_ d1amk__ 1.289 1.19 98.0 98.00
d1aw2a_ d8tima_ 1.322 1.32 97.97 98.78
d1aw2a_ d8timb_ 1.273 1.22 97.97 98.38
d1aw2a_ d1amk__ 1.613 1.56 97.6 98.00
d1aw2a_ d1aw1a_ 0.810 0.95 99.21 100.0
d1tpe__ d8tima_ 1.088 1.03 98.78 98.78
d1tpe__ d8timb_ 1.012 0.96 98.78 98.78
d1tpe__ d1amk__ 0.922 1.05 99.19 100.0
d1tpe__ d1aw1a_ 1.639 1.54 97.18 98.39
d1tpe__ d1aw2a_ 1.406 1.29 97.99 98.39

Table 5: Minimum RMSD obtained for proteins from SCOP family d.1.1.2
Protein 1 Protein 2 RMSD RMSD % Aligned % Aligned

Matchprot CE Matchprot CE
d1b20a_ d1a2pa_ 0.299 0.30 100.0 100.0
d1baoa_ d1a2pa_ 0.198 0.20 100.0 100.0
d1baoa_ d1b20a_ 0.371 0.37 100.0 100.0
d1bnr__ d1a2pa_ 1.554 1.57 99.07 100.0
d1bnr__ d1b20a_ 1.582 1.59 99.08 100.0
d1bnr__ d1baoa_ 1.552 1.57 99.07 100.0
d1bsaa_ d1a2pa_ 0.156 0.16 100.0 100.0
d1bsaa_ d1b20a_ 0.296 0.30 100.0 100.0
d1bsaa_ d1baoa_ 0.194 0.19 100.0 100.0
d1bsaa_ d1bnr__ 1.557 1.57 99.06 100.0
d1goya_ d1a2pa_ 0.471 0.47 100.0 100.0
d1goya_ d1b20a_ 0.562 0.56 100.0 100.0
d1goya_ d1baoa_ 0.449 0.51 100.0 100.0
d1goya_ d1bnr__ 1.452 1.45 100.0 100.0
d1goya_ d1bsaa_ 0.497 0.50 100.0 100.0

4.2 Variation of RMSD with Parameters

In order to further ascertain the predictability of the program, we studied the variations in results with the
parameters of the program e.g. α, T and g. Data regarding the variation was extracted from the experiments
described in section 4.1.1.

α (equation 2) governs the decay of nearness function, thus governing the range of distances which
influence the structure graph heavily. An increase in α results in higher distances contributing significantly
to the nearness graph. This results in improvement of accuracy with increase in α, for low value of α. Figure
10(a) shows this trend in the average value rmsd.

T (equation 8) is the cutoff for difference in Fiedler vector values, above which, the respective vertices
are considered dissimilar. Thus, a higher value of T gives more tolerance to the match, thereby increasing

10

the RMSD. Also, it is observed that for very low values of T , the RMSD becomes high. This is due to
spurious matches which dominate the correct ones due to inherent noise in the data.

The gap penalty g (equation 9) doesn’t have a profound effect on the RMSD, except when it is to very
high values compared to T , the RMSD tends to increase. This is expected, as the program detects multiple
local alignments, which act as replacement for gapped ones.

Figures 6, 7, 8 and 9 show graphs depicting the variation of average RMSD with the T and g for various
values of α for protein from 4 different classes. The increase of RMSD with T is clearly seen in all the
graphs. However, for low values of α, high values of RMSD are observed for very low values of T due
to picking up of more noise. Thus, it is observed that the program gives results in accordance with our
expectations.

4.3 Detection of Circular Permutations

To check the capability of Matchprot in detecting circular permutations, we performed an all-pair compari-
son on a non-redundant database of 84 proteins taken from the SCOP fold “Concanavalin like lectins/glucanases”
(sunid 49898), which is believed to have many instances of circular permutations. The fold contains 592
domains. A set 84 proteins which do not share more than 90% sequence similarity over at least 90% of
the total length with any other protein in the set was prepared. Matchprot was used structurally align all
the protein pairs (3486 of them) over 256 different values of parameters making a total of 892416 pairwise
structure comparison. The experiment took average time of 0.176 s per pairwise comparison on an Intel
Pentium4 2.4 GHz workstation.

Table 6: 10 Significant circular permutations found in SCOP fold “Concanavalin A-like lectins/glucanases”
Protein 1 Protein 2 Naligned RMSD Z-score No. of fragments
1glh__ 1cpn__ 207 0.584 30.472 2
1glh__ 1ajoa_ 212 1.223 30.456 2
1gbg__ 1ajoa_ 212 1.272 30.006 2
1cpn__ 1ajoa_ 206 0.694 29.897 2
1gbg__ 1cpn__ 208 1.044 29.777 2
1qmo.1 1scs__ 229 1.299 28.782 2
1qmo.1 1dgla_ 229 1.262 28.672 2
1qmo.1 1h9wa_ 228 1.379 28.646 2
1ajoa_ 1ajka_ 210 2.411 27.363 2
1glh__ 1ajka_ 211 2.544 27.259 2

85 pairs of proteins showing significant (Z-score > 5) circular permutations were detected. The top 10
sorted on the Z-score are shown in Table 2. The Conserved Domains Database [24] shows that all of 1GLH,
1CPN, 1AJO, 1GBG and 1AJK, have the “Glycosyl hydrolases family 16” domain. The regions in sequence
that have the domain are: from 25 to 209 in 1GLH, 0 to 151 in 1CPN, 113 to 213 and 0 to 83 in 1AJO,
25 to 209 in 1GBG, and 0 to 126 and 156 to 213 in 1AJK. Thus, it is clear that all the 7 pairs of circular
permutation detected are correct. Also, all of 1QMO (chain A and E), 1SCS, 1DGL, and 1H9W have the
“Legume lectins beta” and “Legume lectins alpha” domain. The regions in the sequence containing the
“Legume lectins beta” domain are 1 to 112 in chain A and 1 to 67 in chain E in 1QMO (which constitutes
the d1qmo.1 SCOP domain), 124 to 237 and 1 to 68 in 1SCS, 124 to 237 and 1 to 68 in 1DGL, and 124 to
237 and 1 to 68 in 1H9W. The regions in sequence which contain the “Legume lectins alpha” domain are 73
to 119 in 1QMO chain E, 74 to 120 in 1SCS, 74 to 120 in 1DGL, and 74 to 120 in 1H9W. So, the 3 circular
permutations detected involving these residues are also correct.

11

Figure 10(c) shows the alignment graph and structural superposition generated by Matchprot for 1GLH-
1AJO:A. The circular permutation is characterized by a negative jump in the alignment graph. The 4 circu-
larly permuted fragment from two structures are shown in different colors in the superposition.

Also, the alignment graph of figure 5 between 2PEL:A-5CNA:A shows that Matchprot is able to detect
circular permutation while CE is not. It was seen that Flexprot and LOCK were also not able to detect the
full circular permutation. Also, the web version of DALI could not detect the circular permutation. Thus
experimentally we see, that circular permutations are detected correctly by Matchprot whereas the other
programs fail to do so.

5 Conclusion and Future Work

In this article, we have described the development and experimental validation of a novel algorithm, Match-
prot, for comparing protein structures. The proposed algorithm takes O(n3) time, and is extremely fast. It
is competitive with other state of the art methods and it outperforms them in detecting circularly permuted
proteins.

This work opens up many interesting directions. The idea of computing 1-dim neighbourhood preserv-
ing projections can be accomplished by various methods like Prinicipal Components Analysis, Topographic
mappings etc. It would be interesting to study their applicability for protein structure comparison. It also
touches upon the possibility of using graph matching techniques for protein structure comparison. An-
other interesting direction is to use the pair wise similarity function developed here for multiple structure
alignment along with existing multiple alignment techniques.

12

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160
Alignment graphs for 1DWT − 2MM1

Equivalence index

R
es

id
ue

 p
os

iti
on

Flexprot

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

Alignment graph for 1DWT − 2MM1

Equivalence index

R
es

id
ue

 p
os

iti
on

LOCK

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160
Alignment graph for 1DWT − 2MM1

Equivalence index

R
es

id
ue

 p
os

iti
on

CE

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160
Alignment graph for 1DWT − 2MM1

Equivalence index

R
es

id
ue

 p
os

iti
on

Matchprot

Figure 1: Alignment graph for proteins 1DWT and 2MM1 as calculated by the 3 standard structure align-
ment programs and Matchprot. In the x-axis the index of the equivalenced residue pairs sorted on the
position of the first protein is plotted. In the y-axis the actual position of the residues is plotted.

13

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graphs for 2PEL − 5CNA

Equivalence index

R
es

id
ue

 p
os

tit
io

n

Flexprot

0 50 100 150 200 250
0

50

100

150

200

250
Alignment Graph for 2PEL − 5CNA

Equivalence index

R
es

id
ue

 p
os

iti
on

LOCK

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 2PEL − 5CNA

Equivalence index

R
es

id
ue

 p
os

iti
on

CE

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 2PEL − 5CNA

Equivalence index

R
es

id
ue

 p
os

iti
on

Matchprot

Figure 2: Alignment graph for proteins 2PEL and 5CNA as calculated by the 3 standard structure alignment
programs and Matchprot. In the x-axis the index of the equivalenced residue pairs sorted on the position of
the first protein is plotted. In the y-axis the actual position of the residues is plotted.

14

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1PPN − 2ACT

Equivalence index

R
es

id
ue

 p
os

iti
on

Flexprot

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1PPN − 2ACT

Equivalence index

R
es

id
ue

 p
os

iti
on

LOCK

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1PPN − 2ACT

Equivalence index

R
es

id
ue

 p
os

iti
on

CE

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1PPN − 2ACT

Equivalence index

R
es

id
ue

 p
os

iti
on

Matchprot

Figure 3: Alignment graph for proteins 1PPN and 2ACT as calculated by the 3 standard structure alignment
programs and Matchprot. In the x-axis the index of the equivalenced residue pairs sorted on the position of
the first protein is plotted. In the y-axis the actual position of the residues is plotted.

15

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1TIM − 1HTI

Equivalence index

R
es

id
ue

 p
os

iti
on

Flexprot

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1TIM − 1HTI

Equivalence index

R
es

id
ue

 p
os

iti
on

LOCK

0 50 100 150 200 250
0

50

100

150

200

250
Equivalence graph for 1TIM − 1HTI

Equivalence index

R
es

id
ue

 p
os

iti
on

CE

0 50 100 150 200 250
0

50

100

150

200

250
Alignment graph for 1TIM − 1HTI

Equivalence index

R
es

id
ue

 p
os

iti
on

Matchprot

Figure 4: Alignment graph for proteins 1TIM and 1HTI as calculated by the 3 standard structure alignment
programs and Matchprot. In the x-axis the index of the equivalenced residue pairs sorted on the position of
the first protein is plotted. In the y-axis the actual position of the residues is plotted.

16

(a)
(b)

(c) (d)

Figure 5: Structural superposition for the protein backbones of (a)1DWT and 2MM1 (b) 2PEL and 5CNA
(c) 2ACT and 1PPN and (d) 1TIM and 1HTI as calculated by Matchprot

17

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

Gap penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 1.0

Threshold

R
M

S
D

a

0.1
0.2

0.3
0.4

0.5

0.6
0.7 0.1

0.2

0.3

0.4

0.58.5

9

9.5

10

10.5

11

11.5

12

12.5

Gap penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 2.0

Threshold

R
M

S
D

b

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1
0.2

0.3
0.4

0.5
6

7

8

9

10

11

12

13

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 3.0

Threshold

R
M

S
D

c

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.54

5

6

7

8

9

10

11

12

13

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 5.0

Threshold

R
M

S
D

d

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.54

4.5

5

5.5

6

6.5

7

7.5

8

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 10.0

Threshold

R
M

S
D

e

Figure 6: Variation of average RMSD for a set of 10 randomly chosen pair of polypeptides chosen from the
SCOP family A.1.1.1. with respect to Threshold(x-axis) and Gap Penalty(y-axis) for (a) α = 1, (b) α = 2,
(c) α = 3, (d) α = 5 and (e) α = 10.

18

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1
0.2

0.3
0.4

0.57

8

9

10

11

12

13

14

15

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 1.0

Threshold

R
M

S
D

a

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.51

2

3

4

5

6

7

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 3.0

Threshold

R
M

S
D

b

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

1.5

2

2.5

3

3.5

4

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 5.0

Threshold

R
M

S
D

c

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.51.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 8.0

Threshold

R
M

S
D

d

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 10.0

Threshold

R
M

S
D

e

Figure 7: Variation of average RMSD for a set of 21 randomly chosen pair of polypeptides chosen from the
SCOP family B.1.1.1. with respect to Threshold(x-axis) and Gap Penalty(y-axis) for (a) α = 1, (b) α = 3,
(c) α = 5, (d) α = 8 and (e) α = 10.

19

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

6

7

8

9

10

11

12

13

14

15

16

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 1.0

Threshold

R
M

S
D

a

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5
1

2

3

4

5

6

7

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 3.0

Threshold

R
M

S
D

b

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 5.0

Threshold

R
M

S
D

c

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

1.2

1.4

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 8.0

Threshold

R
M

S
D

d

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

1.3

1.4

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 10.0

Threshold

R
M

S
D

e

Figure 8: Variation of average RMSD for a set of 15 randomly chosen pair of polypeptides chosen from the
SCOP family C.1.1.1. with respect to Threshold(x-axis) and Gap Penalty(y-axis) for (a) α = 1, (b) α = 3,
(c) α = 5, (d) α = 8 and (e) α = 10.

20

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

6

7

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 1.0

Threshold

R
M

S
D

a

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

0.5

1

1.5

2

2.5

3

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 2.0

Threshold

R
M

S
D

b

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

0.8

1

1.2

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 3.0

Threshold

R
M

S
D

c

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5

0.75

0.8

Gap Penalty

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 5.0

Threshold

R
M

S
D

d

0.1
0.2

0.3
0.4

0.5
0.6

0.7 0.1

0.2

0.3

0.4

0.5
−0.5

0

0.5

1

1.5

2

Threshold
Gap Penalty

R
M

S
D

Variation of RMSD w.r.t. Threshold and Gappenalty for Alpha = 10.0

e

Figure 9: Variation of average RMSD for a set of 15 randomly chosen pair of polypeptides chosen from the
SCOP family D.1.1.2. with respect to Threshold(x-axis) and Gap Penalty(y-axis) for (a) α = 1, (b) α = 2,
(c) α = 3, (d) α = 5 and (e) α = 10.

21

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Alpha
R

M
S

D

Variation of RMSD with alpha

(a)

(b)

0 50 100 150 200 250
0

50

100

150

200

250

Equivalence Index

R
es

id
ue

 N
o.

Alignment Graph

1GLH
1AJO:A

(c)

Figure 10: (a) α vs. Average RMSD plot for Matchprot. (b) Similar structural superposition generated
by Matchprot and CE for 3SDH - 1COL (c) Alignment graph and Structural superposition generated by
Matchprot for 1GLH - 1AJO:A.

22

Acknowledgements

The authors are highly grateful to Dr. Nagasuma R. Chandra, Bioinformatics Center, Indian Institute of
Science, for all the valuable suggestions and insightful comments.

References

[1] Z Feng G. Gilliland T N Bhat H Weissig I N Shindyalov H M Berman, J Westbrook and P E Bourne.
The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

[2] I D Kuntz T F Havel and G M Crippen. The theory and practice of distance geometry. Bulletin of
Mathematical Biology, 45:665–720, 1983.

[3] William R Taylor and Christine A. Orengo. Protein structure alignment. Journal of Molecular Biology,
208:1–22, 1989.

[4] C A Orengo and W R Taylor. Ssap: Sequential structure alignment program for protein structure
comparison. Methods in Enzymology, 266:617–635, 1996.

[5] Liisa Holm and Chris Sander. Protein structure comparison by alignment of distance matrices. Journal
of Molecular Biology, 233:123–138, 1993.

[6] Liisa Holm and Chris Sander. Mapping the protein universe. Science, 273(5275):595–602, 1996.

[7] P E Bourne and I N Shindyalov. Protein structure alignment by incremental combinatorial extension
of optimal path. Protein Engineering, 11(9):739–747, 1998.

[8] Amit P. Singh and Douglas L. Brutlag. Hierarchical protein structure superposition using both sec-
ondary structure and atomic representations. In Proceedings of International Conference on Intelligent
Systems in Molecular Biology, volume 5, pages 284–293, 1997.

[9] Jessica Shapiro and Douglas Brutlag. Foldminer: Structural motif discovery using an improved super-
position algorithm. Protein Science, 13(278-294), 2004.

[10] Amit Fliess Shai Uliel and Ron Unger. Naturally occuring circular permutations in proteins. Protein
Engineering, 14(8):533–542, 2001.

[11] Ylva Lindqvist and Gunter Schneider. Circular permutations of natural protein sequences: structural
evidence. Current Opinion in Structural Biology, 7:422–427, 1997.

[12] B. Mohar. Some applications of laplace eigenvalues of graphs. In G. Hahn and G. Sabidussi, editors,
Graph Symmetry: Algebraic Methods and Applications, pages 225–275. Kluwer, 1997.

[13] F.R.K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[14] Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

[15] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.

[16] S B Needleman and C D Wunsch. A general method applicable to the search of similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48:443–453, 1970.

23

[17] T.F. Smith and M.S. Waterman. The identification of common molecular subsequences. Journal of
Molecular Biology, 1981.

[18] B K P Horn. Closed form solution of absolute orientation using unit quaternions. Journal of the
Optical Society of America, 4(4):629–642, 1987.

[19] Liisa Holm and Chris Sander. Dictionary of recurrent domains in protein structures. Proteins: Struc-
ture, Function and Genetics, 33:88–96, 1998.

[20] Java matrix tools package. http://jmat.sourceforge.org.

[21] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. Journal of Molecular Biology, 247:536–540,
1995.

[22] H J Wolfson M Shatsky and R Nussinov. Flexible protein alignment and hinge detection. Proteins:
Structure, Function, and Genetics, 48:242–256, 2002.

[23] Sourangshu Bhattacharya and Chiranjib Bhattacharyya. Comparison of protein structures using spec-
tral graph theory. Technical report, Dept. of Computer Science & Automation, Indian Institute of
Science, 2004.

[24] Carol DeWeese-Scott Natalie D. Fedorova Lewis Y. Geer Siqian He David I. Hurwitz John D. Jackson
Aviva R. Jacobs Christopher J. Lanczycki Cynthia A. Liebert Chunlei Liu Thomas Madej Gabriele H.
Marchler Raja Mazumder Anastasia N. Nikolskaya Anna R. Panchenko Bachoti S. Rao Benjamin A.
Shoemaker Vahan Simonyan James S. Song Paul A. Thiessen Sona Vasudevan Yanli Wang Roxanne
A. Yamashita Jodie J. Yin Aron Marchler-Bauer, John B. Anderson and Stephen H. Bryant. Cdd: a
curated entrez database of conserved domain alignments. Nucleic Acids Research, 31(1):383–387,
2003.

A The Algorithm

ALGORITHM : MATCHPROT

Input:
Two sets of coordinate lists X 1,Y 1,Z1 and X2,Y 2,Z2, of lengths m1 and m2 respectively
specified in the order they appear in the peptide chain.
α: a parameter governing the decay of the adjacency function.
T hreshold: a parameter governing the allowed tolerance in fiedler vector values between
the residues of the two structures.
GapPenalty: a parameter governing the penalty assigned for aligning a residue to nothing
i.e. eliminating it from the structural alignment.

Output:
The equivalence lists E1 and E2 of length n.
The optimally transformed coordinates of the second structure in the coordinate system
of the first structure, X ′,Y ′,Z′ of length m2.
RMSD: Root mean square deviation of the resultant superposition.
zscore: DALI Z-score of the resultant superposition.

Algorithm:

24

1: for all l such that l ∈ {1,2} do {For both the structures}
2: Compute the distance matrix D with entries given by

Dl
i, j =

√

(X l
i −X l

j)
2 +(Y l

i −Y l
j)

2 +(Zl
i −Zl

j)
2 ,1≤ i, j ≤ ml

3: Compute the adjacency matrix A with entries given by

Al
i, j =

{

e
−Dl

i, j
α , if i 6= j

0 , otherwise

4: Compute the diagonal degree matrix D as:

D l
i, j =

{

∑n
k=1 Al

i,k , if i = j
0 , otherwise

5: Compute the Laplacian matrix as:

Ll = D l−Al

6: Compute the eigenvalues λl
i , 1≤ i≤ml and eigenvectors Φl

i , 1≤ i≤ml of the Laplacian
as:

LlΦl
i = λl

iΦ
l
i , 1≤ i≤ ml

7: Sort the eigenvectors according to their respective eigenvalues, thus getting, Φl
1,Φ

l
2, . . . ,Φ

l
ml

such that λl
1 ≤ λl

2 ≤ ·· · ≤ λl
ml
.

8: Calculate the Fiedler vector V l as:

V l = min
i

Φl
i , such that λl

i 6= 0.

9: Normalize the Fiedler vector V l to get:

ml

∑
i=1

(

V l
i

)2
= ml

10: end for
11: Compute similarity matrix as:

Simi, j = T hreshold−|V 1
i −V 2

j | , 1≤ i≤ m1, 1≤ j ≤ m2

12: for i = 0 to m1 do {Local alignment matrix}
13: for j = 0 to m2 do
14: Compute

LAi, j =























0 , if i = 0 or j = 0

max















LAi−1, j−1 +Simi, j

LAi−1, j−GapPenalty
LAi, j−1−GapPenalty
0

, otherwise

15: end for
16: end for
17: Alignment← φ {alignment set is null}
18: Compute highest = maxi, j LAi, j.

25

19: Compute (p1, p2) = argmaxi, j LAi, j.
20: while highest > 0 do
21: Alignment←Alignment∪traceback(p1, p2) {traceback returns the alignment obtained by

tracing back from it’s argument}
22: Mark the rows and columns of LA corresponding to the residues returned in the current

alignment done.
23: Compute highest = maxi, j LAi, j such that i or j is not marked done.
24: Compute (p1, p2) = argmaxi, j LAi, j such that i or j is not marked done.
25: end while
26: Generate the lists of equivalent residues E1 and E2 by eliminating residues that are

aligned to gaps.
27: Calculate the optimal rigid body transformation (rotation and translation) T of the

second structure superposing it with the first one, so that the equivalenced residue
pairs have minimum RMSD (This is done using the method described in [18]).

28: for i = 1 to m2 do {Calculating transformed coordinates}
29: (X ′i ,Y

′
i ,Z
′
i)← T (X2

i ,Y 2
i ,Z2

i)
30: end for
31: Compute the RMSD and Z-score of the superposition generated above, as descirbed in

section 3.6.

26

