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Abstract

For aggressive path-based optimizations to be profitable
in cost-senstive environments, accurate path profiles must
be available at low overheads. In this paper, we propose
a low-overhead, programmable hardware path profiling
scheme that can be configured to (1) detect a variety of
paths including acyclic, intraprocedural paths, extended
paths and sub-paths for the Whole Program Path and (2)
track one of the many architectural metrics along paths.
The profiler consists of a path stack that detects paths
using branch information from the processor pipeline
and a hot path table that records the path profile during
program execution. Our experiments using programs from
the SPECCPU 2000 benchmark suite show that the path
profiler occupying TKB of hardware real-estate collects
accurate path profiles at negligible overheads (0.6% on
average). The availability of path information in hardware
also opens wup interesting possibilities for architectural
optimizations. As an illustration of the potential benefits,
we present an online phase detection scheme that detects
changes in program behavior with an accuracy of 94%,
substantially higher than all existing schemes.

Keywords: path profiling, phase detection

1 Introduction

It has been widely accepted[1] that understanding
and exploiting the dynamic behavior of programs is
the key to improving performance beyond what is pos-
sible using static techniques. A program’s control flow
is one such aspect of its dynamic behavior that has
been extensively used to optimize program execution,
typically by identifying frequently executed regions of
code that an optimizer can focus on and exposing con-
trol flow patterns that can be used to predict the pro-
gram’s future behavior.

A program’s control flow can be characterized in
several ways. All existing control flow profiling tech-
niques can be classified as either point profiles or path
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Figure 1: Distribution of dynamic instructions vs.
the number of acyclic, intra-procedural paths that
contribute to their execution. The top 100 paths
account for more than 80% of the dynamic instruc-
tions in all the SPEC CPU 2000 programs studied.

profiles. Point profiles record the execution frequen-
cies at specific points in the program; basic block,
edge[2] and call-graph profiles are instances of point
profiles. Point profiles have been extensively used
in driving profile-based compiler optimizations, essen-
tially because they are easier to collect and analyze.
On the other hand, path profiles capture control flow
in more detail by explicitly tracking sequences of in-
structions during execution. However, this additional
detail comes at the cost of high profiler complexity
and space and time overheads.

Paths have themselves been characterized in differ-
ent ways, each characterization involving a trade-off
between the amount of information encoded in the
profile and the overheads of profiling. The acyclic,
intra-procedural path[3], defined as a sequence of basic
blocks within a procedure that does not include loop
back-edges, is a category of paths that is easy to com-
prehend and encodes enough control flow information
required for most path-based optimizations[4, 5, 6].
Such paths exhibit interesting properties of local-
ity and hotness[7]. Typically, programs traverse a



small fraction of the numerous feasible acyclic, intra-
procedural paths. And as illustrated in Figure 1, an
even smaller set of hot paths within the set of tra-
versed paths dominate program execution. The feasi-
bility of existing path profiling schemes[3, 8] and the
effectiveness of path-based compiler optimizations can
be attributed to these properties.

However, existing path profiling techniques have
several limitations.

e Since profilers must track a large number of paths,
even efficient profiling techniques incur significant
space and time overheads, precluding their use in
cost-sensitive environments.

e Profiling overheads increase many fold if the
scope of profiling is extended beyond acyclic,
intra-procedural paths. The overheads must be
tolerated if aggressive path-based optimizations
that exploit correlation across procedure and loop
boundaries are employed.

e Existing path profiling schemes do not facilitate
profiling the fraction of code executed via system
calls or calls to dynamic linked libraries.

e Precisely associating informative architectural
events, such as the number of cache misses or
branch mis-predictions, with program paths is a
non-trivial task[9].

This paper proposes a unified, programmable
hardware-based path detection and profiling infras-
tructure that overcomes the limitations listed above.
Figure 2 illustrates various components of the pro-
posed profiling hardware. At the heart of the hard-
ware profiler is a path stack that detects paths by mon-
itoring the stream of retiring branch instructions ema-
nating from the processor pipeline. The path stack can
be programmed to detect virtually any type of path
by altering the set of actions performed for different
types of branch instructions. The path stack generates
a stream of paths, each path represented by a path de-
scriptor, which is available to all hardware/software
entities interested in the path sequence.

The second component of the profiling infrastruc-
ture is a Hot Path Table (HPT), which receives the
stream of path descriptors and maintains a profile of
paths that dominate program execution. The HPT
eliminates space and time overheads incurred due to
expensive hash-and-update operations performed by
software path profilers[Reference] since these opera-
tions are now performed efficiently in hardware. The
profile generated using the HPT is accurate but lossy
since only a limited number of paths can be tracked

in hardware. Since program optimizers are usually in-
terested only in the set of hot paths, a small loss in
accuracy can usually be tolerated. At program com-
pletion, the HPT generated profile can be serialized to
a file for later use by a static program optimizer. The
HPT is all the more effective in online environments,
where path profiles representative of the current pro-
gram behavior can be obtained by enabling the profiler
for short intervals of time. The availability of accu-
rate profiles at low overheads helps the dynamic com-
piler generate optimized code efficiently and quickly,
increasing the number of optimization opportunities
exploited.

Computer architects have also attempted to exploit
the hotness and locality properties exhibited by path
sequences[10, 11, 12]. However, the complextiy of path
profiling has forced architects to use approximate path
representations like traces or the recent branch history.
We believe that the availability of information pertain-
ing to different kinds of paths in hardware opens the
doors to several architectural optimizations. As an ex-
ample, we show that changes in program behavior can
be accurately detected using the sequence of acyclic,
intra-procedural paths generated by the hardware pro-
filer.

The rest of the paper is organized as follows. Sec-
tion 2 presents prior work on path profiling techniques
and the use of paths in various compiler and architec-
tural optimizations. In Section 3, we describe how
different types of paths can be efficiently represented
and detected in hardware. Section 5 discusses the de-
sign of the Hot Path Table, the hardware structure
that collects hot path profiles. In Section 6, we de-
scribe a phase detection scheme that benefits from the
availability of path information in hardware. Section 8
presents an evaluation of the path profiling infrastruc-
ture and assesses the impact of using path information
to drive phase detection. We conclude in Section 9
with suggestions for future work.

2 Related Work

Because of the sheer amount of control flow infor-
mation they encode and the complexity of profiling
them, program paths have generated significant aca-
demic interest and continue to remain objects of great
intrigue. In one of the earliest works on path profiling,
Ball et al[3] propose an instrumentation based scheme
for profiling acyclic, intra-procedural paths, also re-
ferred to as Ball-Larus (BL) paths. Given a control
flow graph of a procedure, the profiling algorithm de-
termines a minimal set of edges and a set of values,
one for each edge, such that each BL path produces
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Figure 2: Components of the Hardware Path Profiling Infrastructure.

a unique sum of edge values along the path. These
edges are instrumented with instructions that incre-
ment a global counter with the value associated with
the edge. During program execution, the value of the
global counter at loop back edges and procedure re-
turns uniquely identifies the path that was just exe-
cuted and is used to update a hash table that stores
the profile. Apart from the space required for a hash
table large enough to accommodate all paths, the pro-
filing scheme incurs average runtime overheads of 30-
45%.

Much of the subsequent research in path profiling
has been focused on alleviating two drawbacks of BL
paths. First, such paths do not provide any informa-
tion about a program’s control flow across procedure
and loop boundaries, rendering them of limited use in
several inter-procedural and aggressive loop optimiza-
tions. Efforts to overcome this limitation include the
Whole Program Path (WPP)[13] and extended path
profiling[14]. A WPP comprises of the sequence of
acyclic, intra-procedural paths traversed by the pro-
gram. Since explicitly storing such a sequence is pro-
hibitively expensive, the authors propose an online
compression scheme that exploits the presence of re-
peating patterns in the WPP and generates an equiv-
alent context free grammar, which can be compactly
represented as a DAG. Despite the high compression
ratios, the WPP’s size, profiling overheads and general
lack of usability continue to hinder its widespread use.
As a compromise between acyclic, intra-procedural
paths and the WPP, Sriram et al propose the notion
of interesting or extended paths i.e. paths that extend

beyond a single loop or procedure boundary. Also pro-
posed is a profiling scheme that reduces overheads by
approximating the execution frequencies of extended
paths from a profile of paths that are slightly longer
than BL paths. Average execution time overheads are
reported to be 86% or four times the overheads of
acyclic, intra-procedural path profiling.

Recent efforts have also focused on reducing the
overheads of path profiling, a factor critical to the
success of path-based optimizations in cost-sensitive
dynamic optimization systems. Arnold and Ryder[15]
propose a generic software-based sampling scheme
that reduces overheads by conditioning the execution
of instrumented code on a global counter value. Tar-
geted profiling[16] is an approach that identifies paths
whose frequencies can be accurately deduced from an
edge profile. Eliminating such paths from the path
profiling phase leads to improved efficiency because of
the significantly smaller number of paths that must
be tracked. Structured profiling[17] tackles the com-
plexity of path profiling by dividing functions hierar-
chically into smaller components, profiling each com-
ponent in stages and finally composing a profile of the
function from the individual profiles of its components.
These schemes reduce profiling overheads considerably
without a significant loss in accuracy of the path pro-
file. On the flip side, these schemes cause an increase
in the amount of time required to obtain a represen-
tative profile, delaying the optimization process as a
result. Moreover, it is not clear whether these schemes
can be extended for profiling other varieties of paths
or for profiling program binaries as required in several
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Figure 3: A Path Descriptor.

binary translation/optimization systems.

The importance of program profiling in improv-
ing performance has also been recognized by com-
puter architects. Most modern processors provide ar-
chitectural support for performance monitoring, typ-
ically in the form of event counters[18, 19]. Be-
cause data obtained from event counters is aggre-
gate in nature and usually devoid of any contextual
information, their use is mostly limited to identify-
ing performance bottlenecks. To meet the require-
ments of profile-guided optimizations, profilers that
construct approximate control flow profiles in hard-
ware using information from the processor pipeline or
from structures like the branch predictor have also
been proposed[20, 21, 22, 23]. In comparison, the
hardware path profiler has wider applicability and to a
certain extent subsumes the existing profiling schemes
because of the inherent nature of path profiles[24], the
flexibility of detecting various types of path profiles at
negligible overheads and the added ability to associate
architectural metrics with program paths.

3 Representing and Detecting Paths in
Hardware

While paths have traditionally been represented by
the addresses of basic blocks that fall along the path,
such a representation is too expensive to maintain in
hardware. As shown in Figure 3, in our hardware
profiler, a path is uniquely represented by a path de-
scriptor which consists of (a) the path’s starting ad-
dress (the address of the first instruction on the path),
(b) the length of the path (the number of branch in-
structions along the path) and (¢) a set of direction
bits (one for each branch along the path indicating
whether the branch was taken or not). The path de-
scriptor is compact and expressive enough to describe
all types of paths known to the authors.

While there can be an arbitrarily large number of
branches along a path, only a fixed number of branches
can be accommodated in a hardware path descrip-
tor. This limitation forces the path detection hard-
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Figure 4: Distribution of dynamic instructions ac-
cording to the length of BL paths they execute
along.

ware to split paths if their length exceeds a predeter-
mined threshold. Figure 4 shows the distribution of
dynamic instructions according to the length of BL
paths they are executed along for programs from the
SPEC CPU2000 benchmark suite. We observe that
paths of length less than 16 branch instructions ac-
count, for over 90% of the dynamic instructions. For
the rest of this study, we assume a path descriptor rep-
resentation that allows paths to grow up to 32 branch
instructions, a limit that is sufficiently large to accom-
modate a majority of BL paths as well as extended
paths without splitting.

The hardware profiler uses a hardware path stack
to detect paths. Each entry on the path stack con-
sists of a path descriptor, a 8-bit path event counter
and other path specific information. The state of the
path stack (e.g. pointer to the topmost entry on the
stack) is maintained in a set of internal registers asso-
ciated with the stack. The path profiler receives infor-
mation pertaining to every retiring branch instruction
from the processor pipeline via a branch queue, which
serves to decouple the processor pipeline from the path
profiler. Every branch read from the branch queue is
decoded and classified as a call, a return, an indirect
branch, a forward branch or a backward branch. The
profiler then performs one or more of the following op-
erations on the path stack depending on the type of
the branch being processed:

e path-stack-push : Pushes a new entry on the path
stack with the starting address field of the path
descriptor set to the target address of the branch
being processed. All other fields of the new entry



Branch type | update | update-count | pop | push
call X Vv X Vv
return X N Vv X
forward vV X X X
backward vV X vV Vv
indirect v X v Vv

Table 1: Branch type-Profiler operation mapping
for detecting BL paths

are reset to zero.

e path-stack-pop : Pops the current entry on top-of-
stack and provides the same to interested entities.

e path-stack-update : Updates the path descrip-
tor on top-of-stack with information about the
branch being processed. The update involves in-
crementing the length of the path, updating the
direction bits with the direction of the current
branch and incrementing the event counter. Dur-
ing update, if the length of the path on top-of-
stack exceeds its maximum, the profiler logic pops
the entry and pushes a new entry for a path be-
ginning from the target of the current branch.

e path-stack-update-count : Increments the event
counter associated with the path descriptor on
top-of-stack without updating the path length or
direction bits. This operation is used when it is
desired that branches like calls and returns should
not be explicitly recorded in the path.

The mapping between the branch type and
set of operations to be performed is specified by
the programmer in a path profiler control register
(PPCR). However, the following restrictions on
the mapping apply. For any branch, either one of
path-stack-update or path-stack-update-count can
be performed. Also, the order in which operations
are performed is fixed, viz. path-stack-update/path-
stack-update-count followed by path-stack-pop and
path-stack-push. These restrictions notwithstanding,
hardware path profiler can be programmed to detect
several types of paths.

Detecting acyclic, intra-procedural paths: The
mapping of branch type and profiler actions shown in
Table 1 enables the profiler to detect a variant of BL
paths that terminate on all backward branches. Path
entries are pushed on calls and popped on returns. On
a forward branch, the path descriptor on the top-of-
stack is updated with information about the branch.
The path entry on top-of-path stack is updated and
terminated on all backward branches. Paths are also
terminated on indirect branches since such branches

Ball-Larus Paths

P1={B1,3,101}
P2 ={B2, 3,101}
P3={B2, 3,111}
P4 ={B2, 4, 1001 }

Sample Sequence:
P1(P2)*(P3)*P4

Extended Loop Paths

P1={B1,6,101101}
P2 ={B2, 6, 101101 }
P3={B2,6,101111}
P4 ={B2,6,111111}
P5 ={B2, 4, 1001 }

Sample Sequence:
P1(P2)*P3(P4)*P5

Figure 5: The control flow graph, path descrip-
tors and a sequence of BL paths and extended loop
paths detected for a sample execution of a proce-
dure. Blocks B1 and B/ do not end with branches
whereas B2 ends with an unconditional jump to
B3.

can have several targets. These profiler operations en-
sure that there always exists one and only one entry on
the path stack for every active procedure, and that the
path stack grows and shrinks in the same way as acti-
vation records on the program’s runtime stack. Each
entry on the path stack records the BL path that the
corresponding procedure is currently traversing. In
the presence of loops, the sequence of branches lead-
ing to the loop entry along with the first iteration of
the loop together form a path. Each loop iteration
other than the last last iteration is recorded as a sepa-
rate path. Finally, the last iteration of the loop along
with the sequence of branches following the loop exit
also form a path. If the program uses setjmp/longjmp
operations or exception handling mechanisms, the OS
or the exception handler must repair the path stack by
popping an adequate number of entries from it. Fig-
ure 5 shows a control flow graph, the set of BL path
descriptors and a sequence of BL paths generated by
the path stack for a sample procedure.

The path stack can overflow while recording BL
paths if the number of active procedures exceeds
the size of the path stack. Path stack overflows
can be handled in two ways. On a stack overflow,
entries from the bottom of the path stack can be
removed to create space for the new entries. When a
corresponding underflow occurs, a new entry on the
stack is created and marked incomplete. When an
incomplete path entry is popped, the corresponding



Branch type | update | update-count | pop | push
call X Vv vV N4
return X vV Vv Vv
forward vV X X X
backward vV X vV Vv
indirect v X v Vv

Table 2: Branch type-Profiler operation mapping
for detecting subpaths that form a Whole Program
Path

path is ignored. This strategy leads to a small
loss of information if overflows/underflows occur
frequently. If this loss in precision of the path
profile is not acceptable, the path stack can be
allowed to grow into a region of memory specially
allocated by the OS for the program being pro-
filed. The oldest path stack entries then are pushed
into memory on overflows and underflows generate
memory read operations to retrieve path stack entries.

Constructing a Whole Program Path: The
basic element of a whole program path (WPP) is
a variation of the BL path that also terminates at
call instructions. A WPP is formed by compressing
the sequence of such paths. The mapping shown
in Table 2 configures the hardware path profiler to
generate such a sequence. While processing a call,
the profiler performs a path-stack-pop operation
before pushing a new entry on the stack. Similarly,
the profiler performs a path-stack-pop followed by a
path-stack-push on every return. Path descriptors
generated by the path stack are fed to a software
WPP profiler running as a separate thread, which
compresses the sequence online and generates a WPP.

Detecting extended paths: In order to detect
extended paths, the path stack supports a path
extension counter, typically 1-3 bits in size, for every
entry on the path stack. The programmer is required
to specify the following options via the PPCR: (1)
whether paths must span across procedure or loop
boundaries and (2) a maximum extension count
that indicates the number of procedure returns or
backward branches that the path is allowed to span
across. In the course of detecting paths, if a new
path is pushed onto the path stack, its extension
counter is reset to zero. When a backward branch
or a procedure return in encountered, the path
on top-of-stack is allowed to expand if the corre-
sponding extension counter value is less than the
maximum extension count. In this scenario, only a
path-stack-update operation is performed and the

extension counter value is incremented. However, if
the path has already expanded beyond a specified
number of loop/procedure boundaries (known via
the maximum extension count field in the PPCR),
the default operations for the boundary branch are
performed and the path is terminated. Similarly, a
path is allowed to expand on a procedure return and
the extension counter is decremented if the counter
value is positive. It is important to note that the
complexity of detecting extended paths in hardware
is the same as the complexity of detecting acyclic,
intra-procedural paths. Figure 5 illustrates set of
extended loop paths detected and a sequence of paths
generated for an imaginary control flow graph; here
we are interested in paths that span across one loop
boundary.

4 Associating architectural metrics

with paths

Motivation: Existing software-based path profilers
are designed to track the frequency with which each
path is traversed. However, future analysis tools and
optimizations are likely to be interested in path-wise
profiles of other metrics such as cache misses, branch
mis-predictions and pipeline stalls. To motivate the
use of such profiles, we conducted an experiment that
quantifies the similarity between these profiles and a
path frequency profile. If these profiles are found to
differ sufficiently, we can conclude that the paths of
relevance to an optimizer (typically the hot paths)
vary with the architectural metric associated with
paths and cannot necessarily be inferred from a path
frequency profile. We generated path-wise profiles for
various architectural and power metrics benchmarks
from the SPEC CPU2000 suite run using the reference
inputs. We use the overlap percentage (see Section 8)
to compare these profiles with a path frequency pro-
file.

Figure 3 shows the overlap percentages between
various path-wise profiles and a path frequency
profile. We find that path profiles for various archi-
tectural and power metrics have only small percentage
of information in common with the path-frequency
profile (25% for a branch mis-prediction profile, 32%
for a L2 cache profile and 62% for a power profile).
These results suggest that a path-based optimizer
that targets bottlenecks such as cache misses, branch
mis-predictions or power consumption can be mis-
led into making false assumptions about program
hotspots from a path frequency profile. Further,



branch mis- | L2 cache | static

prediction miss pro- | power

profile file profile
gecc 15.90 38.65 61.55
gzip 37.81 2.37 69.34
mcf 42.45 67.42 77.41
vortex 17.29 37.33 79.13
art 15.82 18.56 28.92
equake 20.99 37.42 57.73
bzip2 36.43 38.04 75.61
mesa 25.77 18.24 56.75
ammp 18.00 45.49 46.91
perlbmk 25.87 20.19 71.70
Average | 25.63 32.37 62.50

Table 3: Overlap percentages between various
path-wise profiles and a path-frequency profile.
A high percentage indicates more information in
common between the profile.

these results justify the need for efficient and flexible
profiling schemes that can capture program behavior
across different architectural metrics.

Processor extensions: Extending existing profiling
schemes to associate architectural metrics with paths
is complicated due to the intra-procedural nature of
paths and perturbation effects of the instrumented
code [9]. However, our hardware path profiler can
perform this task accurately and non-intrusively since
precise information regarding all architectural events
is directly available to the profiler. To track the oc-
currence of such events, each instruction in the pro-
cessor pipeline is annotated with an event counter (an
extension of per instruction tag in [19]). An instruc-
tion’s event counter is incremented every time the in-
struction causes an architectural event of type X spec-
ified via the PPCR. When an instruction commits, the
value in the instruction’s event counter is used to up-
date a block event counter maintained at the commit
stage of the pipeline. The block event counter value is
passed to the path profiler along with every commit-
ting branch, which in turn updates the event counter
associated with the path on top-of-stack. When a path
is popped off the path stack, its event counter value
represents the number of events of type X that oc-
curred along the path. The block event counter is
itself reset after every branch instruction.

A limitation of this scheme is that architectural
events caused by non-committing, speculative in-
structions are not accounted for since the profiler
monitors committing instructions only. Apart from
this anomaly, the profiler is capable of associating

any architectural event with paths, thereby enabling
precise path-based performance monitoring and
bottleneck analysis.

Associating power consumption metrics with
paths: Virtually all existing hardware profiling
schemes are focused towards detecting and aggre-
gating data pertaining to performance-related archi-
tectural events. While this was also the case with
the initial design of our profiling scheme, we were
subsequently interested in exploring possible reuse of
the proposed hardware in tracking metrics related to
power consumption. Our goal was to associate pro-
gram paths with a count that provides an estimate of
the power consumption caused by instructions along
the path in a specific processor component /set of com-
ponents. Such profiles enable power-aware compilers
to identify and focus on regions of code that account
for a significant fraction of the power consumption.
Such profiles can also assist a programmer in analyzing
the impact of traditional compiler/architectural opti-
mizations on power consumption in specific regions of
the program.

Our power profiling scheme assumes the availability
of an accurate power model for each processor compo-
nent of interest, parameterized by the component con-
figuration and one or more architectural events. The
power model is used to assign a relative cost to each
architectural event related to the component. The
cost associated with an event indicates the power con-
sumed by the occurrence of the event relative to the
event with the lowest consumption. For instance, the
relative costs of accesses to each level of the cache
hierarchy are derived from a power model for caches
parameterized by the cache configuration and number
of accesses. Since an instruction cache access typically
consumes the lowest power, the costs of other events
are relative to the instruction cache access.

Once costs are assigned to all events, the event de-
tection logic associated with each component is ex-
tended to apportion the event cost to instructions that
cause the events. For simple analytical models, this
translates to logic that increments the event counters
of all event-causing instructions by an amount equal to
the cost of the event. More complex cycle-level mod-
els can be implemented using logic that dynamically
computes the apportioned cost based on online infor-
mation. Figure 6 illustrates one such dynamic power
model for the L1 data cache [25] and the corresponding
apportioning logic implementation. Here, the actual
power consumption and the apportioned cost are de-
termined based on the number of simultaneous data



compute dcache_access_power;
num_dcache_ports = 2;
if (num_dcache_access) {
if (num_dcache_access <= hum_dcache_ports)
total_dcache_power += dcache_access_power;
else
total_dcache_power +=
(num_dcache_access/num_ports)
* dcache_access_power;

(a) Cycle level power model

compute dcache_access_cost;
num_dcache_ports = 2;
if (num_dcache_access) {
if (num_dcache_access == 1)
apportion_cost = dcache_access_cost;
else
apportion_cost = dcache_access_cost / 2;
distribute apportion_cost to num_dcache_access instructions;

}

(b) Apportioning logic

Figure 6: (a) A power model that computes power consumption in L1 dcache and (b) corresponding
apportioning logic that assigns costs to instructions that simultaneously access L1 dcache. Here, both
dcache_access_power and dcache_access_cost are computed a priori; these are constants for a specific process

technology.

cache accesses in each cycle and the number of ports
available.

Note that our implementation of the power mod-
els assumes a constant activity factor, a significant
parameter in power models for components such as
caches, buses and register files. Rounding off errors
during the process of computing relative costs, ap-
proximations in the apportioning logic and the loss
of information due to non-committing but power con-
suming instructions also introduce inaccuracies. How-
ever, our results suggest that although these factors
cause discrepancies in the total power estimates, their
impact on the quality of hot path profiles is minimal.
We evaluate the effectiveness of our profiling scheme
in collecting power specific profiles in Section 8.

5 Collecting Hot Path Profiles

Previous studies[16] have shown that a significant
fraction of the overheads incurred by existing path
profiling techniques can be attributed to the hash-
and-update operation that must be performed when a
path terminates. The overheads of this operation can
be significantly reduced if the hash table that stores
the path profile maintained in hardware. However, a
hardware based path collection scheme must satisfy
the following requirements.

e The path profile generated by the collection
scheme must be accurate enough to effectively
drive profile-guided optimizations. In other
words, the distribution of paths in the hardware
profile must closely resemble the distribution in
the actual profile.

e The hardware collection scheme must provide ac-
curate profiles at low overheads irrespective of
duration of profiling. While paths have tradition-
ally been used exclusively by offline compilers, the

availability of path profiles at low overheads will
make them attractive for use in dynamic environ-
ments of the future.

e Virtually all existing path profile based optimiza-
tions focus on hot paths, where the hotness of a
path is determined by its execution count. How-
ever, future optimizations or performance mon-
itoring schemes might want to associate paths
with other architectural metrics such as cache
misses, branch mis-predictions or pipeline stalls
and redefine the hotness criteria accordingly. The
profiling scheme must be designed to cater to such
requirements without any loss in the quality of the
profile collected.

We have evaluated several profiler design configu-
rations and next describe a simple, low overhead path
collection scheme that meets the requirements listed
above. The path collection mechanism is based on a
hardware structure called the Hot Path Table (HPT)
illustrated in Figure 7. Each entry in the HPT con-
sists of a path descriptor and a 32-bit accumulator.
The HPT receives a sequence of path descriptors and
associated counts from the path stack. When a path
descriptor is received, a lookup on the HPT is per-
formed using an index computed using fields of the
incoming path descriptor. If an entry is found in HPT,
the corresponding accumulator is incremented by the
count associated with the incoming path. However,
if the lookup fails, an entry from the indexed HPT
entry set is selected for replacement based on a re-
placement policy. The vacated entry is updated with
information from the incoming path descriptor and its
accumulator is initialized to the count associated with
the incoming path.

There are several HPT design parameters that de-
termine the effectiveness of the hot path collection
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Figure 7: The Hot Path Table that collects hot
path profiles.

scheme. These include the HPT size and associativ-
ity, the replacement policy and the indexing function.
Our initial experiments indicate that an LRU like re-
placement policy, which is oblivious to the frequency
of access of entries, does not succeed in capturing and
retaining information about a significant fraction of
paths over the entire duration of a program’s execu-
tion. The Least Frequently Used (LFU) policy serves
the purpose of retaining frequently used entries but
the execution time overheads of implementing LFU
(log(n) for an n-way associative structure) have pre-
vented its use in other cache structures. However, in
the context of the HPT, a moderately expensive re-
placement policy is unlikely to have a significant im-
pact on the overall execution time because (1) the
HPT does not lie on the processor’s critical path and
(2) HPT lookups are relatively infrequent (once for
every path) and HPT replacements even less frequent.
Our experiments with different hotness criteria and
HPT configurations reveal that the LFU replacement
policy outperforms all others and that the latency of
implementing LF'U can indeed be tolerated. Moreover,
an implementation of LFU for the HPT does not incur
additional space overheads since frequency informa-
tion is available in the counters associated with every
HPT entry. For the rest of the paper, we assume an
HPT implementation that uses LFU replacement. A
detailed study on the impact of HPT size, associativ-
ity and the indexing scheme on the profile accuracy

and profiler overheads is presented in Section 8.

6 Path-based Phase Detection

While it is generally known that programs exhibit
phased and/or periodic behavior, recent studies[26,
27, 28, 29] have empirically analyzed this behavior,
proposed hardware support for online detection and
prediction of phase changes, and demonstrated the
use of phase information in dynamically reconfiguring
processor policies. Based on the premise a phase can
be characterized by the manner in which code is ex-
ecuted during the phase, various statistical measures
that summarize the contents of the instruction stream
during a program interval have been used for detecting
phase changes; working set signatures[26], conditional
branch counts[27] and basic block vectors (BBV)[28]
are examples of such measures.

BBV-based techniques have proven to be relatively
accurate in detecting phase changes as they encode
fine-grained information about a program’s execution
in a given interval. Sherwood et al[29] propose a phase
detection scheme that approximates BBVs in hard-
ware using an array of accumulators. For every retir-
ing branch instruction, an index into the accumulator
array is computed and used to increment the accumu-
lator by an amount equal to the number of instructions
executed since the last branch. The values in the accu-
mulators at the end of each program interval represent
a distribution of instructions executed during that in-
terval. A significant shift in the distribution between
the current and the previous interval indicates a phase
change. The scheme achieves an accuracy of around
80% in detecting phase changes and is able to detect
stable intervals with a similar accuracy.

However, like basic block profiles, BBVs do not al-
ways represent control flow accurately. While tracking
BBVs, control flow changes in successive program in-
tervals may go unnoticed if their basic block vectors
have a similar distribution of instructions. This would
result in fewer phase changes being detected and fewer
optimization opportunities. Moreover, the scheme is
prone to errors introduced by mapping a possibly large
number of basic blocks to a small set of counters in the
accumulator array. These limitations of BBVs can be
be overcome if a program’s control flow is represented
by the distribution of paths instead of the distribu-
tion of basic blocks. We observe that the distribution
of paths is very sensitive to changes in control flow;
even changes in program behavior result in a substan-
tially different distribution of executed paths. More-
over, the number of paths that dominate execution
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Figure 9: Path-based phase detection hardware.

during a phase tends to be small. Figure 8 provides vi-
sual proof for these observations. The figures plot the
occurrence of paths in an instruction window during
which a phase change occurs for two SPEC CPU2000
benchmarks, mesa and perlbmk. Such significant shifts
in the distribution of paths due to a phase change are
observed for virtually all benchmarks.

We therefore propose a modified version of the
BBV-based phase detection scheme that uses path de-
scriptors generated by the path stack to detect changes
in program behavior. Figure 9 illustrates the main
components of the path based detector. The path
stack is configured to detect acyclic, intra-procedural

paths and to keep track of the number of instructions
executed along each path. The path-based phase de-
tector receives a stream of path descriptors generated
by the path stack along their instruction counts. The
detector employs a hardware configuration that con-
sists of an array of accumulators. The accumulators
are reset to zero at the beginning of each program in-
terval and updated on the occurrence of every path.
An index into the array is computed using fields from
the path descriptor, and the indexed accumulator is
incremented by the number of instructions along the
path being processed. At the end of a program in-
terval, the accumulator values form an approximate
path-specific distribution of instructions executed dur-
ing the interval. In a manner similar to scheme of
Sherwood et al, signatures for each interval are formed
using higher order bits from the accumulators are clas-
sified as belonging to the same phase if the Manhattan
Distance between them is lower than a threshold. A
detailed evaluation of this scheme is presented in Sec-
tion 8.

7 Simulation Methodology

We performed simulation experiments using 12 pro-
grams from the SPECCPU 2000 benchmark suite [30]
gce, gzip, mcf, parser, vortex, bzip2, twolf, perlbmk,
art, equake, mesa and ammp. We extended Sim-
pleScalar [31], a processor simulator for the Alpha
ISA, with an implementation of our hardware path
profiler. The baseline micro-architectural model of the
processor is shown in Table 4.

Due to simulation time constraints, overlap per-
centages in Section 8.1 are reported from simulations



Processor core
16 entry IFQ

Out-of-Order issue of up to 4 instructions per cycle, 128 entry reorder buffer, 64 entry LSQ,

Functional units
MULT/DIV units

4 integer ALUs, 2 integer MULT/DIV units, 4 floating-point units and 2 floating-point

Memory hierarchy

32KB direct mapped L1 instruction and data caches with 32 byte blocks (1 cycle latency) ,
512KB 4-way set associative unified L2 cache (10 cycle latency), 100 cycle memory latency

Branch predictor

Combined: 12-bit (8K entry) gshare/(8K entry) bimodal predictor with 1K meta predictor, 3
cycle branch mis-prediction latency, 32 entry return address stack, 2K entry, 4-way associative

BTB
Table 4: Baseline Processor Model
Parameter Low High
Number of HPT entries 128 2048
HPT associativity 2 32
HPT indexing scheme Bits from path starting address XOR(Bits from path address, path length, branch outcomes)
L2 cache size 256KB 2048KB
L2 cache associativity 1 8

Branch predictor 2K entry, 2-level predictor

Combined: 8K entry bimodal, 2K entry 2-level, 8K entry metatable

Table 5: Parameters considered during experiments based on Plackett-Burman design to determine an
effective HPT configuration. The corresponding low and high values are also listed.

of 15 billion instructions for alpha binaries precom-
piled at peak settings, running on their reference in-
puts. We validated our simulation methodology using
complete runs of as many of the programs as possible,
finding an average deviation of 6% from the reported
values. We extended the gcc compiler (version 3.4)
with a path-based superblock formation pass. Execu-
tion times for complete runs of superblock scheduled
binaries optimized at level -O2 were obtained using
the hardware cycle counter on an Alpha AXP 21264
processor under the OSF V4.0 operating system. Pro-
filing overheads reported in Section 8.2 are estimated
using out-of-order processor simulations for complete
runs of the programs with the MinneSPEC inputs [32].
We evaluate our phase detection scheme (Section 8.3)
using phase information generated by the SimPoint
tool [28] as the baseline. Results are reported for sim-
ulations of 15 billion instructions using the reference
inputs, as in [29].

8 Experimental Evaluation

The success of any profiling technique is measured
by the accuracy of the profile, implementation costs
and overheads of profiling. In this section, we evalu-
ate the hardware path profiler on these counts. We ex-
plore the impact of various profiler design parameters
on the accuracy of the profile, which is estimated using
the overlap percentage[33, 15]. We assess the quality
of the hardware generated path profile in a real-world
application by using the profile to drive superblock

formation in the gcc compiler. Next, we determine
the execution time overheads of our profiling scheme
using a cycle-accurate superscalar simulator. Finally,
we evaluate the effectiveness of the path-based phase
detection scheme.

Our results show that average profile accuracy of
88% is obtained using a hot path table that occupies
approximately 8KB of real estate. Experiments with
superblock scheduling confirm the high quality of
the hardware generated path profile. We find that
superblock scheduling using the hardware path profile
is substituted for a complete profile.  Moreover,
execution time overheads of profiling are low (0.6%
on average) enabling the use of the profiler in cost-
sensitive environments. Our results also indicate that
a path-based phase detection technique outperforms
BBV based schemes, improving the accuracy of phase
detection by over 10%.

8.1 Quality of Hardware Generated
Path Profiles

The hardware path profiler must generate accurate
profiles irrespective of the duration of profiling and
the metric associated with paths. We performed a
simulation study using Plackett-Burman experimental
design to identify a path profiler configuration that re-
alizes these goals. Table 5 lists the input parameters
we used in this design with their low and high val-
ues. For these experiments, we used two output met-
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Figure 10: A comparion of complete overlap per-
centages obtained using two indexing schemes

rics, the complete overlap percentage and the dynamic
overlap percentage. The complete overlap percentage
is the overlap percentage of the hardware path profile
obtained after profiling has been enabled for the en-
tire duration of program’s execution. To assess profile
accuracy under conditions where the profiler is acti-
vated for short durations during program execution,
we define the dynamic overlap percentage as the aver-
age of overlap percentages computed for path profiles
of over non-overlapping 100 million instruction execu-

tion windows. We also conducted Plackett-Burman
experimental studies where metrics other than path
execution counts - number of level 2 cache misses and
number of branch mis-predictions are associated with
paths.

From the results of experiments using the Plackett-
Burman design (refer appendix A for complete re-
sults), we find that the HPT size, HPT associativity
and the HPT indexing scheme are the three most im-
portant profiler parameters. On the other hand, the
cache and branch predictor related parameters are of
significantly less importance. This leads us to con-
clude that the hardware profile accuracy is unaffected
by the underlying architecture.

With these parameters eliminated, we next per-
formed a full factorial study with HPT size, associa-
tivity and the indexing scheme as parameters. Our
initial experiments reveal that an HPT indexing func-
tion that XORs bits from the path’s starting address
with path length and the direction bits outperforms
all other functions we evaluated. Figure 10 compares
the complete overlap percentages obtained using two
indexing schemes: one that uses bits from the path ad-
dress, branch outcomes and length (plb) vs one that
uses bits only from the path address and branch out-
comes (pb). We find that the plb scheme outperforms
pb for almost all benchmarks and over 15% on the av-
erage. We use the plb indexing function in the rest of
the study.
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for various profiler configurations when profiling
path execution counts, L2 cache misses and branch
mis-predictions.

Figure 11 shows the variations in complete overlap
percentages for four HPT configurations. An aver-
age complete overlap percentage of 88% is obtained
using a 512 entry, 4-way set associative HPT when
profiling path execution counts. The overlap percent-
age increases to 96% when the metric associated is L2
cache misses. We attribute the higher coverage to the
observation that level 2 cache misses are concentrated
along a smaller number of paths and exhibit more pro-
nounced locality and hotness properties than paths
themselves. On the other hand, the average complete
overlap percentage dips to 78.4% when branch mis-
predictions are profiled, a reflection of the fact that
branch mis-predictions are usually distributed over a
larger number of paths. As shown in Figure 12, fur-
ther increase in HPT size leads to additional improve-
ments in overlap percentages. An HPT with 2048 en-
tries captures virtually all paths, L2 cache misses and
branch mispredictions.

The impact of HPT configuration on dynamic over-
lap percentages is shown in Figure 13. Notice that
the dynamic overlap percentages are higher than their

[512:4

1™

e e
07\,{' IS

I

&

o

(=]

relative execution time (%)
[«
S

l

&

Il

100
9
7
60
&
S S
Figure 14: Relative execution times of binaries

superblock-scheduled using path profiles from two
HPT configurations.

static counterparts. This is expected since the dy-
namic overlap percentage is computed using path pro-
files collected for short durations. The number of
paths exercised in a short interval is likely to be
smaller and the path distribution sharper, so that
the profile can be easily accommodated in the HPT.
For the 512 entry, 4-way set associative HPT, we ob-
tain an average dynamic overlap percentages of 95.5%,
98% and 91.2% when profiling path execution counts,
level 2 cache misses and branch mis-predictions re-
spectively.

Although overlap percentages are reasonable quan-
tifiers of a profile’s accuracy, they say little about
the performance impact of using a less than com-
plete profile in real world applications. We therefore
obtained a direct assessment of the quality of hard-
ware generated paths profiles by using them to drive
superblock scheduling in the gcc compiler. Our su-
perblock scheduling implementation follows the tra-
ditional compile-profile-recompile cycle except that
the initial compilation pass does not involve any in-
strumentation. Instead, while generating an unopti-
mized binary, the compiler emits information about
the program’s control flow layout necessary for map-
ping path descriptors in the hardware path profile
to paths through the program’s control flow graphs.
Next, the unoptimized binary is profiled during trial
runs of the program using train input sets during
which a complete path profile along with path pro-
files for various HPT configurations are obtained. Fi-
nally, the profiles are fed back to the compiler which
performs superblock formation and enlargement and
generates optimized binaries. The optimized binaries
are run using the SPEC reference input sets and their
execution times are compared.

Figure 14 shows the execution times of optimized
program binaries that use path profiles generated by
different HPT configurations. Program execution time
is reported relative to that of a binary generated using
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Figure 16: Analytical model for power consumption in caches. E..; represents the cache energy and E;,s
represent the address and data bus energy consumption. The values prl through pr4 are the activity factors

assumed to be 0.25 for this study.
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Figure 15: Accuracy of complete extended path
profiles collected using the hardware path profiler.

a complete path profile. We observe that the differ-
ence between execution times is between +2% for vir-
tually all programs and 0.12% on average. This minor
change in execution time proves that hardware path
profiles are comparable in quality to and can be used
instead of complete path profiles.

Next, we evaluate the effectiveness of the hardware
profiler in collecting extended path profiles. Figure 15
illustrates the complete overlap percentages for
extended paths that span across one backward branch
and those that extend beyond one procedure call. The
figures reveal that the hardware profiler can be used
to collect extended path profiles with an accuracy of
around 78%. The reduction in overlap percentages
when compared to a BL path profile is due to the

increase in the number of unique paths traversed.
It remains to be seen whether the reduced profile
accuracy can be tolerated by real-world applications.

Quality of path-wise power profiles: Unlike other
architectural metrics, the quality of path-wise power
profiles cannot be assessed in isolation of the power
models used to estimate power consumption in vari-
ous components. In this section, we first determine
whether the choice of a power model has an influ-
ence on the nature of path profiles. Our evaluation
uses power consumption in the cache hierarchy as the
metric associated with paths, primarily because a sig-
nificant fraction of the overall power consumption is
attributed to the caches [25]. Of the several candidate
power models for caches [34, 35, 25], we chose two, an
analytical power model from Kadayif et al [34] (Figure
16) and a cycle level power model used by the Wattch
power simulator [25]. The analytical model was used
to compute the relative costs of hits and misses at
each level of cache. Apportioning logic similar to Fig-
ure 6 was designed for the Wattch power model and
integrated into a cycle-accurate processor simulator.

A comparison of the path-wise power profiles ob-
tained using the two power models shows a strong sim-
ilarity in the relative ordering of paths in the profiles
despite differences in the absolute value of the asso-
ciated power metric. This observation suggests that
for caches, the analytical model identifies hot paths
as well as the accurate cycle-level power model. Fig-
ure 17 illustrates the impact of various HPT config-
urations on the accuracy of path-wise power profiles
generated using the analytical power model. An aver-
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Figure 17: Accuracy of complete path-wise power
profiles for various HPT configurations, obtained
using an analytical model for power consumption
in the cache hierarchy.

age complete overlap percentage of 82.9% is obtained
using a 512 entry, 4-way associative HPT. Further in-
vestigations into the relative quality of these profiles
and their impact on power-aware compiler optimiza-
tions are left for future work.

8.2 Profiling Overheads

Using the hardware path profiler during program exe-
cution can lead to degraded performance if the profiler
does not service branch instructions faster than their
rate of retirement. To study this, we incorporated the
path profiler into a cycle-accurate superscalar proces-
sor pipeline simulator. Profiler operations are assigned
latencies proportional to the amount of work involved
in carrying out those operations. A path-stack-push
operation incurs a latency of one cycle whereas the
latency of a path-stack-pop is one cycle plus the la-
tency of updating the HPT. Since the HPT uses a
LFU based replacement policy, an HPT miss incurs a
cost of log(n) cycles, where n is the associativity of the
HPT. The latency of processing a branch is the sum of
latencies of the profiler operations (as specified in the
PPCR) performed while processing the branch. When
detecting and collecting an acyclic, intra-procedural
path profile, the latency of processing backward and
indirect branches is five cycles and a call instruction
is processed in two cycles. If a retiring branch finds
the branch queue full, the commit stage stalls and no
further instructions are committed until the stalling
branch can be accommodated in the branch queue.
The execution time overheads incurred by bench-
marks from the SPEC CPU2000 suite while collecting
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Figure 18: Execution time overheads incurred due
to the hardware profiler while profiling BL paths
for various Branch Queue sizes.

a BL path profile on a 4-wide superscalar processor are
shown in Figure 18. The overheads are computed for a
512-entry, 4 way set associative HPT that incurs a two
cycle latency on every miss. For each benchmark, the
leftmost bar represents the profiling overhead in the
absence of a branch queue. The next two bars repre-
sent the profiling overheads with a branch queue of size
2 and 4 entries respectively. We observe that a 4-entry
branch queue sufficiently buffers the profiler from the
pipeline and reduces average execution time overheads
from 8.04% to 0.6%. This represents a sharp drop from
the typical 30-45% overheads incurred by traditional
instrumentation based path profiling schemes. More-
over, the profiling overheads remain unchanged even
when the profiler is configured to collect otherwise ex-
pensive extended paths.

8.3 Path-based Phase Detection

In the absence of a concrete definition of a program
phase and an ideal technique that detects absolute
phases in a program, phase detection techniques have
been evaluated using metrics that assess their suitabil-
ity in driving typical phase-based optimizations[36].
For this study, we evaluate the path-based phase de-
tector using the following metrics: sensitivity, false
positives, stability and average phase length. Fig-
ure 19 illustrates the variations in sensitivity and false
positives for various Manhattan Distance thresholds.
As expected, the sensitivity of the phase detector and
the percentage of false positives increase with decreas-
ing thresholds. An optimum working point is reached
at a threshold of 6 million instructions where the de-
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Figure 19: Variation in sensitivity and false posi-
tives of the path-based phase detector for different
Manhattan Distance thresholds.

tector recognizes phase changes with an accuracy of
94% and detects consecutive intervals belonging to
the same phase with an accuracy of 95%. This rep-
resents an improvement of 14% over the BBV-based
scheme. Moreover, the operating point is attained at
a much higher threshold when compared to the BBV
based scheme, which suggests that changes in program
behavior cause a significant change in the distribu-
tion of paths. Our results also show that the path-
based detector achieves an average stability of approx-
imately 88% at the optimum working point, signifi-
cantly higher than 62% achieved using the BBV based
technique. Moreover, the average length of phases de-
tected using the path-based scheme is 5.5 intervals,
which is comparable to that achieved using the BBV
based scheme.

Another desirable attribute of the phase detector is
the relative stability of program performance within
a phase. We use the variance in CPI (standard de-
viation/mean) within phases as a metric to evaluate
the path-based phase detection scheme on this count.
We find that the average percentage variance in CPI
for phases detected using the path-based scheme is
0.23 at the optimum working point, significantly lower
than 0.66 measured for the BBV based scheme. From
these results, we infer that the modified path-based
phase detection scheme achieves higher accuracy and
enhanced phase quality when compared to the BBV
based scheme, making it more suitable for phase-based
optimizations.

9 Conclusions and Future Work

This paper proposes and evaluates a hardware path
detection and profiling scheme that is capable of gen-
erating high quality hot path profiles with minimal
space and time overheads. The profiler derives its
flexibility from a generic path representation and a
programmable interface that allows various types of
paths to be profiled and several architectural metrics
to be tracked along paths using the same hardware.
These characteristics enable the use of the profiler in a
host of static and dynamic optimizations systems. The
potential of using path information in driving archi-
tectural optimizations is exemplified by the improved
accuracy of detecting phase changes obtained using
our path-based phase detection scheme. We are cur-
rently exploring the use of acyclic, intra-procedural
path sequences in understanding and improving the
predictability of branches. Possible avenues for future
work include the use of hot path information in im-
proving the performance of trace caches and precom-
puting memory reference addresses for cache prefetch-
ing.
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Appendix A

Results of experiments based on Plackett-Burman methodology that determine the
importance of HPT paramters

Figure 20 shows results of experiments based on the Plackett-Burman design with the complete path execution
count overlap percentage as the output metric. Numbers in the columns indicate the rank obtained and importance
of the corresponding input parameter. The last column, which is obtained by summing up ranks obtained by
a parameter for all benchmarks, reflects its overall importance. Figure 21 and 22 show the rankings for the
HPT parameters when L2 cache miss and branch mis-prediction overlap percentages are used as output metrics.
We find that HPT size has the highest importance for a path execution count and branch mis-prediction profile
whereas HPT associativity is important while gathering a 12 cache miss profile. The HPT parameters, HPT
size, associativity and the indexing scheme are consistently more important than the other parameters. As
aforementioned, the low importance of L2 cache and branch predictor configuration indicates that the overlap
percentages are independent of the machine configuration.

gee | gzip | omef  parser vortex art  equake  bzip  ammp | mesa | perl | twolf | Total

HPT Size 2] ? 2 1 1 3 1 2 1 1 1 1 19
HPT Associativity 1 1 1 2 ? 2 5 1 ? ? 3 3 25
Indexing Scheme 2 3 ] 3 3 1 2 3 4 3 2 2 33
L2 Size ] ] ] 4 ] ] 3 5] ) f ] 4 60
L2 Associativity 4 5 3 5] 5] 5 4 4 5] g 4 5] A8
Branch Predictor 5 4 4 ] 4 4 ] ] 5 4 ] ] A7

Figure 20: Results of the Plackett-Burman study with the complete path execution count overlap per-
centage used as the output metric. Numbers indicate ranks obtained by the input parameters.

gee | gEip | mef  parser vortex  art  equake  bzip  ammp | mesa | perl | twolf | Total

HPT Size ) 3 2 4 1 4 2 2 4 2 2 1 30
HPT Associativity 1 1 1 1 2 1 3 1 1 1 1 2 16
Indexing Scheme i 2 3 3 3 2 1 3 2 3 3 4 34
L2 Size 4 4 ] ] ] ] 4 ] ] 4] 4 ] G1
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Figure 21: Results of the Plackett-Burman study with the complete L2 cache miss overlap percentage used
as the output metric.

(1 [ azip mcf | parser vortex  art  equake bzip ammp mesa | perl | twolf | Total

HPT Size 2 4 2 1 1 3 1 1 1 1 2 1 20
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Indexing Scheme ] 2 4 4 3 2 3 4 ) 3 1 2 37
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Figure 22: Results of the Plackett-Burman study with the complete branch misprediction overlap per-
centage used as the output metric.



