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Space/Time Tradeoffs in Code Compression
for the TMS320C62x Processor

Abstract

Reducing instruction memory requirements by improving code density using com-
pression techniques has been the aim of much recent work on embedded devices. Pre-
vious work has been successful in improving compression ratios with modest decom-
pression overhead for general purpose RISC architectures. However, most traditional
compression techniques fail to produce good results for tightly encoded VLIW architec-
tures. Increased popularity of highly flexible VLIW instruction formats have triggered
a search for new variants of traditional compression schemes which achieve good com-
pression ratios with low decompression overhead. We propose a simple variant of a
dictionary based compression scheme and report the results of simulations on a widely
used VLIW architecture, the TI TMS320C62x, exploring various options like field
sizes, use of profiling information, and study their effects on compression ratios and
decompression overheads. The advantage of our scheme is its simplicity and its easy
adaptability to varying instruction formats.

Keywords: Compression, Code density, VLIW architecture



1 Introduction

Embedded devices are supposed to play a key role in the future generation of miniature
devices [1, 2]. However, at the present time, memory is found to be a scarce resource.
Most of these small devices have constraints including die size, cost and power consumption.
Since memory size is directly related to the total die size of the embedded devices, special
attention has to be given to the size of application programs developed for these devices.
On the other hand, sizes of programs are increasing as automatically generated programs
are larger than the handwritten assembly code that they replace. To reduce the total code
development cost, highly optimized handwritten assembly code is limited to the core part
of the program space. The past decade has witnessed considerable research in the area of
object code compression to address the issue of limited instruction memory[3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 23]. All such compression techniques have to deliver good
compression ratios within the constraints of real time decompression and random instruction
access with as little additional hardware as possible. Many proposed techniques produce good
compression ratios 1 on RISC architectures. However with the introduction of new flexible
VLIW instruction formats, traditional compression techniques are found to be inadequate.
One such architecture that has multiple functional units and variable instruction formats is
the TI TMS320C62x[1]. Statistical schemes that use a variant of arithmetic coding[9, 10, 11]
have been proposed as a solution to improve the compression ratio, but at the cost of complex
decompression hardware.

Fast decompression with simple hardware can be obtained with dictionary compression
schemes[4, 5, 8, 12]. However these do not work well for variable instruction formats. In this
paper, we propose a simple variant of a dictionary based compression scheme that overcomes
this difficulty, and look at spacetime tradeoffs on TMS320C62 processor. We divide the
instruction set into different classes depending on the instruction set architecture, and create
separate dictionaries for each class thereby exploiting similarities among instructions in a
single class. Average compression ratios range from 73.5% upwards(inclusive of the space
for the line address table) depending on the space/time tradeoff.

Section 2 gives an account of related work in the field. The compression scheme is
explained in detail in Section 3. Experiments and results are described in Section 4 and are
compared with those obtained from current schemes. Finally Section 5 concludes the paper.

2 Related Work

Wolfe and Chanin[3] proposed the first code compression scheme for embedded processors.
Here the main memory contains the compressed code, and the decompression unit is located
between the main memory and the instruction cache. This decompresses a cache line when-
ever there is a cache miss. Byte based Huffman codes are used for compression. Compression
ratios of 73% are reported by Kozuch and Wolfe[16] for MIPS code. Benes et al.[17] have
designed a fast Huffman decompressor chip which achieves an output rate of 163 Mbytes per
second. Wolfe and Chanin also proposed the use of a Line Address Table(LAT) which maps

1Compression Ratio = Compressed Size / Original Size



program instruction block addresses into compressed code instruction block addresses. The
data in the LAT is generated by the compression tool and stored along with the program.

The idea of replacing frequently appearing groups of instructions by a call to a dictionary
which stores each of these sequences once was proposed by Liao et al.[4]. They have reported
compression ratios of 82% to 84% for TMS320C25.

Bird and Mudge[5] proposed a simple dictionary-based method which outperforms byte-
based Huffman coding. Commonly occurring instruction sequences are replaced by a code-
word which is an index into a dictionary which has the original sequence. The final program
has both codewords and uncompressed instructions. Branch targets have to be aligned in this
scheme and the range of branches is reduced. They report compression ratios of 61%,66%
and 74% for the PowerPC, ARM and I386 processors respectively.

Lefurgy and Mudge[12] introduced the use of a fixed length encoding by putting each
unique instruction word in the program in an instruction table, and replacing each instruction
in the program with an index into the table. If the table overhead is small compared with the
program size, the compression is effective. An advantage of this scheme is that PC relative
branches do not change. Also, absolute branch addresses will change by an amount that can
be precomputed because of the fixed length encoding, thereby avoiding the overhead of the
LAT.

Ishiura et al.[7] split up VLIW instruction words into fields each of which is compressed
using a dictionary based scheme. Their scheme is for fixed instruction formats and com-
pression ratios from 46 to 60 % are reported. Nam et al. [8] also propose dictionary based
compression for a fixed format VLIW processor and report compression ratios from 63% to
71%.

Lekatsas and Wolf[9] propose a statistical scheme based on arithmetic coding along with
a precomputed Markov model, with multi-bit decompression for use in RISC architectures
and have reported compression ratios as low as 50% for a RISC processor. An arithmetic
coding scheme for VLIW processors with flexible instruction formats is also described in the
work of Xie et al.[14]. Here there is a tradeoff between the speed of decompression and the
amount of compression, and the compression ratio for the TMS320C6x that they achieve
ranges from 67% to 80% with decompression speeds from 11 bits to 47 bits per clock cycle.
However it is not clear if the LAT size is included in these figures.

Prakash et al.[13] use a variation of the fixed size dictionary scheme in which each instruc-
tion is separated into two halves of 16 bits. Dictionaries are created for the vectors in each
half-space, such that most of the vectors in the half space are at a Hamming distance of
one from some entry in the dictionary. Each instruction half is encoded by a pair which is
an index into the dictionary and the position where it differs(if at all) from the dictionary
entry. A line address table is used to map compressed instructions to the original ones.
Average compression ratios of 76% and 78% (including the LAT) were obtained for TI and
Mediabench benchmarks by their method, henceforth referred to as the Bit-Flip scheme.

Ros and Sutton[18] have tried out single and multiple instruction dictionary methods
for code compression and investigate the performance when applied to various compiler
optimizations and parallel instruction orderings.



3 A Dictionary Scheme Based on Variable Instruction

Formats

Based on the instruction set architecture one can design a multiple dictionary scheme which
is a variation of the fixed size dictionary scheme of Lefurgy and Mudge[12]. Here instructions
are separated into different groups based on the classes of the instruction set architecture.
Separate tables are created for each of these groups and unique entries are inserted into the
table. Instructions are encoded as pointers to the respective entries. Since the tables created
are generally of small size, the overhead of storing pointers is small.

3.1 The New Scheme

   creg         z               dst                             src2                        src1 / cst            x                        op                       1    1     0     s    p

                       31            29  28 27                          23 22                       18 17                         13 12 11                                        5    4     3    2     1    0

Figure 1: Format of .L instruction class

   creg         z               dst                              src2                             offset                  s     p     0    1     0    0     0     0

                               uncompressed                                               compressed                                     opcode

Figure 2: One possible encoding of .L class

Modern VLIW architectures like the TMS320C62x use a flexible instruction format. In
our code compression scheme, instructions are grouped at the object code level based on
instruction classes. For example, the TMS320C62 architecture specifies twelve instruction
classes and therefore object code instructions are partitioned into 12 groups. (In the imple-
mentation, we have dealt with only 11 classes as 2 instruction classes, IDLE and NOP have
been merged into a single instruction ). Within a group, each instruction is partitioned into
two segments, division being performed at a logical point, with each instruction class having
a different division point in general. In our scheme for the TI processor, we ensure that each
segment is contained in two bytes. This size limit simplifies the implementation of the index
tables and the decompression hardware.

Consider an instruction class (.L functional unit) of TMS320C62 architecture in Figure 1.
The partitioning is made at the 17th bit. So op;x;src1 forms one segment and src2;dst;z;creg
forms the second. The three bit opcode of the instruction class, 011, can be ignored because it
can be automatically generated at the time of decompression. All other fields of the instruc-
tion are relevant for compression. Instruction class division and the instruction partitioning
are fixed and hence the decompression hardware can be fixed for a given processor.

3.2 Dictionary Construction

A dictionary for each segment of each class is constructed for a block of object code. In our
scheme, there are 11 instruction classes which are divided into two segments needing a total
of 22 dictionaries.



An initial pass is made over the whole program to collect all unique entries into their
respective dictionaries, associating each entry with a frequency count. Infrequently occurring
instruction segments are removed from the dictionary and left uncompressed. If d is the
total size of a dictionary corresponding to an instruction segment of size s, then pointers
of size log2(d) will have to be used. If the frequency of the instruction segment is n in the
uncompressed program, then an instruction is compressed whenever
(s + n ∗ log2(d) < (n ∗ s), ignoring the opcode.
A problem with the above dictionary construction method is that the size of the dictionaries
varies with the programs to be compressed. It complicates decoding of the instruction
segments and therefore its implementation. A possible alternative is to fix the size of the
dictionary with the help of a set of common benchmark programs which are frequently run
on the processor. A disadvantage of fixing the dictionary size is that some small programs
can result in wastage of dictionary space, whereas most large programs would benefit from
additional dictionary space. The compression ratios are slightly affected because of these
differences, but our experiments have revealed that the fixing the dictionary size results in
better performance with a small degradation in compression ratio.

The second difficulty associated with logical division points is the nonuniformity of the
size of instruction segments. Dictionary entries can be padded to result in uniform size. In
our scheme, all dictionary entries are padded to form two bytes. The overall reduction in
compression ratio by forcing this uniformity is less than 0.5% on the average; the advantage
lies in easy decoding thereby achieving fast dictionary access. In effect, multiple dictionaries
can be logically considered to be a single large dictionary with different base addresses for
various instruction segments.

3.3 Encoding

Encoding is simple as each instruction segment is replaced by a pointer to the corresponding
entry in the dictionary. If the instruction segments are not present in the dictionary then
they are left in uncompressed form. We use an opcode for the instructions in the compressed
program, which gives information regarding the class of the instruction, the base of the
dictionary, and whether each instruction segment is compressed or not.

The TMS320C6200, our experimental processor, is part of the TMS320 DSP family[1]. It
uses the VelociTI architecture which is a high performance advanced VLIW architecture. It
is a clustered architecture processor and has two clusters of four functional units each. It
fetches eight instructions each of length 32 bits at a time. Each such fetch packet may be
made up of several execute packets, all instructions in an execute packet being executed in
parallel. Since each fetch packet is made of eight instructions we selected our block size for
purposes of compression to be eight instructions i.e. 256 bits or 32 bytes. In other words a
decompression operation decompresses a single fetch packet.

Our opcode requires 6 bits (4 bits to indicate the class of the instruction and 2 bits to
determine whether each of the segments is compressed or not). If the first segment of an
instruction belonging to the class in Figure 1 (.L class) is compressed and the second segment
is not, it will be encoded as in Figure 2. The first 4 bits indicate that the instruction is of
class zero. The next two bits indicate that the first segment is compressed and the second
segment is uncompressed. The compressed segment is replaced with the pointer to the



dictionary entry and the uncompressed segment appears as such.
Since the processor handles eight instructions (a fetch packet) together, a fetch packet has

to be addressable. Our variable length encoding scheme does not guarantee that each fetch
packet starts at a new byte boundary. Therefore fetch packets have to be made explicitly
addressable by padding the last few bits of the last instruction in a fetch packet with zeroes.
This reduces the compression by a small amount (around 1.5%).

3.4 Line Address Table

As mentioned earlier, random access of instructions is a constraint to be addressed in object
code compression techniques. A Line Address Table (LAT) helps in maintaining a mapping
between the compressed and the original instruction addresses, so that control instructions
like indirect jumps, whose targets are determined only at run time can be effectively handled.
The space overheads in maintaining this line access table are seen to be about 5%.

00s   p   0   1   0   0creg      z           dst                   src2                   offset 

                uncompressed                             compressed                       opcode

creg    z           dst                   src2                 src1/cst        x                 op                 1   1   0   s   p    

.L− dict 1
opcode table

Figure 3: Serial Decompression

3.5 Serial Decompression

The opcode which is the first part of a compressed instruction holds three pieces of informa-
tion, namely the class of the instruction, whether the instruction is compressed or not, and
the base address of the appropriate dictionary.

Figure 3 shows the decoding steps of the encoded instruction of Figure 2. The instruc-
tion class and the base address of the dictionaries can be derived from the opcode. The
dictionary entry can be obtained with the offset provided in the compressed instruction. An
uncompressed segment does not need any processing. The original opcode of the instruction
class can be automatically generated from the opcode as shown in the figure.



Since instruction segments of all the dictionaries have uniform size with appropriate
padding, the dictionary entries may have to be shifted depending upon the opcode value
to get the proper segment.

The serial decompression scheme can be pipelined in three stages. In the first stage, the
opcode can be decoded to get the basic information on the dictionaries and the type of
the instruction. At the end of the first stage, number of bits taken by the first compressed
instruction is known and the next compressed instruction opcode can be identified and
decoded. The second stage is used to send the offset to the corresponding dictionary and the
original instruction can be retrieved in the third stage. The original opcode of the instruction
class can be generated in parallel to form the complete instruction.

3.6 Parallel Decompression

A serial decompression scheme used as such may degrade performance considerably as the
instructions in a fetch packet are decoded serially. One way to overcome this is to have a
more expensive parallel decompression unit as described below.

The compressed instruction in the Figure 2 can be divided into two sections - the opcode
partition (initial 6 bits) and the instruction segments (the remaining bits). Therefore all the
compressed instructions of a fetch packet can be organized into these two regions. The first
region contains the opcodes of all the eight instructions in the fetch packet and the second
region contains the remaining segments of all the eight compressed instructions of the fetch
packet. Since the size of the opcode is fixed, the opcode region will take a fixed size partition
of the compressed fetch packet. Each opcode can be accommodated in a single byte for the
TI processor so that the corresponding opcode can be accessed easily with a simple shift
operation. All the instructions of a fetch packet can be decoded simultaneously once the
complete mapping of the fetch packet is known. By contrast, in the serial decoding scheme,
the starting address of the second instruction is only known after the decoding of the first
one. During parallel decompression, all the eight opcodes residing in the first eight bytes of
the compressed fetch packet can be decoded together to obtain the complete mapping of the
whole fetch packet. Once the starting address and status(compressed or uncompressed) of
all the instructions of the fetch packet are known, they can be fetched in parallel. However,
the simple hardware of the serial decompression scheme can not be directly used because of
the need for parallel access of the dictionaries.

3.7 Implementation of the Dictionary

The dictionary can be implemented as a single large index table with a fixed number of
entries. Our compression scheme makes use of non-uniform size instruction segments which
have to be shifted appropriately based on the opcode. Therefore the dictionary entries have
to be fed to a bit shifter controlled by the opcode of the compressed instruction to form the
correct number of bits for the original instruction. Equal sized dictionary entries help in fast
and uniform access of segments resulting in simple implementation.



3.8 Using Profile Information

To achieve better performance we examined the use of profiling information in order to guide
the compression process. The scheme described so far is a purely static scheme which does
not take into account the run-time behavior of the program. In most cases it is observed
that the program executes a small number of instructions very frequently. If these are
left uncompressed it is likely that the loss in compression ratio is offset by a significant
improvement in the overall running time. Our simulations have shown that this is indeed
the case and we report the results in the next section.

4 Experiments and Results
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Figure 4: Compression ratios for Mediabench programs (variable dictionary entries)

We have experimented with our compression scheme on the TMS320C62 platform using
Media[19] and TI[20] benchmarks. Texas Instruments Code Composer Studio (version 1.2)
compiler was used to produce the object code in the coff format[21]. Our compression
scheme was applied on the above code to produce compressed object code. For evaluating
performance of our new compression scheme, we made use of an open source TI simulator[22],
as the source code of the standard TI Code Composer Studio is not freely available. The
open source TI simulator had to be modified slightly to accept compressed instructions and
decompress them before execution. We have compared our scheme with the Bit Flip scheme
proposed by Prakash et al.[13] including the overhead of the LAT in our figures.

Compression results for the Mediabench programs are shown in Figure 4. In the above
results, the number of entries of the multiple dictionaries was not fixed and was allowed
to vary with the program to be compressed. The average compression ratio was 73.5%
(including the dictionary and LAT) for Mediabench programs. The fixed sized dictionary
scheme gave an average compression ratio of 75.5% on Mediabench programs and 70.9% for
TI benchmarks as shown in Figure 5 and Figure 6 respectively.
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Figure 5: Compression ratios (fixed dictionary entries)
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Figure 6: Compression ratios for TI benchmarks (fixed dictionary)

The advantages of a fixed size multiple dictionary scheme are seen in the smaller decom-
pression overhead shown in Figure 8, compared with the overheads of the variable dictionary
scheme, as shown in Figure 7, whose decoding hardware will be more complicated as the
offset in the main dictionary varies with the program. We have used serial decompression
because of its simple decompression hardware. The decompressor was pipelined as explained
earlier and placed between the instruction cache and the main memory, so that the instruc-
tion cache can hold decompressed instructions. Cache sizes ranging from 256 bytes to 64KB
were used for the above experiments. The pipelined serial decompressor gave an average
decompression speed of 22 bits/cycle for the fixed size dictionary scheme and 13 bits/cycle
for the variable one.
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Figure 7: Decompression overhead (variable dictionary)
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Figure 8: Decompression overhead (fixed dictionary)

4.1 Comparison with other schemes

Lekatsas and Wolf[14] report compression ratios ranging from 67-80% on the same architec-
ture using a variation of standard arithmetic coding with a complex decompression hardware.
However it is not clear whether this includes the overhead of the LAT. The Bit Flip scheme
developed by Prakash et al.[13] uses a variation of the dictionary scheme to produce an
average compression ratio of 76 % and 78% on TI and Mediabench programs(including the
overheads of the LAT) with simpler hardware than that of the scheme of Lekatsas and Wolf.
Our compression scheme seems to deliver improved compression ratios based on the simple
techniques of instruction class division and dictionary construction. The first scheme using
variable dictionary sizes produces an average compression of 73.5% but the decompression
hardware is not simple as the size of the dictionary has to be extracted before decoding
the instruction. The second scheme of fixed size multiple dictionaries overcomes this disad-
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Figure 9: Percentage of uncompressed instruction

vantage. The extra hardware required by our scheme is reduced by the uniform dictionary
entries and fixed base address of the dictionary segments. Because of the similar decom-
pressor operation, our compression scheme can be directly compared to the fixed length
basic dictionary scheme developed by Lefurgy and Mudge[12], which was able to produce a
compression ratio of only 86% on the tightly decoded TI architecture.

The dictionary size of our scheme is also small compared to other dictionary schemes. We
have worked with a fixed size dictionary of size slightly less than 2.5 KB for the Mediabench
programs. Dictionary sizes for the bit flip scheme ranged from 1.5 KB to 5 KB with an
average size of 3 KB. The percentage of uncompressed instructions of our scheme is only in
the range of 12% compared to 35% of the Bit Flip scheme. Figure 9 shows a comparison
of the percentage of uncompressed instructions of our scheme with the other dictionary
method. The results show that multiple dictionaries are effective in capturing similarities
between instruction segments.

The result of using profiling information in deciding which instructions to compress proved
to be very fruitful. Keeping frequently used instructions uncompressed, results in good per-
formance even with serial decompression. Figure 10 plots the average performance ratio
versus the compression achieved for Mediabenchmarks keeping from 3% to 14% of the in-
structions uncompressed based on profiling information. The performance ratio is with re-
spect to the running time of uncompressed code. The degradation in performance is almost
6% at 78% compression with a 64KB cache.

5 Conclusion and Future Work

A simple variant of the basic dictionary scheme has been proposed and implemented in this
paper. We have shown that the new scheme is highly effective for the flexible instruction
format architecture, of the TMS320C62x processor. Decompression hardware with fixed size
dictionaries provides fast decoding. We have studied the space/time tradeoffs using fixed
and variable dictionary sizes, and compression based on static analysis as well as dynamic
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Figure 10: Performance improvement with profiling keeping from 3% to 14% of instructions
uncompressed

analysis. The latter has proved to be useful in improving performance at the cost of a small
increase in code size.
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