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Abstract

Typically, during system development, a voluminous amount of
technical documentation is created. This documentation plays a cru-
cial role in enhancing productivity in the latter stages of a project.
Therefore, having all technical documents in correct and consistent
state at all points in time is widely accepted as an important prob-
lem. However, the unstructuredness and heterogeneity of technical
documents are two main issues in providing an effective solution to
this problem.

In this paper we propose a novel approach for modelling system
descriptions based on YAML — a meta model for the definition of
the logical view of a technical document. This logical view imposes a
structure to the document and explicates traceability relations. The
expressive representation of the document logical structure through
YAML proves very useful in subsequent consistency maintenance in
documents — both manually and automatically.

YAM is a modelling framework, that we have developed, based on
this concept. We demonstrate how YAM’s plugin based architecture
supports open ended heterogeneity in modelling languages and tools.
This fact also makes it possible to use the power of existing verifi-
cation tools to carry out automatic consistency checks in technical
documents. We cover some of the top level design aspects of YAM
that are a direct implementation of YAM’s underlying design philos-
ophy: Open ended heterogeneous modelling using a logical view of the
document.

1 Introduction

High quality documentation has been recognised for long as an essential as-
pect of successful software projects|4](essay 6 and 10), [16]. Some prime qual-
ities of a high quality documentation system are: expressivity for breadth of



modelling, formalism for precision and automation, and consistency. In this
paper we propose a method for creating and working with high-quality tech-
nical documentation. At the heart of this method is a simple object-oriented
metamodel — which we have developed and named YAML — of a technical
document. Along with that, we have developed a documentation framework
called YAM, which allows creation of technical-documents as instances of the
YAML meta-model. Section 2 surveys earlier work which have addressed the
issues of heterogeneity and consistency in software artifacts in various forms.
Then we introduce our approach in section 3 highlighting its similarities with
existing body of work, and its novelties. We describe YAML, the document
logical structure meta language in section 4. Then, we introduce YAM, the
plugin based modelling framework, by working on small but complete ex-
ample documentation project in section 5. Section 6 presents the conceptual
design of YAM more precisely, and elaborates on YAM’s strategy of handling
heterogeneity and consistency. We conclude with a few words on the future
directions in section 7.

2 Related Work

The fundamental goal of this work is to contribute towards bringing the prac-
tice of formal system description closer to the day to day software engineer-
ing practice. We have identified two aspects to this problem: development
of powerful modelling languages and tools; and consistency maintenance.
Here, we discuss the works which seem to aim at the same goals, and have
concentrated on some or the other of its aspects mentioned above.

A work close to the spirit of heterogeneous modelling is Espress[5]. Espress
methodology allows development of compound specification documents. Dif-
ferent modelling techniques, e.g. Statecharts, Z etc are combined into a
Z-based notation called uSZ, which is the basis of semantic integration of
the formalisms. The methodolody (and the tool) works on the concepts of
data integration through a uniform data representation. Control integration
is achieved through definition of adaptors.

Plugin based tool integration is supported in Eclipse[7]. Eclipse recognises
the need for open ended tool integration in a very general setting. The
Eclipse IDE can be used to build new plugins which can then be integrated
to the IDE itself, thereby continually enriching the power of the Eclipse
environment. Eclipse is already a popular platform in projects using plugin
based development approach.

Object Management Group’s Unified Modelling Language [1], or UML, is
an alternative approach for heterogeneous system modelling. It is a huge suite



of diagrammatic notations (views) for modelling object oriented systems. Its
rich collection of notations is widely popular in industry and academia. This
is both for the reasons of expressivity, and because of good tool support. Ob-
ject Constraint Language[19] is now an integral part of UML specification. It
provides formal notations for writing constraints on UML diagram, thereby
infusing a greater degree of formalism into UML diagrams. A huge com-
munity of researchers have been working on building automatic constraint
checking methods on UML. We refer the interested reader to Precise UML
group which aims at making UML a precise modelling language[12]. A re-
lated work on live sequence charts can be found in [6]. Tools employing
various strategies of integration of UML model validation are Neptune[2],
Use[11], ArgoUML[18].

Another popular branch of research is based on (software) architecture
description languages, or ADLs. Heterogeneity is supported by the generic
constructs of the languages. ADLs, as opposed to UML, stress more on
formalisation. Hence they have stricter semantics, and are almost invariably
supported by tools for correctness and consistency checking. A good survey
and comparative study of this body of research is provided in [14].

When softwares are described by architectural styles, there could be mis-
matches known as architectural mismatches. Gacek[10] talks about software
architectural mismatches and their automatic detection. Consistency check-
ing in multiple viewpoint software architecture is dealt with in[10] and [8].
In this a graphical modelling language and a simple constraint language are
provided along with a checking algorithm. An early treatment of the idea of
consistency in requirement specifications is done in [17]. A more recent re-
lated work giving a method of consistency checks between documents is [16].
It uses xlinkit, a lightweight application service that provides rule based link
generation and checks the consistency of distributed web content [15].

This brief survey aimed at giving a glimpse of the research work concern-
ing high quality system description by targeting the following aspects:

e Increasing expressivity of system description language by supporting
heterogeneity in modelling languages and tools.

e Consistency maintenance through development and use of more formal
description languages, thereby creating scope of automatic consistency
maintenance.

e Open ended development of methods of system modelling through
tool integration frameworks and data interchange formats between case
tools.



3 Owur Approach

In this section, we briefly introduce our approach to solve the problem of
creation and maintenance of high quality system descriptions. Our approach
can be summarised through the following points:

e Maximisation of expressivity through heterogeneous modelling.

e Use of formal languages and tools for allowing automatic consistency
maintenance.

e Open ended architecture allowing languages and tools to integrate
freely.

Two parameters defining the design policy of a modelling environment are:

1. Degree of formalism and automation

2. Degree of open endedness of tool integration

The first parameter makes the modelling environment take a more aggres-
sively formal approach — sticking to a restricted set of formalisms, making
full use of verificaton tools for consistency checking etc. The second suggests
a less aggressive approach — more heterogeneity, less strict formalism, open
endedness prefered to automation etc.

We consider ours as a middle path. In terms of open endedness, our work
is placed somewhere between Espress and Eclipse. YAM targets modelling
and documentation as Espress does. However, it doesnot require semantic
integration to be done inside the YAM framework. While passing the re-
sponsibility of automation to plugin verification tools, YAM takes up the
task of maintaining and managing a data base of heterogeneous models. The
responsibility of invoking the right plugin at the right time is again YAM’s
responsibility.

However, YAM’s completely novel aspect is that it allows creation of
system models and documentation over a logical view of the document. YAM
then makes use of this logical view to keep track of consistency in the models.

4 YAML — A Metamodel for The Logical Struc-
ture of a Design Document

4.1 Introduction

Now we present YAML, the meta language that provides constructs for defin-
ing the logical structure of a document. The aim behind defining YAML as

4
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Figure 1: YAML — A Metamodel for The Logical Structure of a Design
Document.

it is are the following:

1. identification of the role or type of a particular document fragment
based on a finite vocabulary of types.

2. identification of the traceability relation between these fragment, again
from a finite set of relation types

The set of modelling element types and the set of relation element
types shared by them constitutes YAML, the language we propose to describe
the logical structure of a document.

Figure 1 shows YAM, represented, using UML notations, as the meta
model of the document logical structure. A technical document consists of
several modelling elements, each corresponding to one or the other logical
fragment. By a ‘logical fragment’ we mean a minimal visually contiguous
portion of the document that holds a piece of meaningful information. In
fact, the complete document is covered by assigning all its contents to some
or the other modelling element. As per our current specification of YAML, all
modelling elements completely partition the document. A logical fragment
of the document belonging to one modelling element cannot belong to any
other. Depending on the content of the document fragment, the subtype of
the modelling element class that it actually belongs to is defined.

The subtypes of modelling element class, as depicted in Figure 1, are
four in number,namely, class, object, specification and argument. The
relationship shared by one document fragment with another can be of one of
the six types as shown in Figure 1. These are: equivalence, refinement,
scope, argument, instance and dependence. The multiplicity of the



association between modelling element and relation element means that the
relation elements are all binary relations connecting two modelling elements;
and a modelling element may be associated through any number of relations
with other modelling elements. A document can thus be shown diagrammat-
ically as a collection of objects each representing a particular logical fragment
of the document, and belonging to one of the four aforementioned types of
modelling elements. These objects are connected through links, each belong-
ing to one of the six aforementioned types of relation elements. We call this
diagrammatic representation of a document its logical view. Please note
that relation links between modelling elements, appearing in the logical view
of document, are not explicit parts of the reader’s view, the view of the
document corresponding to its ordinary appearance.
We devote the rest of this section to describe YAML in greater detail.

4.2 Modelling Elements
4.2.1 Class

A fragment containing description of a type is given the name class. The
term class! has been borrowed from the OO terminology, since the sense
in which we intend it to be interpreted in our domain is akin to the OO
usage. For example, a description of the rules of construction of a regular
expressions corresponds to the class of regular expressions. A description of a
graph represents the class of all abstract-structures fulfilling this description.
Depending on the context, the same description may or may not qualify as
a class. These differences will eventually get clear with the description of
the remaining features of the language.

4.2.2 Object

The term object is also borrowed from the object-oriented domain. A doc-
ument fragment describing an entity in the modelling world is an object.
Sometimes there may not be a class fragment corresponding to the object
fragment present in the document at all. Although the relation in a docu-
ment between a class and an object is the same as in a computer program
—i.e. instance (described in the next subsection) — there are two important
differences. First, unless the document contains the description of an exe-
cutable model of the system (e.g. source code), there cannot be assumed any

'When a keyword of YAML is introduced we use boldfaced font. However all subse-
quent uses of these keywords are in verbatim font. At many places in this paper, terms
like ‘class’ and ‘object’ are used with interpretations different from as keywords of YAML.
All such uses are in normal font.
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Figure 2: A logical view describing some related portions of a typical docu-
ment.

notion of a runtime. The contents of a document represent the description
of a system, not the system itself. Secondly, if an object modelling element
has been modelled as an instance of some other class modelling element, it
may include its full description. An implicit assumption that it will reconcile
with the specification of that class contained in the class element doesnot
hold here. Hence, it is subject to verification whether indeed the description
of an object fulfils the specification of its class.

Figure 2 shows a partial logical view of a typical document. This portion
of the document is describing a language recogniser which accepts a regular
expression. Both the finite state automaton (M1), and its equivalent regular
expression representation (M2) form a modelling element each. A possible
string that the recogniser would accept (M3) forms the third modelling el-
ement. While the two elements describing the input language are modelled
as two classes (shown as ordinary rectangles), the example input string is
modelled as an object (shown as a rectangle with rounded corners). The
two classes describe the same language, hence are related to each other
through an equivalence. The object, on the other hand, is an instance of
the classes. The relations thus explicated here indicate the intended rela-
tion between these fragments of the document. Whether these relations are
actually satisfied decides the consistency of the document: a matter subject
to verification — either manual or automatic.

4.2.3 Specification

A fragment describing verifiable properties of any fragment — either a class
or an object — is a specification. By ‘verifiable’ we do not mean that a
verification algorithm or tool should exist to mechanically check the satisfac-
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Figure 3: A logical view showing a specification for a class and an object.

tion of that property. It means that the property stated in a specification
should be an assertion which is present in the referred fragment, either ex-
plicitly or in an implied manner.

Figure 3 shows a partial logical view of the same document, with a
specification (M4, shown in bold rectangle with rounded corners) for M1
and M3 of figure 2. As it can be seen, the content of the specification is
a fact, formula or assertion about the related class or object. Following
observations are in place at this moment:

e The consistency of the document is dependent on whether the fact
contained in the specification actually holds for the related elements.

e An object and a specification do not differ from each other by the
syntactic or semantic structure of their contents. It is the role of that
element in the document which decides if it is a class, an object or
a specification. An object is an added information about some
‘thing’ in the modelling world. Its removal will cause reduction of
the total information about that ‘thing’. More formally, each class or
object restricts the set of things in the modelling world that satisfy the
properties mentioned in them. On the other hand, a specification
is an assertion of a property of that ‘thing’ which has been described
in the modelling elements (classes or objects) describing it. This
property should be ‘verifiable’, i.e. explicitly or implicitly contained
in the related elements describing that ‘thing’. More formally, the
specification should not restrict the set of licit interpretations any
further than what has been done in the modelling elements scoped by
it.
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Figure 4: A logical view showing a specification and an argument for it.

4.2.4 Argument

In the language of mathematical logic, a proof means a sequence of formulae
called the premiss, followed by another formula which is the conclusion. Sim-
ilar structures are visible in technical document where arguments are given
for a design decision based on already known facts. These arguments do form
an important part of any technical document. Such a fragment qualifies to
be called an argument. In spirit it is similar to a premiss part of a formal
deductive proof. The role of the conclusion is played by a specification in
the document.

Figure 4 shows a section of the logical view of a document with a specification
(M4 of figure 3) and its argument (M5, shown in a bold rectangle). The
argument again looks very similar to the specification, with its list of
facts, formulae or assertions. But the purpose of its being there in the doc-
ument is to reinforce the specification, and not to independently state
properties of the element. The argument transitively scopes the modelling
element that is scoped by its specification; hence refers to names in it.

4.3 Relation Elements
4.3.1 Equivalence

When the contents of two modelling elements mean the same thing, they are
related to each other through an equivalence relation.

4.3.2 Refinement

When one fragment explains in a greater detail, something that another has
already described, the former is a refinement of the latter.



procedure dfs (int Node, int GroupCode)
if (Final[Node] != 0)

return
endif
Final[Node] = GroupCode
for (int 1 = 0 to N)
(where N = Number of nodes in the input graph)
if edge (Node, i)
dfs (i, GroupCode)
endif
endfor
end procedure

] ¢

void dfs (int Node, int GroupCode)
{

if (Final[Node] != 0)
{

}

return;

Final[Node] = GroupCode;
for (unsigned int i = 0; i < Size; i++)
{

if (Con[Node][i] == true)

{

dfs (i, GroupCode);

Figure 5: An example of refinement: The source code of a function is a
refinement of its pseudo code.

A refinement relation is reminiscent of the traditional horizontal trace-
ability[13] in requirement engineering usage. This is evident in Figure 5,
which shows two objects. One is the pseudocode of a version of a depth
first search algorithm (M6 in figure 5). The other is the source code written
in C programming language (M7 in figure 5). A source code fragment im-
plementing an algorithm written in pseudo code is a refinement of it, since
it contains language specific implementation details which are absent in the
pseudo code. Note that M6 could reside in the low level design document,
while M7 is a part of the source code implementation. Let us mention here
that the logical view of the technical documentation of a complete software
project spans across all individual technical documents, including the source
code.

10



4.3.3 Scope

The relation shared by a class or object fragment with a specification is
the scope relation. A scope relation between two modelling elements implies
that one specifies a verifiable property of another.

4.3.4 Argument

The relation between an argument modelling element with a specification
modelling element which is its ‘conclusion,’ is again named argument.

4.3.5 Instance

The meaning of this relation is akin to that in the object oriented domain.
The relation between an object modelling element and its class modelling
element is called instance.

4.3.6 Dependence

One important motive behind drawing the above five kinds of relations be-
tween various modelling elements is to explicate the traceability links be-
tween them. The objective of coming up with a taxonomy of different kinds
of relations is to characterise these relations in a more fine-grained manner.
However, unfortunately, complex relations actually exist between modelling
fragments. Many of them cannot be honestly modelled as per the above five
relation elements. However, the fact that there exists some relation cannot
be denied. In such cases, YAML allows the designer to model these with the
dependence relation.

4.4 Constraints

The following constraints define the rules of semantic well-formedness of a
YAML document. Their accompanying mathematical representations as-
sume the following context:

M = { class, object, specification,

argument }

R = { equivalence, scope, refinement, argument, instance,
dependence }

A R B where
A:4, B: % where &/, B €M
R: %R

11



Message M isinstantiated with
"Hello, World!"

M.print () is subsequently called.

CTTosssosomoooooy | Instantiate an object of classMessage !
1 Hellois aprogram that prints 1 | with parameter "Hello, World!". . LEGEND
1 "Hello, World!" on the console.| | . " |
———————————————— 1 Invoke method " print ()’ of that object. — scope
e T ! —— dependence
i — refinement
—> argument
X not verified
= verified
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,
| Message: A dlassinitalised with | pyp—— -1 Helloprints !
1 string swill print Swhenever its  +.-—--- | Message class ma”d o prog_rfﬁ_‘m e 1 "Hello, World!" on the console.
" method"print () isinvoked. ! Description pseudocode specification
m e
1 i ! | g i maneap0 6 |
- ' I
gouroe :Ozlss xrnoe code E;SS:emm 1 the same object isinvoked, then the
| mesaage printed iss.
I
i 1
I
I
I

,,,,,,,,,,,,,,,,,,,,

I
I class Message
!

I
| I
| private: |
| st M.print O3 I
1 public: return 0; I
I Message (const string aMessage) : '
m_Message (aMessage){}
void print (O{ cout << m Message << endl; }

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6: The complete documentation of the ‘Hello, World!’ project.

means that A is related to b by R where A and B are modelling elements
and R is a relation.

1. Two modelling elements can have only one link between them.

2. An instance relation can exist only between a class and an object.
The class is the source and the object is the destination.

(R : instance ) = (A: class ) A (B: object)

3. A scope relation can have only a specification as its destination.
The source end may have either a class or an object.

(R :scope ) = (A: & € {class, object} )A(B: specification)

4. Equivalence relation may exist between any type of modelling ele-
ments. However, the type of the modelling elements at both ends
should be the same for a given instance of equivalence.

(R : equivalence ) = (A: )N (B: &) | (o = B)

12



5. Refinement relation may exist between any type of modelling elements.
However, the type of the modelling elements at both ends should be
the same for a given instance of refinement.

(R : refinement ) = (A: &)\ (B: &) | (o = B)

6. An argument relation should have a specification as its source and
an argument modelling element as its destination.

(R : argument ) = (A: specification ) A (B: argument)

7. A dependence may exist between any two modelling elements.

4.5 More Properties

Now we present some more properties which can act as a representive rule-
base, along with the constraints mentioned above, to formally define the con-
dition of logical well formedness of a document. More complex well formed-
ness properties can be derived from these while doing semantic analysis of a
YAM document.

1. Equivalence, refinement and dependence are transitive and reflexive
relations.
Quite a few redundant links can be removed taking this property into
account.

2. Equivalence and dependence are symmetric. Therefore, the direction
of these relations need not be considered while modelling.

3. Equivalence is a type of refinement. It is a symmetric refinement.
Hence, a cycle involving all refinements should be replaced by all equivalences.If
that cannot be done, there is something wrong in the choice of refinement
as a describing relation between the involved modelling elements.

4. Scope is an inverse of refinement. Considering them as each other’s
inverse makes sense for a verification tool writer and the semantic anal-
yser. However it is better to consider their difference as per the defini-
tion while actual modelling.

5. If a specification is the scope of a class, it implicitly becomes
the scope of all the objects which are instances of the class. This

13



implies that in most cases it doesnot make much sense to add additional
scope relation s2 between a specification S with object O if there
already exists scope relation s; between the specification and the
class C of which O is an instance. Consider a scenario where a
specification S is scope s; and sy of a class C and of an object O
respectively, and that O is an instance of C. Now if a modification is
done in S, both s; and s, get affected. However, if s; is subsequently
verified to hold, it implies that s, also can be marked as verified without
directly being verified.

6. If a specification is the scope of a modelling element, it implicitly
becomes the scope of all the refinements of that element. Therefore,
in most cases it doesnot make sense to show a specification S as a scope
s of a modelling element M, if S is already a scope s; of another
modelling element M;, and M, is a refinement of M;. In such a
scenario, a modification in S causes both s; and sy to be marked as
affected. 1f verification of s; marks it back as verified, s too can be
marked as verified.

Please note that YAM’s constructs concern themselves only with the over-
all logical structure of the document, not with its content. Hence, filling up
contents in the modelling elements which agree with its logical role depends
on the user. Errors therein would fall in the purview of the external verifi-
cation tools integrated with YAM as plugins.

5 YAM — A Technical Documentation Sys-
tem

In this section we present a technical documentation system called YAM.
YAM is essentially a framework that allows creation of technical documents
through a logical view based on YAML constructs. Through its object-
oriented architecture YAM provides a simple interface — based on adaptor,
template, and strategy design patterns [9] — through which an arbitrarily
rich set of languages and tools can be integrated into YAM. This makes a
very powerful documentation system — rich in its repertoire of languages and
tools, and very resilient to inconsistencies. We have implemented a prototype
of YAM, and have used it on case-studies proving its usefulness and power.

We describe the basic user interface of YAM by working out a complete
example documentation project. The subsequent two subsections explain

in some detail the heterogeneous modelling and verification perspectives of
YAM.

14
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Figure 7: (a) The Element Editor; (b) The Relation Editor

5.1 The Smallest Documentation Project — An Exam-
ple

Let us take an example driven approach to get introduced to YAM’s main
features. Consider the classic ‘Hello, World!” program. Figure 6 shows a
complete documentation for this program. The central part contains the
complete logical view — introduced in section 4 — of the project. We have
maintained the conventions as introduced in section 4. There are two points
of difference to notice in the logical view shown here as against examples
of the last section. One is that, instead of showing the contents of the
modelling elements inside them, we have extracted them out and shown
them enclosed in dashed rectangles outside the boundaries of the logical view.
The correspondence between a modelling element and its content is shown
by dashed links. Though, in figure 6, the contents are shown alongside the
logical view, in our current implementation of YAM, the main logical view
does not show the contents. To view the contents, the user has to open it
in its editor. The other point to note is that each traceability link is tagged
with a tick (y/) or a cross (x). They signify the ‘verification status’ of the
relations. A ticked link means that the modelling elements on both ends are
verified to be related to each other by the given relation. In other words,
this link is verified. A crossed link means that one of the connected elements
has undergone a modification, after which the link has not been successfully
verified, i.e. the relation is currently not verified. A successful verification of
a crossed link would tick it. A document is proven consistent when all the

15



links in it are ticked.

This is how a document would look like in YAM during an advanced state
of evolution of a project. We now turn our attention to the steps in the basic
process of creation of such a document.

5.1.1

Creation of a Basic Document

A documentation process starts with creation of documentation project in
YAM. Let us name our documentation project as ‘hello-world.” Then we
approximately follow the following steps to arrive at a final state similar to
the one shown is figure 6.

1.

We create a modelling element of the type object?. We name it as “Top
Level.” We right click on the element and choose to edit the element.
The Element Editor dialog appears. Its appearance is as shown in
figure 7(a). Among other things, we choose an appropriate formalism
(in this case TEXT) for the content of this modelling element.

. After submitting this information, we press Edit Content button on

the element editor. The model editor corresponding to the formalism
that we had chosen (in this case TEXT) opens. In that we fill in the
contents of the top level description of the program (in this case: ‘Hello
is a program that prints “Hello, World!” on the console’). Thereby, we
submit the content from within the model editor and exit the editor.
We are now back to the Element Editor dialog.

. We press the Save Content button. Selecting an appropriate location

and file name for the contents of “Top Level,” we save the content. The
first modelling element of ‘hello-world’ project, along with its contents,
is created.

. We add another object named ‘main pseudocode’ in similar lines, write

its content using the TEXT editor, and save the contents.

. The ‘main pseudocode’ is a refinement of the ‘Top Level’ object. We

pick the refinement relation from the toolbar and connect these two
elements with it — with ‘“Top Level’ as the source, and 'main pseudocode’
as the destination.

2The reason to choose an object for this element is in accordance to the definitions of
the modelling element types as explained in section 4.

16



6. The refinement relation between ‘Top Level’ and ‘main pseudocode’
is in ‘not verified’ state, signified by the cross appearing on it. We right
click on the link and choose to Edit the link. The Relation Editor
dialog appears. Its appearance is as shown in figure 7 (b).

7. We choose the verification level as ‘Manual’. For the present, we just
press the Verify button on the Relation Editor. YAM asks us to
confirm if we consider the given link as ‘verified.” We say ‘Yes’, causing
the link to get ‘ticked.” Our document now contains two modelling ele-
ments, connected through a traceability link (of the type refinement)
which we have asserted to be ‘verified.” The current state of our docu-
ment is ‘consistent.’

8. Other elements and traceability links are subsequently added in a sim-
ilar way. In the process we also set all the not verified links to verified
state.

This completes the creation of the complete documentation of the ‘hello-
world’ project. Two main features of YAM, which have found mention several
times earlier in this paper, are:

1. Heterogeneous Modelling
2. Verification

We explain where they figure while using YAM in the next section.

6 Discussion

6.1 Formal Usage Context of YAM

Consider the case when modelling element A : &/ € M is related to modelling
element B : 8 € M through a relation R : Z € R, where:

M = { class, object, specification, argument }

R = { equivalence, scope, refinement, argument, instance,
dependence }

content(x) denotes the content of a modelling element z.

Tool pool of YAM is nothing but the set of tools that have been
plugged into it, and hence are free to be used by the user. We
denote this tool pool by

T={L,E,V}

L is a set of modelling languages whose editors are available as

17



[#include <iostream> Y
#include <string>
using namespace std:
class Message
i
private:
st g m_Message;
public
Message (const string ge) Q X I} o}
m_Message (aMessage: ){}
void print Of co g dl; } l l l
}
X TTTTF
0 1 TTTFF
int main () 1 T T T F F
Message M ("Hello, World!"); 2 TEFTT
M.print ();
return 0; 3 F F F T T
i

Figure 8: Verification Levels: (a) Implicit (b) Language Based (c) Case to
Case (d) Manual

plugins to YAM.

E is a set of model content editors, i.e.

E = {& | language(&) € L} where & is an editor that allows
modelling in the language language(&).

V is a set of verifiers: i.e.

V={YV:(4 xZ X %) boolean}.

Here, ‘¥ : (£ x £ X #) — boolean’ denotes a verification tool that can
check for the validity of a link R : #Z between two modelling elements A and
B such that content(A) € £, and content(B) € £,. Here,

2, and % are two languages (or formalisms, or notations) in which the
contents of A and B are modelled. Of course, it is required that £, .% € L.

6.2 Heterogeneous modelling

In the Element Editor dialog, there is a facility to select the formalism
of the contents of the modelling element we are editing. Each of these for-
malisms corresponds to a modelling language — formal or informal — whose
editor is present as a plugin to YAM. Once a formalism is selected for a
modelling element, the corresponding editor is invoked by YAM each time
the user presses the Edit Content button. Once a content is created and
submitted, the user is no more allowed to change the formalism of the mod-
elling element while the modelling element exists. Modelling elements may
of course be deleted by the user.

The liberty to select an appropriate formalism, or language, to create the
content of a modelling element is what separates the processes of creation of
document logical structure, and filling up of its contents, from one another.
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This simple principle keeps open the possibility of subsequent plugging in of
an arbitrarily large number of formalisms (i.e. essentially the corresponding
model editors) into the tool pool of YAM. This realises YAM’s promise of
open ended support for heterogeneous modelling. The implementation of
this feature perhaps doesnot qualify as a research work. But it was certainly
an interesting software design exercise which involved a clever use of object
oriented design principles[3]. We forego that discussion due to reasons of
space constraint.

6.3 Verification

Whenever two modelling elements are connected by creating a link between
them, the link is initially in a not verified (x) state. The relation can be
verified by pressing the Verify button on the Relation Editor dialogue
box. We have observed that the type of verification the user may want to do
can be classified into four levels: implicit, language based, case to case
and manual. Each of these roughly corresponds — in a decreasing order
— to a particular level of formalism in the modelling languages used in the
linked modelling elements. Below we discuss the meaning of each of these
verification levels.

6.3.1 Implicit Verification

Figure 8(a) shows a typical case where the user would select an implicit ver-
ification level. When the source code of the main and class Message are
compiled, all possible conditions of consistency will be taken care of by the
compiler. The designer may still prefer to model them as two separate mod-
elling elements, and add a dependence link between them to elicit the logical
relation. However, he leaves the job of consistency check on the compiler.
YAM will cross (x) the link if either is modified. But it will be uncondi-
tionally ticked (y/) back when the user presses the Verify button on the
Relation Editor dialog.

6.3.2 Language Based Verification

The user would choose to carry out language based verification when ¥ :
KL x L X A — boolean exists in YAM’s tool pool. This means that
the user is not assuming any consistency check to happen outside the mod-
elling purview. Hence, the verification cannot be left implicit. Moreover,
there exists an appropriate verification tool in YAM’s tool pool to check
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this consistency. Figure 8(b) shows an example. Here, .£] is ‘graph plot-
ting notation’, say PLOT, and %, is a ‘table drawing notation’, say TABLE.
%, in this case, is equivalence. In this example case, it so happens that
¥ : PLOT X TABLE X equivalence — boolean is available in YAM’s tool pool.
Therefore, the user chooses ‘language based’ verification level while creating
the given link.

6.3.3 Case to Case Verification

A third case arises when no such verification tool is available. It could be
just incidental that user has not been able to develop or acquire an appro-
priate verification tool to verify A R B. Or the reason could be theoretical.
For instance, if two models written as as context-free grammars meant to
be two descriptions of the same thing, there cannot be a generic tool that
will be able to decide their equivalence. Another possible reason of the un-
availability of such a tool is that an editor may be used to model something
that is not the default interpretation of a model in the used language. For
instance, a graph drawing editor may be used to show a finite state automa-
ton. A comma separated list of names could be used to show the trace of
a computation with the above FSA. A general verification tool cannot exist
in such non-default modelling. A desirable thing to have in such a case is
a way to specify the validity condition of this particular link in some way.
This is exactly the facility provided in the ‘case to case’ verification level.
Whenever the user chooses this verification, he has to provide externally,
the condition of validity of the link. Figure 8(c) illustrates one more ex-
ample. Here . is a certain ‘graph drawing notation’, say GRAPH. .% is
a matrix writing notation, say MATRIX. In this example, the plugin verifier
¥ : GRAPH x MATRIX X equivalence — boolean is not there in T, the tool
pool of YAM. User chooses ‘case to case’ verification level and provides his
own case to case verifier ¥’ (content(A), content(B), R). Here, the type of
content(A) and content(B) are no more assumed to belong to any language
in L. The detailed implementation of this feature is beyond the scope of this

paper.

6.3.4 Manual Verification

Only when none of the above three options are enabled for the current case,
YAM will ask for help from the user. This means that in that case the user has
to establish the consistency through manual inspection. The user expresses
his intention to do so by selecting ‘manual’ verification level. Figure 8(d)
shows an example. An image of a man can be drawn in an image drawing
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notation, say IMAGE. Another fragment may contain a textual description
of this man in TEXT. It is unlikely that such a verification tool ¥ : TEXT x
IMAGE X equivalence — boolean would be available. Manual verification
would be necessary in this case.

Let us clarify that at any point, the total number of verification tools
required so that all default interpreted models can be verified at the ’language
based’ level is #(L)* x#(R). So many verification tools are not possible to be
plugged into the framework. First, this number increases as the square of the
number of formalisms plugged into YAM. Second, for certain combinations
of modelling languages, such tools may not just be possible to be created.
Consequently, practically, for many links created in a documentation, the
verification level will be ‘manual.” Nevertheless, the benifit of traceability
will still be there. And as YAM seasons in the hands of its user, the repertoire
of verification tools can be expected to grow over time.

7 Conclusions and Future Directions

In this paper we have introduced a meta language YAML to describe the
logical structure of a technical document. The objective of defining a logi-
cal structure over the contents of a document is, on one hand, to articulate
the logical role played by its various fragments; and on the other, to define
traceability links between these fragments. There are multiple benefits in do-
ing so. First, it enforces a system designer to articulate his thoughts better
before putting them down into the document. This results in better qual-
ity. Secondly, it explicates the dependencies between parts of a document,
imparting resilience to the document against inconsistencies creeping in at a
later point in time. Thirdly, it opens doors to make use of verification tech-
nology, wherever applicable, in maintaining consistency in a seamless manner
hand in hand with manual verification.

We also described a modelling framework YAM that realises the above
principle. In addition, its framework based architecture rests on the philos-
ophy of open-ended plugin based development. YAM would achieve its full
power when various developers join hands to provide modelling and verifica-
tion tools as its plugins. That way, YAM has a potential to become a very
powerful high quality documentation and modelling system.

Quite a few interesting tasks are lined up in the agenda of this project.

In the short term, we are exploring the viability of migrating YAM into
the Eclipse platform (currently it is a stand alone C++ program). Eclipse
has a naturally plugin based architecture; it is open source; and it has a huge
developer community. For all these reasons, Eclipse appears to be a suitable
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development platform for YAM. Second, we are in the process to add a
powerful document generation facility to YAM that will demonstrate its user
friendliness even to users with a traditional mindset about documentation,
modelling and programming.

In the long term we intend to incorporate enhancements to YAML to allow
a richer and more accurate description of the document logical structure. It
is obvious that, once done, it will also provide wider and clearer openings
towards the automation of consistency maintenance by adapting existing
verification tools to this purpose. Our long term objective is to refine YAML
to a point where the benefits of using it can be demonstrated on an industrial
strength project.

The constraints and properties described in section 4 indicate interesting
logical properties of a YAM document. We are exploring ways to implement
a well-formedness checker that makes use of these properties One important
area of extension seems to be in the area of Software Testing. We are ac-
tively investigating this direction. We intend to address additional (not any
less important) issues of configuration management and distributedness of
development through YAM.

One message that has got stated directly or indirectly several times
throughout this paper is that creation of documents and models based on a
logical view has several advantages. YAML is a new language that provides
the model writer with a novel way to do that. This incorporates another
level of knowledge about the traceability and consistency as an inherent part
of the document. This opens new avenues of consistency maintenance — both
manual and automatic. YAM clearly illustrates the feasibility of this.
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