
Object Cache: An Energy Efficient Cache Architecture

S S Shekhar Y N Srikant

IISc-CSA-TR-2005-13
http://archive.csa.iisc.ernet.in/TR/2005/13/

Computer Science and Automation
Indian Institute of Science, India

October 2005

Object Cache: An Energy Efficient Cache Architecture

S S Shekhar Y N Srikant

Abstract

Object-oriented programming languages provide a rich set of fea-
tures that provide significant software engineering benefits. The in-
creased productivity provided by these features comes at a justifiable
cost of complexity in the runtime environment. This complexity leads
to reduced performance and increased energy consumption of the plat-
form as well as the programs. To alleviate the problem of increased
energy consumption in embedded system architectures that typically
support runtime environments for object oriented programs, this pa-
per proposes an energy-efficient cache architecture that can have a
significant impact on the overall system energy consumption.

The proposed Object-cache architecture consists of a data cache
(reduced in size) and an additional small cache structure that caches
only the objects called the Object-cache. A high degree of temporal
locality among a large number of short lived objects ensures good
performance of such an architecture. At the same time, the reduced
active cache size, at times accompanied by minor improvements in
performance, leads to a significant improvement in the energy behavior
of programs. Using applications from SPECjvm98 benchmark and
a cycle accurate simulation, the Object-cache architecture is shown
to reduce average data cache energy consumption by up to 35.95%
and overall system energy consumption by up to 12.4%. Our study
further shows that, using a configurable architecture for both data
cache and object cache in embedded systems, we could fine tune the
cache parameters for optimal energy-performance trade-offs.

1 Introduction

Embedded system developers have embraced Java because of the support
it provides for dynamically downloading applications.1 Java environament

1Although our work focuses on Java, it is equally applicable to most other object
oriented programming languages with a similar behavior.

1

for embeddded systems typically come in two configurations. A lightweight
configuration, where the Java VM is integrated as part of the software en-
vironment where a few modules may run native libraries and another that
bases the entire programming and user environments on Java. The virtual
machine is however, common to both these configurations. A typical Java
execution environment is depicted in Fig. 1

Studies by Lafond [8] have shown some interesting results about energy
consumption in typical Java environments. According to this study, Java
Virtual Machine itself consumes about 60–65% of the total energy for run-
ning a program. Memory accesses contribute for upto 70% of this energy.
The cache system being in the critical path of any memory reference con-
tributes significantly to both performance and energy consumption of the
memory hierarchy. In fact caches can consume upto 50% of a microproces-
sors energy, making it a ripe candidate for optimization. For energy efficient
cache architecture design, we focus on optmizing the performance and energy
consumption of the cache system.

Objects typically are small, short-lived and frequently accessed during
their short life span. Thus object references exhibit certain characteristic
properties that make the object fields referred by them suitable candidates
to be cached separately in a cache structure known as an Object-cache. This
paper describes such a novel Object-cache architecture and evaluates the ef-
fect of such a cache architecture on the energy consumption and performance
behavior of typical Java programs such as the SPECjvm98 benchmarks.

The remainder of the paper is organized as follows. Section 2 discusses
some related work. Certain properties of objects and object references which
ensure good performance of the object cache architecture are discussed in
Section 3. Section 4 motivates the necessity to cache objects in a separate
Object-cache. In Section 5, architecture of the Object-cache is discussed in
detail. The experimental details, simulation methodology and experimental
results are described in Section 6. Section 7 describes the benefits of fine
tuning the configuration of the object cache architecture. Some concluding
remarks are provided in Section 8.

2 Related Work

An important trend in low-power hardware design is the partitioning of hard-
ware components into smaller and less energy-consuming components ([3],
[4]). The selective disabling of unused components is an effective mechanism
for reducing energy consumption. Partitioning has been used in caches for
both performance and energy considerations [12]. A large cache is broken

2

Figure 1: Typical Java Architecture.

down into smaller sub arrays to reduce the wiring and diffusion capacitances
of bit lines as well as the wiring and gate capacitances of word lines used to
activate the memory cells. The reduced capacitance helps lower the cache
access time and dynamic energy consumption when accessing the caches.
Flautner et.al [2] proposed the drowsy cache scheme which is one of the most
poular schemes to reduce energy consumption of caches. In the drowsy cache
scheme, the set of cache lines that are not active for a given period of time
(cold cache lines) are put into a state preserving low power drowsy mode.
Another recent study by Kim et.al [13] deals with partitioning of cache into
sub-caches at the architecture level and selectively activating the sub-cache
that contains the required data upon a memory reference as against pre-
viously proposed schemes of partitioning the cache at the circuit level and
enabling and disabling them at the architectural level. It also evaluates such
a partitioned sub-cache architecture with SPECjvm98 benchmarks and re-
ports a significant reduction in the energy consumption of the cache.

A study of the memory system behavior of Java programs by analyzing
memory reference traces of several SPECjvm98 benchmark applications is
presented in [14] . This study supports our own observations that many
objects are short lived. Dieckmann et.al [15] also conducted a similar study
about the allocation behavior of the SPECjvm98 Java benchmarks. This
study shows that typical Java benchmarks run with a fairly small heap size
and the objects themselves are small and reiterated the result that many
objects are short lived. Recently, a scheme to cache the objects separately to
improve the functionality and efficiency (performance alone) of heap memory
management where in the cache has a separate address space, being addressed
with separate Object IDs has been proposed in [11]. Energy benfits of an
anotation based allocation of objects in a local memory is studied in [7]. This
technique requires major modifications in the memory management schemes

3

of the virtual machine. The anotation scheme itself requires tedious modifi-
cations to all Java classes involved. Our proposed Object-cache scheme which
is a simpler and more amenable solution aims to capture similar application
behavior without the tedium of annotating Java classes and modifying the
memory management of the virtual machine.

3 Object Properties

Memory management in Java and its object model have several distinctive
features. Extensive dynamic memory allocation of objects on the heap is one
such feature. Java programs allocate a significant fraction of the memory
(all objects) dynamically on the heap. In a virtual machine environment,
we regard references to the objects of java application as object references.
All other references including virtual machine references are treated as non-
object references (See figure 4 and Section 5). Although languages like C
also provide for dynamic memory allocation,the number of references to the
dynamically allocated memory in C is very small and these do not exhibit
behavior similar to that of object references. Certain interesting properties
exhibited by Java objects and memory references to these objects make them
suitable candidates to be cached in a separate Object-cache. Firstly, previous
studies have shown that heap references constitute a considerable portion of
the total memory references in Java programs. Kim and Hsu [7] report that
45–50% of all memory references, on the average, are heap references for the
SPECJvm98 benchmarks suite. Secondly, there is a high degree of temporal
locality observed among these object references themselves which inherently
make them ripe candidates to be cached separately. Thirdly, most of the
objects are short-lived, which means they would soon make way for other
object accesses without causing any additional misses. A detailed description
of the analysis is given in the following sub-sections.

3.1 Temporal Locality

Experiments were conducted to determine the temporal locality of the objects
among themselves for various SPECjvm98 benchmarks. The interval in terms
of the number of accesses between two consecutive accesses to the same
object were measured. The results are plotted in Fig. 2. As seen in Fig.
2, a high degree of temporal locality is observed in object accesses. 40–
80 % of the object accesses refer to the same object in the immediately
following access. A whooping 90–95 % of the objects are re-accessed within
100 accesses of their initial access. It is important to note here that the

4

Figure 2: Temporal Local-
ity of objects

Figure 3: Life time objects
across benchmarks

temporal locality observed is among the object accesses themselves. This
high degree of temporal locality increases the hit rate of a separate Object-
cache.

3.2 Life Time

The life time of an object for our analysis purpose is defined as the time
duration in terms of total number of (global) memeory accesses between its
first instantiation and its last access. Interestingly, it is observed that most
of the objects have a very short life time. 40–90 % of the objects across
different benchmarks have lifetime of less than 100 accesses. An average
80 % of the objects, have lifetime of less than 1000 accesses. The detailed
break-up of life-times of objects in different benchmarks is given in Fig. 3.
The definition for life time of an object restricts its scope only to the last
use of the field instead of the time of garbage collection because we are
interested only in the earliest time at which the object field may be released
from the cache without causing any extra misses. Note that an object field
may be replaced in the cache without it being garbage collected after its last
access. The performance and energy benefits of the proposed Object-cache
architecture does not depend on how long the object fields further stay in
memory without being garbage collected as long as they are not accessed.
However, the absolute life time of ojects are also shown to be small in ??.

5

4 Motivation

Lafond ([8]) shows in his study that memory accesses contribute for upto 70%
of this energy in typical Java programs. This motivates us to concentrate on
optimizing the memory hierarchy energy requirements by reducing the num-
ber of memory accesses that go all the way upto the memory (cache miss).
All the above discussed properties of objects and object references, empha-
size the advantage of a separate Object-cache to cache only objects. The
most significant energy benfit from using an object cache is that frequently
used objects in the Object-cache are not easily replaced by other conflict-
ing memory references. A high degree of temporal re-use of objects ensures
a good performance of the perceived Object-cache. Moreover, Wright ([11])
shows that an Object-cache addressed by an object ID instead of the memory
address, would also gain in performance. Short average life-time of objects
implies that these short-lived objects need not have to reside in the Object-
cache for a long period of time and hence make way for the other objects to
be accessed without causing any additional misses. This leads us to think
of having a smaller Object-cache which would handle larger amount of data
(object fields) than it would have, if there were conflicts with regular data in
the data cache, and yet deliver the same or better performance (in terms of
hit-rate). A smaller cache means lesser energy consumption. Therefore, the
energy reduction in the perceived Object-cache architecture is mainly due
to the partitioned architecture and reduced cache size. It should however
be noted that the observed properties of objects and object references en-
sure good performance of a partitioned architecture and reduced cache size.
Apart from this major energy benefit of an object cache, embedded systems
could make use of configurable caches to configure cache architectures with
optimal parameters to save energy. We also study the benefits of using such
a configurable cache architecture to both object and data caches. The po-
tential benefits obtained by configuring the two cache structures separately
for optimal energy performance trade-offs are higher than those acheivable
by configuring a single large data cache.

5 Object-cache Architecture Design

As explained in the previous sections, an Object-cache is a cache structure,
separately designed for caching only objects. It creates a parallel data ac-
cess path for objects. The typical memory hierarchy in the presence of an
Object-cache is shown in Fig. 4. The object references are directed through
the Object-cache while the other references are directed through a regular

6

Figure 4: Memory hierarchy with Object Cache

data cache. Apart from introducing an additional Object-cache module, a
system supporting the Object-cache hierarchy must also implement demul-
tiplexing of the references to their respective caches. This demultiplexing
could potentially be carried out by the hardware or by the virtual machine.

To implement separating the object references in the hardware, two ad-
ditional registers, object-heap-start and object-heap-end are required. These
registers bind the object area on the heap where objects are allocated. Any
reference that is addressed to this object area bound by the object-heap-start
and object-heap-end is cached in the Object-cache by the hardware while
the remaining references are directed through the regular data cache. The
increase in logic is only that of a test if the address requested by virtual
machine lies in this range or not. The object-heap-start and object-heap-end
registers could be set by the JVM during its initial boot and subsequently
maintained to bind the region in which objects are allocated.

The other alternative is to modify the Instruction set architecture (ISA)
of the target architecture to have separate instructions for loading and stor-
ing objects called load-obj and store-obj apart from the regular load and
store instructions. On issue of a load-obj instruction (object reference), the
processor accesses the Object-cache and loads it from the Object-cache if it is
already available (Object-cache hit) and on an Object-cache miss, it accesses
the memory (and also caches it on to the Object-cache if such a cache policy is
used). Other data references (non-object references) are loaded through the
regular data access path of a data cache using the regular load instruction.
The Java virtual machine could now make use of the load-obj and store-obj
instructions to load (store) from memory.

Hardware implementation of demultiplexing the references is best suited
for legacy codes where no modification is required in the legacy bytecodes

7

that are being used. The only change required would be in the Java virtual
machine which needs to set the object-heap-start and object-heap-end regis-
ters according to its allocation policy. This mechanism may however incur a
small performance degradation because of the logic to check for object area
on every memory access. The modified ISA mechanism saves this overhead
but all applications have to be re-compiled to adopt the new instruction set.
All our experiments use the former method to simulate the dimultiplexing of
references.

6 Experiments

6.1 Experimental Setup

To determine the benefits of our Object-cache architecture with respect to
reducing energy consumption, we simulated the architecture for a variety of
cache configurations using Dynamic Simplescalar cycle level simulator ([10],
[9]) running Jikes RVM Java interpreter. Dynamic SimpleScalar (DSS) is
a simulator suite for the PPC instruction set. It has Wattch [5] integrated
with it for energy measurements. A cycle level system simulator was used to
obtain cycle accurate simulation results instead of using the easier, more com-
monly adopted trace generation and cache simulation based approach which
has been used in many previous works ([11], [14]). Cycle level simulation
has several advantages over the trace based method for our studies. Firstly,
it captures the timing details of memory accesses hence accounting for cer-
tain latency hiding optimizations. Secondly, it captures intricate interactions
among other units easily. For instance the intricate interactions between the
energy and performance of load-store queue unit with cache performance are
inherently captured in a system simulation model. Thirdly, system perfor-
mance results are easily obtained while in the cache simulation based model
only the cache miss rate is available which does not necessarily model the
performance behavior of the entire program. The only disadvantage of cycle
level simulation is its extremely slow speed.

The experimental setup for the simulation experiments is shown in Table
1. The configuration of data cache shown in Table 1 is the default data cache
configuration which is used in all our further experiments. We experimented
with a variety of common configurations of data cache (no Object-cache)
and decided on the default configuration by selecting the configuration that
gave us the lowest average energy-delay product ([16]) for the SPECjvm98
benchmarks. By this we are making sure that we are not comparing our
results with sub-optimal data cache configurations. SPECjvm98 benchmarks

8

Table 1: Experimental Setup

Cache and Memory Hierarchy

Simulation Parameter Parameter Value

L1 Data Cache 16 KB, 32 byte blocks, 2-way associative
L1 Instruction Cache 16 KB, 32 byte blocks, 1-way associative
L2 Cache (unified) 1 MB, 32 byte blocks, 4-way associative
Data TLB 32 entries, 30 cycle miss latency
Instruction TLB 16 entries, 30 cycle miss latency
Memory 100 cycle latency

have been used for simulation experiments. S100 full length reference inputs
have been used as input. To collect results from a representative part of the
program, the first one billion instructions which correspond mostly to the
virtual machine loading phase, have been forwarded. All benchmarks have
been simulated further for 4 billion instructions.

6.2 Evaluation Metrics

As the proposed Object-cache architecture influences cache behavior, perfor-
mance and energy behavior of programs, the following metrics can be used
for a comprehensive evaluation

• Cache Miss Rate: Miss rates of object references and non-object
references with/without separate caches is a metric that we like to
measure because we intend to reduce energy consumption by reducing
the miss rates of both the data cache and the object cache relative to
datat cache alone.

• Energy Savings: Data cache energy savings and total processor en-
ergy savings realtive to the default configuration.

• Performance (IPC - Instructions Per Cycle): Cache miss rate
is a good indicator of the performance of the cache architecture in
isolation. However, execution time is what is accepted as the metric for
measuring performance of programs. Instruction count of the simulated
benchmarks and the processor clock frequency being constant across
the experiments, the execution time of programs is directly proportional

9

Figure 5: Data cache energy
savings across various con-
figurations of Object-cache

Figure 6: Total proces-
sor energy savings across
various configurations of
Object-cache

to the Instructions Per Cycle (IPC) metric and is therefore used as a
metric to measure the performance of the benchmark programs.

• Energy-Delay Product: In evaluating new architectural features
that influence both energy consumption and performance, energy per-
formance trade offs have to be measured. It has been demonstrated
([16]) that the energy-delay product metric causes the architectural
improvements that contribute the most to both performance and en-
ergy efficiency to stand out. A smaller energy delay product indicates
a better configuration. This metric is used to chose statically among
the configuration alternatives available.

6.3 Experimental Results

All comparisons were made between the default data cache only configuration
(16K, 2-way associative) against a combination of an 8K data cache and a
given size of object cache. The default data cache size with the object cache
was chosen to be 8K becuase 50% of the references are non object references
which need to pass through this data cache. For example, whenever we say
we use a (4K,1) object cache, we mean we use a combination of 4KB, 1way
associative object cache and an 8KB, 2 way associative data cache (default
data cache size in the presence of an object cache).

6.3.1 Energy Results:

Figure 5 depicts the energy savings in data cache relative to our default data
cache only configuration for various cache configurations. It is evident that

10

Figure 7: Performance of
benchmarks across various
configurations of Object-
cache

Figure 8: energy-delay
products for various config-
urations of Object-cache

the data cache energy savings for any 4 KB Object-cache configuration is
greater than that of any 8KB configuration because static energy consump-
tion is proportional to the size of data cache. But the relationship is not
linear due to the variations in the performance of the benchmark programs
with varying cache parameters (size and associativity) which leads to differ-
ent execution times which again is proportional to the energy consumption.
Also in most cases, it can be observed that the energy consumption increases
with increasing associativity. This is due to the energy required for addi-
tional circuitry for a higher degree of associative search. Again variations in
performance with associativity plays a role in the total energy consumption.

Our final goal is to reduce the total processor energy consumption. Also,
the total processor energy consumption is more sensitive to performance of
the cache than the energy consumption of the data cache (or Object-cache)
itself. The difference in data cache (or Object-cache) energy consumption
between a miss and a data hit is the dynamic energy associated with loading
the new value by replacing the old value while the difference in total processor
energy consumption is that of a memory access which is a lot more expensive
in terms of energy. Figure 6 depicts the total processor energy savings relative
to total processor energy with our default data cache only configuration for
various Object-cache configurations. The energy savings are found to be in
the range of 7.9% to 12.4%. The total processor energy savings also gives us
a realistic picture of the savings, because a 10% savings in total processor
energy means that the same battery which powered the processor earlier
running for ten hours would now last eleven hours.

11

Figure 9: Address range based splitting of memory references

6.3.2 Performance Results:

Figure 7 shows the impact of Object-cache architecture on the performance
of the benchmarks. Relative performance of the benchmarks with respect to
their performance on the default configuration has been reported. One can
see from Figure 7 that in many cases, the performance improves from the
base case while for others it loses on performance by a small margin (less
than 1.5%). As predicted earlier, the performance of a 4KB Object-cache
(and an 8K data cache makes it a total of 12K cache) is not much different
from a 16 KB data cache only configuration or a 8KB Object-cache and 8KB
Data cache combination. In fact, for benchmarks like db the performance
even improves with the 4KB 2-way associative Object-cache architecture.

To ensure that such behavior was an intrinsic property of object refer-
ences, and to confirm that the results were not co-incidental with merely
splitting the cache into two parts, we conducted various experiments of split-
ting the memory references into different modules of cache, but in all cases
we lost heavily on performance (to the tune of 12 to 20 %). We implemented
a mechanism of splitting memory references based on the reference address
range into different caches. The mechanism is depicted in Fig. 9. The first n
bits of the reference address were used to split the references into 2n caches so
that the spatial locality among references was maintained. Such an architec-
ture led to a performance loss of 14–20% depending on the value of n. This
emphasized the significance of temporal locality among object references for
the good performance of Object-cache.

6.3.3 Miss Rate Analysis

Performance of the cache architecture varies directly with cache miss rates.
Having split the cache into two modules, we analyzed both the components

12

Table 2: Cache Miss rates

si jess jack anagram compress db

data obj data obj data obj data obj data obj data obj

(4k,1) -1.33% 0.00% 0.13% -5.26% 0.88% -2.94% 0.00% 3.70% 0.45% 2.17% -0.87% -4.00%

(4k,2) -1.33% -8.33% 0.13% -2.63% 0.88% -2.94% 0.00% -3.70% 0.45% 0.00% -0.87% -8.00%

(8k,1) -1.33% 0.00% 0.13% -7.89% 0.88% -8.82% 0.00% -3.70% 0.45% -2.17% -0.87% -12.00%

(8k,2) -1.33% -12.50% 0.13% -13.16% 0.88% -8.82% 0.00% -11.11% 0.45% -4.35% -0.87% -16.00%

(8k,4) -1.33% -4.17% 0.13% -10.53% 0.88% -11.76% 0.00% -7.41% 0.45% -4.35% -0.87% -20.00%

for their miss rates and compared it against the miss rate for the data-cache-
only architecture. Table 2 shows the percentage change in miss rates as
compared to the miss rate in our default data cache only configuration(16K).
A positive value for the given configuration indicates an increase in miss
rate, while a negative value indicates a decrease in miss rate compared to the
default configuration. The use of Object-cache resulted in an improvement in
cache miss rates as expected. This is so mainly due to the properties of object
references and the observed fact that object references constitute almost 50%
of the total memory references. Also, it is important to see that an Object-
cache which is of size 4K also reduces miss-rates in many cases. This leads to
the observed increase in performance in certain cases. The small increases in
miss rates in data cache in certain cases could only be explained as incidental
loss of locality.In most other cases, we observe that the miss rates in the data
cache also improves (marginally). This is so because, it is least likely that
there would be either temporal or spatial locality between object references
and non object references but the presence of object references in the same
cache could have caused certain conflict misses which are now avoided. The
miss rate of data cache does not vary with Object-cache configuration for a
given benchmark because the configuration of data cache is fixed before hand.
We could have experimented with varying data cache configurations, but
chose to avoid the huge increase in number of configurations to be evaluated
as we had chosen the data cache architecture based on minimum average
energy-delay product.

13

7 Optimal Object-cache Configuration

The results of total processor energy, data cache energy and performance of
various benchmarks for a range of Object-cache configurations and a huge
degree of variations in each, present to us, a confusing picture about the
optimal cache configuration that needs to be selected. In order to select such
an optimal cache configurations a metric such as energy delay product of
the configuration for different benchmarks is of great help. Figure 8 plots
the energy delay products of various benchmarks for all the evaluated con-
figurations. Considering the average energy delay product as the metric for
choosing the optimal cache configuration, an Object-cache configuration of
1-way associative, 4K Object-cache with the default 8K, 2 way associative
data cache could be selected for the given set of benchmarks.

Although there is a significant amount of energy savings with the con-
figuration having minimum average energy-delay product across benchmark
programs, in case of individual benchmarks alternative configurations might
just work better. Zhang [6] proposes a highly configurable cache architec-
ture for embedded systems, which enables us to tune cache associativity and
cache size (without additional expense of static energy) based on techniques
called way-concatenation and way-shutdown. Fine tuning the configuration of
Object-cache is possible by using this architecture. To see the benefits of fine
tuning the optimal cache configuration, Table 3 plots the range of difference
in energy consumption and range of difference in performance between the
configurations evaluated. We would like to mention here that these benefits
are only in addition to those mentioned in the previous result sections. We
observe that energy consumption varies over a much wider range than per-
formance in general. For example, for jess, anagram and compress, energy
consumption varies upto 3.27%, 3.43% and 3.65% respectively while their
performance only differs by 0.61%, 0.70% and 0.90%. In embedded systems,
where the general execution charecteristics of programs can be determinde
by profiling, this suggests that we could go in for an aggressive strategy in
chosing the optimal configuration by chosing the lowest energy value. We
might need to be conservative only in case the execution charecteristics of
the program is similar to that of si or jack where in the energy benefits
range over 2.07% and 2.06% respectively while the performance also varies
in the range of 1.46% and 1.61%. One can also see from plot of energy-delay
products in Fig. 8 that in case of si and jack an alternative configuration
such as (8k,2) is most beneficial. In essence, we could use the configurable
architecture described in [6] to fine tune the configuration of the Object-cache
aggressively and reap additional energy benefits (of the order of 3% or more)
at the cost of less than 0.9% performance.

14

Table 3: Benefits of Fine Tuning Optimal Object-cache Configuration

Benchmark Energy Diff Performance Diff
si 2.07% 1.46%

jess 3.27% 0.61%
jack 2.06% 1.61%

anagram 3.43% 0.70%
compress 3.65% 0.90%

db 2.40% 0.91%

8 Conclusion and Future Work

The paper presents a novel cache architecture for storing objects known as
the object- cache. The Object-cache exploits certain special properties ex-
hibited by the objects in order to improve energy consumption of the data
cache. Impressive results were obtained where in an average 9.7% of total
processor energy savings, 35.9% of data cache energy savings were reported
at the cost 1% performance gain to 1.5% performance loss for different cache
configurations. Energy delay product metric was used to select an optimal
cache configuration.

The most important pending issue in the study of Object-cache is the
determination of the size and associativity of the Object-cache. Better than
deciding the Object cache parameters statically would be to have a dynam-
ically reconfigurable architecture to adapt the cache size and associativity
according to program behavior. A new algorithm for reconfigurability may
be needed which would be another interesting topic.

References

[1] Trevor Mudge: Power: A first class design constraint. Computer,
34(4):52-57, April 2001

[2] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge: Drowsy
caches: Simple techniques for reducing leakage power. In 29th Annual
International Symposium on Computer Architecture, pages 148 – 157,
May 2002.

15

[3] V. Zyuban and P. Kogge: Split register file architectures for inherently
low power microprocessors. Power Driven Microarchitecture Workshop
at ISCA98, June 1998.

[4] J. L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham: Multiple-banked
Register File Architectures. In 27th Annual International Symposium on
Computer Architecture, 2000, p. 316-325.

[5] D. Brooks, V. Tiwari, and M. Martonosi: Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of
the 27th Annual International Symposium on Computer Architecture,
pages 8394, June 2000.

[6] Chuanjun Zhang, Frank Vahid and Walid Najjar: A Highly Configurable
Cache Architecture for Low Energy Embedded Systems. ACM Trans-
actions on Embedded Computing Systems (TECS), Volume 4 , Issue 2,
May 2005.

[7] S. Kim, S. Tomar, N. Vijaykrishnan, M. Kandemir and M.J. Irwin Use of
Local Memory for Efficient Java Execution p. 0468, IEEE International
Conference on Computer Design (ICCD’01), 2001.

[8] Bastien Lafond and Johan Lilius An Opcode Level Energy Consump-
tion Model for a Java Virtual Machine. Proceedings of the 3rd Virtual
Machine Research and Technology Symposium, May 2004.

[9] D. Burger and T. M. Austin: The SimpleScalar tool set, version 2.0.
Technical Report 1342, Computer Sciences Department,University of
WisconsinMadison, June 1997.

[10] X. Huang, J. E. B. Moss, K. S. Mckinley, S. Blackburn, and D. Burger:
Dynamic SimpleScalar: Simulating Java Virtual Machines. Technical
Report TR-03-03, University of Texas at Austin, Feb. 2003.

[11] Greg Wright, Matthew L. Seidl and Mario Wolczko: An object aware
memory architecture. SMLI Technical report, February 2005.

[12] S. Wilton and N. P. Jouppi: CACTI: An Enhanced Cache Access and
Cycle Time Model. IEEE Journal of Solid-State Circuits, pages 677-687,
1996.

[13] Soontae Kim, N. Vijaykrishnan, Mahmut Kandemir, Anand Sivasubra-
maniam, Mary Jane Irwin: Partitioned instruction cache architecture
for energy efficiency. ACM Transactions on Embedded Computing Sys-
tems (TECS). Volume 2,Pages: 163 - 185, May 2003.

16

[14] Jin-Soo Kim, Yarsun Hsu: Memory System Behavior of Java Programs:
Methodology and Analysis. In Proceedings of the 2000 International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS 2000), June 2000.

[15] Sylvia Dieckmann, Urs Holzle: A Study of the allocation behavior of the
SpecJVM98 Java benchmarks. In Proceedings of European Conference
on Object Oriented Programming, June 1999.

[16] Gonzalez R, Horowitz M: Energy dissipation in general purpose micro-
processors. IEEE Journal of Solid-State Circuits 31, 9 (September 1996),
1277-1284.

17

