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Abstract

Clustered architecture processors are preferred for embedded systems because centralized register file architectures

scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving clock

speed, reducing energy consumption of the logic, and making design simpler, it introduces extra overheads by way

of inter-cluster communication. This communication happens over long global wires having high load capacitance

which leads to delay in execution and significantly high energy consumption.

Technological advancements permit design of a variety of clustered architectures by varying the degree of

clustering and the type of interconnects. In this paper, we focus on exploring energy performance trade-offs in going

from a unified VLIW architecture to different types of clustered VLIW architectures. We propose a new instruction

scheduling algorithm that exploits scheduling slacks of instructions and communication slacks of data values together

to achieve better energy-performance trade-offs for clustered architectures. Our instruction scheduling algorithm for

clustered architectures with heterogeneous interconnect achieves 35% and 40% reduction in communication energy,

whereas the overall energy-delay product improves by 4.5% and 6.5% respectively for 2 cluster and 4 cluster machines

with marginal 1.6% and 1.1% increase in execution time. Our test bed uses the Trimaran compiler infrastructure.
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1. INTRODUCTION

Proliferation of embedded systems has opened up many new research issues. Design challenges posed by

embedded processors are ostensibly different from those offered by general purpose systems. Apart from very

high performance they also demand low power consumption, low cost, and less chip area to be practical. ILP

architectures have been developed to meet the need for high performance in embedded applications [40]. Two

major ILP design philosophies are superscalar architecture and VLIW architecture. Superscalar processors have

dedicated hardware responsible for scheduling instructions at runtime to improve the performance. The high power

consumption, chip area, and cost of these architectures make them less suitable for embedded systems. Another

design philosophy is the VLIW architecture, where the compiler is responsible for scheduling. This simplifies the

hardware but in order to exploit the ILP in emerging embedded applications, more functional units that can operate

in parallel are required. This in turn requires more read and write ports and hence increased chip area, cycle time,

and power consumption [42].

Clustering has been proposed to overcome these difficulties with centralized VLIW architectures and to make

them suitable for use in embedded systems [15]. A clustered VLIW architecture has more than one register file

and connects only a subset of functional units to a register file. Groups of small computation clusters can be fully

or partially connected using either a point-to-point network or a bus-based network. Clustering avoids area and

power consumption problems of centralized register file architectures while retaining high clock speed, and can be

leveraged to get better performance. Texas Instrument’s VelociTI [44], HP/ST’s Lx [16], Analog’s TigerSHARC

[17], and BOPS’ ManArray [39] are examples of the recent commercial clustered micro-architectures. IBM’s eLite

[12] is a research proposal for a novel clustered architecture. A compiler for these architectures is responsible for

distributing the operations to resources in different clusters.

Though clustering helps to combat the scalability problem by making components simpler and thereby improving

performance and energy consumption, an interconnection network is required for the communication of data values

among different clusters. This communication happens over long wires having high load capacitance which in

effect takes more time and consumes more energy consumption [33] [21]. Earlier Studies report that a very high

percentage (30% to 50%) of total processor energy consumption is attributed to interconnects [32] [45]. Clearly,

clustered architectures are attractive only if their benefits outweigh the performance and energy penalties due to

interconnections. Thus efficient means of using interconnects are important for clustered VLIW architectures. The

primary goal so far has been reduction in the latency of communication to minimize communication delays [43]

[23].

Wire delay is a function of its RC time constant where R and C are the resistance and the load capacitance

of the wire respectively. R and C are both linear functions of wire length and thus the wire delay has quadratic

dependency on the wire length. It is made linear by dividing the wire into segments and by using repeaters [21].

Closely spaced repeaters can help to improve latency but have more area and energy overheads. By tuning the

repeater size and spacing between successive repeaters, different latency and power profiles can be obtained for
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wires. It has been shown that using 50nm technology, it is possible to design repeaters consuming 1/5 the energy

but having twice the delay [9] [34]. Though VLSI technology enables design of interconnects with wires having

different energy characteristics, to the best of our knowledge, there have been no efforts in terms of using energy

efficient interconnects for clustered VLIW architectures.

In this paper, we propose and evaluate a new energy-aware instruction scheduling algorithm which exploits

interconnects of different characteristics in the context of clustered VLIW architectures. The proposed algorithm

takes into consideration the interconnect characteristics, and communication slacks of data values together with

the scheduling slacks of instructions while steering the communication to an appropriate interconnect, thereby

reducing energy consumption without much performance degradation. We consider different flavors of homogeneous

interconnects such as latency-optimized and energy-optimized as well as heterogeneous interconnects together with

the variation in degree of clustering (no clustering, 2-clustered, and 4-clustered) to perform a detailed performance

evaluation. This helps in understanding the energy-performance trade-off in using different varieties of clustered

architecture and in making design decisions for clustered architectures targeting embedded domains. Our evaluation

uses the Trimaran compiler infrastructure [5].

The rest of the paper is organized as follows. In section 2, we present the motivation for this work with some

quantitative results. Section 3 gives a detailed description of our energy-aware instruction scheduling algorithm

with a brief mention of implementation details. We also give an example in section 3 to illustrate the notion

of communication slack and how it is exploited by our algorithm to yield energy benefits without performance

degradation. Section 4 presents a detailed performance evaluation of the proposed algorithm and analyzes the

energy-performance trade-offs. Section 5 presents related work in the area of cluster scheduling, energy efficient-

scheduling and design of efficient interconnects. We conclude in section 6 with pointers to future directions.

2. MOTIVATION

Previous studies have reported that performance degrades by 12% when the latency of communication is doubled

for a four clustered architecture, and that increasing the interconnection bandwidth from one to two improves the

performance by as much as 10% [24]. A high speed path for communication of data values among clusters indeed

enables better performance, but we argue that not all data values need to be communicated on a high speed path.

Though some communications are critical and delaying them can have severe impact on performance, we observe

that many communications are non-critical and can still happen on a slow path without affecting performance. We

define the communication slack of a data value on clustered architectures as the number of cycles between the

time when the data value to be communicated becomes available (due to completion of execution of the producing

instruction) and when the instruction that requires the data value is actually scheduled. Various causes that can

affect the available communication slack of a data value on clustered architecture are as follows :

1) Data dependency among instructions adds to the available communication slack of data values because

different parents of an instruction may produce results at different points in time.
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Fig. 1. Communication Slack for 2 Cluster Machine Model

2) Limitation on the available number of functional units makes an instruction requiring communication getting

scheduled many cycles after it actually becomes ready to be scheduled.

3) Limitations on the number of available cross-paths, their bandwidth, and latency of cross-path communication

are another factors that add to the communication slack of data values.

4) Finally, the peculiarities of cluster scheduling algorithms also add to the communication slack of data values.

Figure 1 presents quantitative results to substantiate our arguments. This figure presents the percentage of required

communication that has a slack of three cycles (two cycles and four cycles) or more. These results are for a two-

cluster machine which has two high speed bidirectional cross-paths between clusters. We observe that all the

benchmarks have many communications with high slack values. In particular djpeg, g721encode, des, and crc

have 70% to 75% of communications with slack value of three cycles or higher. On an average, we observe that

60.88% (82.51% and 43.16%) of communications can sustain a latency of three cycles (two cycles and four cycles

respectively) or higher. Thus, even though having a cross-path with inter-cluster communication bandwidth of two

is desirable from a performance point of view, having both the wires optimized for low latency is an over kill.

This is because improving the latency of communication channel requires closely spaced repeaters which increase

the area and energy overheads of repeaters [9]. A more suitable option is to design interconnect with some paths

optimized for latency and others for energy [34]. Thus critical communication can take place over the fast but more

energy-consuming wires, and the other not-so-critical communication can happen on the slower but energy-efficient

wires. Such a design is going to be beneficial only if the target workload has a sufficient number of communications

that are non-critical or as we call it have enough communication slack. Further mechanisms (software or hardware)

that can steer the communications to the appropriate cross-path depending upon the communication slack of the

data value should be available. Our instruction scheduler is one such mechanism.
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3. THE SCHEDULING ALGORITHM

The Elcor backend of Trimaran infrastructure has a list scheduling algorithm designed and implemented for flat

VLIW architectures [5] [6]. We have extended this algorithm by adding another loop inside the main scheduling loop

of the list scheduler to perform cluster scheduling in an integrated fashion. The integrated approach [38] [30] [24] to

cluster scheduling makes the cluster assignment decision during temporal scheduling. This is in contrast to phase-

decoupled approaches [7] [13] [27] which perform cluster assignment prior to temporal scheduling. Essentially, our

integrated clustered scheduling algorithm consists of the following main steps.

1) Prioritizing the ready instructions

2) Assignment of a cluster to the selected instruction

3) Assignment of cross-paths for transferring data values (from other clusters) to the target cluster.

In what follows, we describe how each of these step is performed in our algorithm. An outline of our algorithm is

shown in Figure 2.

3.1. Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses instruction slack and number of

consumers of the instruction respectively. Slack is defined as the difference between earliest start time and latest

finish time of the instruction and is determined during dependence graph analysis. Instructions with less slack should

be scheduled early and are given higher priority over instruction with more slack to avoid unnecessary stretching

of the schedule. Instructions with the same slack values are further ordered in decreasing order of the number

of consumers. An instruction with more successors is more constrained in the sense that its spatial and temporal

placement affects scheduling of more instructions and hence should be given higher priority. Giving preference to

an instruction with more dependent instructions also enables better scheduling decisions by uncovering a larger

portion of the graph.

3.2. Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assignment decision. The primary

constraints are :

• The chosen cluster should have at least one free resource of the type needed to perform this operation

• Given the bandwidth of the channels among clusters and their usage, it should be possible to satisfy the

communication needs of the operands of this instruction on the cluster by scheduling these communications

in the earlier cycles.

Selection of a cluster from the set of the feasible clusters is done as follows. We determine the earliest time when

we can schedule the operation under consideration on each of the clusters in the feasible cluster list while adhering

to all the resource and communication constraints. The operation is primarily assigned to that cluster where it can be

scheduled at the earliest after accommodating all the communications. In case of a tie in this metric, the operation
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Initialize Early Cycle, Late Cycle And Priorities of the operations

ReadyList=Start Operation

while (CurrentOperations =UnSchedList.pop()) do

Compute EarlyCycle of the CurrentOperation

Initialize MinCycle, MinCommCost, and MinCommOption

for (CurrentCluster ranging from FirstCluster through LastCluster) do

for (CurrentClusterCycle ranging from EarlyCycle through MaxScheduledCycle) do

Compute the Cross-path Requirements in CurrentCommOption

Compute the Communication Cost in CurrentCommCost

if (FU and Cross-paths required by CurrentOperation are available in CurrentCycle for CurrentCluster) then

break

end if

end for

if ((CurrentClusterCycle < MinCycle) || (CurrentClusterCycle == MinCycle && CurrentCommCost <=

MinCommCost)) then

MinCycle=CurrentClusterCycle

MinCommCost=CurrentCommCost

MinCommOption=CurrentCommOption

TargetCluster=CurrentCluster

end if

end for

while (CurrentComm=CurrentCommOption.pop()) do

Determine the EarlyCommCycle, LateCommCycle and the CommSlack for CurrentComm

Schedule the CurrentComm using minimum energy consuming cross-path between EarlyCommCycle and LateCommCycle

end while

Schedule CurrentOperation on TargetCluster in MinCycle

end while

Fig. 2. The Integrated Cluster Scheduling Algorithm

is assigned to the cluster that minimizes communication requirements. The communication cost is computed by

determining the number and type of communications needed by a binding in the earlier cycles as well as the

communication that will happen in the future. Future communications are determined by considering the successors

of this instruction which have one of their parents bound on a cluster different from the cluster under consideration.

This is because if the instruction is bound to the cluster under consideration, it will surely lead to communication(s)

in the future while scheduling the successor of the instructions in the future. Although, we have experimented with

many other heuristics for cluster assignment, the above mentioned heuristic seems to generate the best schedule in
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almost all cases.

3.3. Cross-path binding

The cross-path assignment scheme is designed to minimize the energy consumption due to inter-cluster com-

munication without affecting runtime performance. In order to meet this objective, the low power cross-paths are

used in preference to the high power cross-paths wherever possible. More precisely, the assignment of cross-paths

to communications is done as follow. To schedule a communication, its earliest scheduling cycle, latest scheduling

cycle, and slack values are determined first. The earliest scheduling cycle for a communication is the cycle in

which the data value to be communicated is produced in the source cluster, plus one. The latest scheduling time

for communication is the scheduling cycle of first consuming instruction, minus one. The difference between the

earliest scheduling cycle and the latest scheduling cycle is the communication slack. In order to avoid delaying

the consuming instruction and the consequent possible stretch of the schedule, a communication is assigned to a

least energy consuming cross-path that can transfer the data value within the available slack for communication.

Thus the cross-path assignment scheme maximizes the usage of low power cross-paths subject to the availability of

slack in the communication, and thus, as far as possible, performance degradation is minimized and energy saving

is maximized.

3.4. Scheduler Implementation

The List scheduler as implemented in Trimaran [5] targets a flat VLIW class of architectures [6]. It maintains a

ReadyList of operations whose predecessors have already been scheduled. In each iteration of the main scheduling

loop, the highest priority operation is selected from the ReadyList and scheduled in the earliest cycle that satisfies

all the resource constraints, starting from the EarlyCycle of the operation. EarlyCycle is the earliest cycle that an

operation can be scheduled without violating any dependence constraints with its predecessors. Once an operation

is scheduled, the ReadyList is updated. Each operation has an associated NumUnsched count, indicating the number

of incoming dependence edges whose source operation has not been scheduled. After an operation is scheduled,

NumUnsched count and EarlyCycle of the successor operations are updated. The operation whose NumUnsched

count reaches zero is moved to ReadyList. The operations are not necessarily scheduled on cycle-by-cycle basis

but dependencies are of course satisfied.

The pseudo code of our integrated clustered list scheduling algorithm is given in Figure 2. For cluster scheduling,

instruction in the ReadyList are considered in the priority order as described above. After taking the highest priority

instruction, we consider all the clusters one after another. We determine the earliest time when the instruction under

consideration can be scheduled on the particular cluster. This is called CurrentClusterCycle. CommunicationCost

and CommunicationOption track the cost and interconnect usage respectively for requisite communication and

for the binding under consideration. If the earliest time so found is less than the minimum scheduling time on

clusters considered so far then CurrentCluster becomes TargetCluster of the instruction. MinCycle, MinCommCost,
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Fig. 3. An Example (a) Data Dependency Graph (b) Schedule 1 (c) Schedule 2

and MinCommOption are also updated accordingly for later use. Once all the clusters have been considered the

instruction is assigned to that cluster where it can be scheduled earlier or incurs less communication, in the case of

tie. CommunicationOption is used to schedule a cross-path according to the cross-path binding scheme described

earlier.

3.5. An Example

In this subsection we present an example to illustrate the notion of communication slack and how it is exploited

by the proposed scheduling algorithm to get energy benefits without hurting performance. Figure 3 shows a portion

of a data dependency graph and two possible schedules for this dependency graph. We Assume a two-clustered

machine with each cluster having an adder, a multiplier and a fast communication bus. Schedule 1 has ADD1

and ADD2 scheduled on adders of cluster 1 and cluster 2 respectively in cycle 1. To perform multiplication, the

results of these operations are transferred to the other cluster in cycle 2. The remaining addition operation ADD3

is also initiated in cycle 2 on cluster 1. The results of ADD1 and ADD2 can be used in cycle 3 on cluster 1 and

cluster 2 respectively to perform MPY2 and MPY1 multipliers. Though MPY3 does not require any inter-cluster

communication, it is still executed in cluster 1 at cycle 4 because of non-availability of a multiplier in cycle 3. The

scheduler decides to schedule MPY2 ahead of MPY3 in schedule 1 assuming that MPY2 is on the critical path.

However, MPY3 gets preference if it is on the critical path as shown in schedule 2. Note that in this case, MPY2

needs to be scheduled in cycle 4 on cluster 1 again because cluster 1 has only one multiplier. The important point

to note here is that the scheduler when scheduling MPY2 in cycle 4 in cluster 2 has the knowledge that it can take

two cycles to transfer the result of ADD2 over the communication channel without stretching the schedule. In such

a situation if a slow but more energy-efficient bus is available, our schedulers decide to steer communication to such

a bus (as shown with darker arrow in scheudle 2). Notably, even though three additions are ready to be scheduled

in the first cycle only two of them can be scheduled (only two adders are available in this case). Similarly though

the addition operations finish in opposite clusters in cycle one the results can not be utilized for multiplications in

cycle 2 because it takes at least one cycle to transfer the results to the other clusters. This shows how contention

among computation and communication resources in clustered architectures manifests itself in the form of greater

computation and communication slack. Notably, the contention for resources is more in clustered architectures as

compared to flat architectures because of distribution of resources. Our scheduling algorithm leverages this increased

slack and takes into consideration the criticality of an instruction and the available cycles to communicate requisite
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data values while scheduling an instruction in a given cycle. Accordingly, communication is assigned to the most

energy-efficient cross-path that can transfer the value in the available communication cycles.

4. EXPERIMENTAL EVALUATION

4.1. Setup

We have used the Trimaran suite [5] for our experimentation. Trimaran was developed to conduct state-of-art

research in compilation techniques for ILP architectures with a specific focus on VLIW class of architectures. We

have to modify the Trimaran suit [5] to generate and simulate code for a variety of clustered VLIW configurations.

The machine description module has been upgraded to describe various clustering related parameters such as the

number of clusters, number and types of functional units in each cluster, interconnection network parameters such

as number and types of buses among different clusters, their latency and energy consumption. These parameters are

fed to the parameterized machine dependent optimization modules in the backend. Major modifications have been

performed in the Trimaran scheduler and register allocator module (which was originally written for a class of flat

VLIW architectures) to faithfully account for the conflicts due to limitations on the available functional units and

registers in a cluster as well as the limitations on the the available cross-paths among clusters. The scheduler has

been modified to implement the scheduling algorithm described in the last section. We have used twelve benchmarks

out of which nine are from mediabench [28] [2] (viz. cjpeg, djpeg, rawcaudio, rawdaudio, g721encode, g721decode,

md5, des, and idea), two from netbench [19] [4] (viz. crc, and dh), and one (susan) is from MiBench [20] [3]. We

have tried other benchmarks from these suits as well but these are the only ones which compiled successfully and

executed correctly using Trimaran framework and hence we report results for them.

We present results for a two-cluster machine and a four-cluster machine with each machine having one integer

unit, one floating unit, one branch unit, and one load store unit in each cluster. To ensure a fair comparison and

to determine the exact trade-offs results are presented in comparison with an equivalent BASE machine with no

clustering but with the same number of functional units and registers. Thus, the BASE flat VLIW machine has two

functional units and four functional units of each type for 2-clustered and 4-clustered VLIW. Each configuration

has two buses between each pair of clusters. Thus, it is possible to transfer two data values between any pair of

clusters simultaneously in both the directions. The first configuration called LL, uses a high speed homogeneous

interconnect. This configuration has both the buses implemented with delay-optimized wires and it is possible

to transfer a data value between any pair of clusters in one cycle. The second configuration uses a low speed

homogeneous interconnect called PP. This configuration has both the buses implemented with the energy-optimized

wires and it takes three cycles to finish transfer of a data value between any pair of clusters. However, we assume

that the communication network is fully pipelined and that it is possible to initiate a new transfer every cycle. The

third configuration represents a heterogeneous interconnect called LP. This configuration has one L wire (capable of

transferring one data value in one cycle) and a P wire (which takes three cycles to finish a data transfer). To limit

the number of simulations, we do not present the results for cluster configurations with number of buses other than
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two. However, earlier studies have demonstrated that increasing the inter-cluster communication bandwidth beyond

two gives diminishing returns while increasing area overheads. However, a cross-path bandwidth of two certainly

provides significantly better performance compared to a cross-path bandwidth of one [24].

4.2. Energy Model

We have adapted the Epic-Explorer backend [18] [1] to determine the energy consumption in the different

components of the data-path. Epic explorer is a collection of activity based power models. An activity based energy

model takes into account the statistics of program execution that comprises usage of different components to

determine the total energy consumption during program execution. We briefly describe the model that we have used

to determine the energy consumption in different components and provide references that describe the associated

energy models in detail.

1) Energy Consumption in Functional Units: We have used the model proposed by Cai and Lim [10] to model

the energy consumption in various functional blocks. We consider four different kinds of functional units namely

integer, floating point, branch, and memory. The active power density and dynamic power density for each kind

of functional unit is used along with the usage statistics of different functional units (which is tracked during the

execution of the program) to determine the overall power consumption for different functional units. The number

and types of functional units in each cluster are taken into consideration to arrive at final energy consumption for

functional units.

2) Energy Consumption of Register files : To model the energy consumption in register files, the model proposed

by Lio et al. [31] is used. This model determines the static and dynamic power consumption of register file by

taking into account the word size of the register in register file and number of registers in a particular register file.

We have taken into account each different type of register file and different register files in all clusters with their

respective parameters in order to model the overall energy consumption of register files.

3) Energy Consumption of Memory Hierarchy: To model the energy consumption of different level of memories

(L1 and L2 Data cache, L1 and L2 instruction cache etc.), we have used an energy model proposed by Kamble

and Ghosh [25]. This model is also based on the number for transitions for the various circuit elements involved

in the activity of a cache. We determine these dynamic statistics during program execution.

4) Energy Consumption of Interconnect: Energy consumption of interconnect is determined by counting number

of transitions of the bus and applying the following formula :

Ebus = 1/2V 2
ddαfClT

where Vdd is power supply voltage, α is the activity factor, f is the clock frequency Cl is the load capacitance

of the bus, and T is time. The energy parameters used for heterogeneity in interconnects are same as the one used

in [8] which is based on analysis done in [9] and [34]. It takes into account wires with different latency energy

profiles to determine the overall energy consumption of the interconnect. In our simulations, we consider a latency

of one cycle and three cycles for L bus and P bus respectively. The dynamic and the leakage energies of L bus are

2.64 times and 2.80 times the dynamic and the leakage energies of P bus respectively [8] [34].
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Fig. 4. Speedup w.r.t. the BASE Machine (a) 2 Cluster (b) 4 Cluster

4.3. Results

We have performed a detailed experimental evaluation of the proposed scheme in terms of run-time performance,

processing, communication and total energy, and energy-delay product. These results are discussed in detail in the

following subsections.

1) Performance: We compare the number of cycles taken to execute the program on different configurations.

Figure 4(a) shows speedup for a two-cluster machine with different interconnect configurations with respect to the

corresponding BASE machine. We observe that the LL configuration achieves the best performance among all the

clustered configurations as expected. The average performance degradation while going from a BASE machine to

a 2-clustered machine with the LL configuration is 8.65% whereas the average performance degradation for the

PP and the LP configurations is 17.74% and 10.11% with respect to the BASE configuration. The results for a

4-cluster configuration (Figure 4(b)) show similar trends. Table 1 summarizes all the average performance results.

It is clear that heterogeneous interconnects (with a fast and a slow bus) offer nearly the same performance as

that of a homogeneous interconnect (with two fast buses) as the performance degradation is only marginal (1.64%

and 1.11% for two-cluster and four-cluster machines respectively). However, an energy optimized homogeneous

interconnect (having two slow buses) suffers an intolerably high performance degradation of 10.08% and 9.56%

for two and four cluster machines respectively. Reading Figure 4(a) (and Figure 4(b)) together with Figure 1 shows

the general trend that higher the number of communications that can tolerate high latency, lesser the performance

degradation and vice versa. Programs having more communications with high slack values viz. djpeg, g721encode,

des, and crc suffer only a marginal performance degradation and programs with fewer communications with high

slack values viz. idea, md5, and susan suffer a moderate performance degradation with the LP configuration. A

very small overall performance degradation occurs with the LP configuration. This shows the effectiveness of our

communication scheduling mechanism that selectively maps communications with high latency tolerance onto a

high latency bus.

2) Energy Consumption: Energy results presented here are based on a conservative assumption that communi-

cation energy is 20% of the overall processor energy consumption (though future technological projections indicate

higher contribution of communication energy to the overall processor energy consumption). We have used the

same technology parameters for determining the energy consumption in the flat BASE and clustered configurations.

Clustering reduces the complexity of components and may give additional benefits in terms of energy consumption.
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Fig. 5. % Increase in Processing Energy with respect to the BASE Machine (a) 2 Cluster (b) 4 Cluster

Fig. 6. % Reduction in Communication Energy with respect to the LL Configuration (a) 2 Cluster (b) 4 Cluster

Fig. 7. % Increase in Energy w.r.t. the BASE Machine (a) 2 Cluster (b) 4 Cluster

Fig. 8. % Increase in Energy-Delay Product w.r.t the BASE Machine (a) 2 Cluster (b) 4 Cluster
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TABLE 1

RESULT SUMMARY FOR PERCENTAGE INCREASE IN EXECUTION TIME, PROCESSING ENERGY, COMMUNICATION ENERGY, ENERGY, AND

ENERGY-DELAY PRODUCT. X/Y SHOWS % INCREASE (NEGATIVE NUMBERS MEAN DECREASE) IN X CONFIGURATION WITH RESPECT TO Y

CONFIGURATION.

ET (%) PE (%) CE (%) Energy (%) EDP (%)

2C 4C 2C 4C 2C 4C 2C 4C 2C 4C

LL/BASE 8.65 12.28 6.80 9.68 - - 25.44 27.75 31.83 36.56

PP/BASE 17.74 20.64 15.26 17.63 - - 22.14 23.4 35.59 39.15

LP/BASE 10.11 13.25 8.09 10.55 - - 20.18 20.69 28.67 30.72

PP/LL 10.08 9.56 9.17 8.81 -64.66 -69.74 -4.32 -5.99 5.96 4.19

LP/LL 1.64 1.11 1.41 0.89 -35.54 -39.98 -6.15 -7.67 -4.45 -6.43

However, there is no direct way to exactly quantify these benefits and hence the results presented here are rather

conservative estimates. In reality, we expect the energy benefits to be more than these. See Figures 7(a) and 7(b)

We observe 25.44%, 22.14%, and 20.81% increase in energy for the LL, PP, and the LP configuration compared

to the BASE configuration. Energy consumptions of the PP and the LP configurations are 4.32% and 6.15% less

than the LL configuration respectively. There are two reasons of high energy consumption in clustered architectures

apart from energy consumption due to interconnects. Firstly, the communication delays prolong the execution on

clustered architectures which in turn increases the leakage energy consumption in components. Secondly, clustering

causes execution of extra move instructions due to inter-cluster communication which cause extra dynamic energy

consumption. The corresponding figures for a four cluster machine are slightly higher but show similar trends. Table

1 summarizes all the energy results.

For a better interpretation of energy results, we present a breakup of energy as processing energy and commu-

nication energy in Figure 5 and Figure 6. Improvement in communication energy is presented with respect to the

LL configuration (note that the BASE configuration does not have any communication energy consumption). We

found that there is only a marginal increase in processing energy while going from the LL to the LP configuration.

However, there is a significant increase in processing energy for the PP configuration when compared to the LL

configuration. This is due to higher performance degradation in the case of the PP configuration which leads to

longer execution and hence more leakage energy consumption in components. Increase in processing energy is

higher for idea, md5, and susan as compared to djpeg, g721encode, des, and crc and this can be attributed to large

performance degradation of the former set of programs. Figure 6 presents the reduction in communication energy.

We observe that the PP configuration shows about 64.66% reduction in communication energy as compared to

the LL for 2-clustered architecture. The reduction in communication energy is almost constant irrespective of the

benchmark. This is as expected because both the buses have been replaced by low power buses which offer no

diversity to be exploited by the scheduler in terms of improving performance or reducing energy consumption. The

communication energy reduction for the LP configuration is 35.54% with respect to the LL configuration. There is
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much more variation here in communication energy saved for different benchmarks depending upon the available

communication slack for the benchmark and the effectiveness of the proposed scheme in terms of mapping the

communication to appropriate wire (we observed 69.74% (PP over LL) and 39.98% (LP over LL) reduction in

communication energy while going from the LL to the PP and the LP configuration respectively for a 4-clustered

configuration.). Huge saving in communication energy in the PP configuration offsets the increase in processing

energy in all the benchmarks except idea, md5, and susan. These benchmarks have exceptionally high increase in

processing energy because they have less number of communications with high slack values compared to other

benchmarks. The LP configuration performs the best in terms of energy consumption. This is because of significant

savings in communication energy in the LP configuration with only marginal increase in the processing energy

compared to the LL configuration.

We see that going from the BASE machine to a clustered machine adds extra communication overheads in terms

of performance as well as energy. The extra execution time also leads to an increase in the processing energy

mostly because of more leakage energy consumption. A heterogeneous interconnect (LP) offers less increase in

processing energy and less performance degradation while offering significant reduction in communication energy.

A homogeneous interconnect optimized for delay incurs high communication energy but offers less performance

degradation and least increase in processing energy. In contrast, a homogeneous interconnect optimized for nergy

offers high saving in communication energy but intolerably high performance penalty which also translates to

increase in processing energy. A heterogeneous interconnect (LP) is the middle ground that offers less increase

in processing energy and less performance degradation while still offering significant reduction in communication

energy. In the next subsection we present energy delay product to gain a better understanding of energy-performance

trade-offs among unified architectures and different clustered VLIW architectures.

3) Energy-Delay Product: Figure 8(a) presents the total energy-delay product for different configurations of a

2-cluster machine as compared to the BASE machine. We observe that the total energy-delay product increases

by 31.83%, 35.59%, 28.67% for the LL, PP, and the LP configurations respectively. The average increase in total

energy-delay product while going form the LL to the PP and the LP configurations is 5.96% and -4.45% (actually

decrease for LP) respectively. Notably the LP configuration provides an improvement over the PP configuration by

10.12%. The results for 4-cluster machine is depicted in Figure 8(b). Table 1 summarizes all the average results

for energy-delay product.

The PP configuration, having both interconnects optimized for energy, achieves huge reduction in communication

energy. However, the performance degradation due to slow interconnects leads to large performance penalties and

the resulting increase in processing energy annuls the benefits obtained due to reduction in communication energy.

On the other hand, the LL configuration offers the best performance but at the cost of high energy penalty of

delay-optimized interconnects. The LP configuration performs extremely well in terms of energy-delay product.

The proposed selective scheduling steers only critical communications to the high speed interconnect. Thus, it

maximizes the usage of the low energy interconnect. As a result, it incurs only slight performance and energy

penalties as compared to the delay-optimized LL configuration, but is still able to obtain a significant reduction
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Fig. 9. % Increase in Energy-Delay Product with 25% CE w.r.t the LL Configuration (a) 2 Cluster (b) 4 Cluster

Fig. 10. % Increase in Energy-Delay Product with 30% CE w.r.t the LL Configuration (a) 2 Cluster (b) 4 Cluster

in communication energy. Programs in which more communications have high communication slacks, viz., djpeg,

g721encode, des, and crc suffer less performance degradation and consequently less increase in processing energy

in the LP configuration as compared to the LL configuration. These programs also achieve significant reduction in

energy in the LP configuration because of usage of P bus whenever possible. As a result, the energy-delay product

for these programs is significantly better in the LP configuration. Even programs in which moderate number of

communications have high slack values yield significant benefit in energy-delay product in the LP configuration as

compared to the LL configuration because of selective choice of bus.

4) Sensitivity Analysis: Energy and energy-delay product results presented in previous subsections assume

conservatively that communication energy contributes only 20% to overall processor energy consumption. See

Figure 9 and Figure 10. Considering communication energy as contributing 25% and 30% to overall processor

energy, proposed scheme yields significant savings of 6.7% (9.0%) and 8.6% (11.4%) for the 2-clustered (4-

clustered) LP configuration compared to the LL configuration. The corresponding savings for the PP configuration

are -2.05% (1.64%) and 0.19% (4.36%) with respect to the LL configuration for 2-clustered (4 clustered) machine.

Even the PP configuration has better energy-delay product as compared to the LL configuration particularly in

case of a 4-clustered machine. However, severe performance penalty makes this configuration less attractive than

the LP configuration which provides the best better energy-delay with only marginal performance degradation.

The improvement in energy-delay product is increasingly high with more clusters. These results point towards the

importance of the proposed scheme with the increasing contribution of communication energy in future technologies

and the increasing degree of clustering in future architectures.
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5. RELATED WORK

In this section we briefly describe the earlier work done in the area of instruction scheduling for clustered archi-

tectures, power aware scheduling for VLIW architectures and efficient interconnects for distributed architectures.

5.1. Instruction Scheduling for Clustered Architectures

Earlier proposals for scheduling on clustered VLIW architectures can be classified into two main categories, viz.,

phase-decoupled approaches and phase-coupled approaches. A phase-decoupled approach to scheduling works on a

data flow graph (DFG) and performs partitioning of instructions into clusters to reduce inter-cluster communication

while approximately balancing the load among clusters. The annotated DFG is then scheduled using a traditional

list scheduler while adhering to earlier spatial decisions. A major argument in favor of this approach is that a

partitioner having a global view of a DFG can perform a better job of reducing inter-cluster communication and

load-balancing. The proposals in this direction are due to Ellis [14], Desoli [13], Gonzalez [7], Lapinskii [27],

Mahlke [11], Lee [29], and Nystrom [37]. However, the phase-decoupled approach is known to suffer from the

phase ordering problem. Since the spatial scheduler has only an approximate knowledge of load on clusters, usage of

functional units, and cross-paths, approximate load-balancing often leads to cluster assignments which unnecessarily

constrain the temporal scheduler in the later phase. Moreover, some of these schemes are geared towards reducing

inter-cluster communication and end up reducing the ILP in the program in this pursuit [38] [24].

An integrated approach to scheduling combats the phase-ordering problem by combining spatial and temporal

scheduling decisions in a single phase. The integrated approach considers instructions ready to be scheduled in a

cycle and the available clusters in some priority order. The priority order for considering instructions is decided

based on mobility, scheduling alternatives, the number of successors of an instruction etc. Similarly, priority order

for considering clusters is decided based on communication cost of assignment, earliest possible schedule time. etc.

An instruction is assigned a cluster to reduce communication or to schedule it at the earliest. The proposals in this

direction are due to Ozer [38], Leupers [30], Kailas [24], Zalamea [47], and Nagpal [36] [35].

5.2. Energy-Efficient Scheduling

Most of the work in the area of energy-efficient scheduling has been done in the context of VLIW architectures.

Zhang et al. [48] have proposed a scheme to reduce dynamic and leakage energy in the functional units of

VLIW processor. The proposed dynamic energy management scheme assumes availability of multiple operationally

duplicate functional units whereas the proposed leakage energy management scheme considers the availability of

low leakage mode for the functional units. They have proposed a rescheduling algorithm that exploits the slacks

in already scheduled code to remap the functional unit for improving the energy consumption. Leakage energy

management scheme is applied to longer slack durations by switching the unused functional units into low power

mode. Detailed results have been provided to justify the benefits of these schemes. Kim et al. [26] have proposed a

leakage energy management scheme for VLIW processors that determines the ILP available in the program at a the
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loop level granularity and determine the canonical set of functional units sufficient to exploit this ILP. The proposed

scheme switches the remaining functional units off in order to save energy. Experimental results show that their

scheme provide significant leakage energy savings without much performance loss. In a proposal by Gupta et al.

[41] leakage energy management is performed for superscalar architectures. They introduced a novel data structure

called power-aware flow graph. The proposed scheme works over this graph to determine larger program regions

called power blocks which offer opportunities to save leakage energy. Functional units are switched on and off at

the boundaries of this region to save leakage energy. Kim et al. [46] have proposed a modulo scheduling algorithm

that produces more balanced schedule for software pipelined loops with an objective to reduce the peak power and

step power. Kraemer et al. [22] have proposed a compiler directed dynamic voltage scaling technique that uses a

compiler algorithm to identify the regions of the code where the clock frequency and voltage can be scaled down

with a given performance degradation threshold, thereby reducing energy consumption.

5.3. Efficient Cross-path Design

As compared to reducing energy consumption in function blocks, study of energy efficiency in interconnects is still

in its infancy. Previous work has concentrated on improving latency for interconnects in the context of distributed

architectures. Gonzalez et al. [23] have evaluated different kinds of interconnects with different topologies and

concluded that a point-to-point interconnect with an effective steering scheme is more efficient than a bus-based

interconnect. Their experimental results also demonstrate that an asynchronous interconnect offers a performance

comparable to an idealized interconnect at a low hardware implementation cost. Terechko et al. [43] has proposed

various inter-cluster communication models for clustered architecture and perform a quantitative analysis to compare

their benefits.

Closest to our proposal is the work by Balasubramonian et al. [8]. They have also used the same interconnect

energy model as proposed in [34] to evaluate techniques such as cache pipelining, exploiting narrow bit-width

operands, and interconnect load balancing in the context of superscalar architectures with heterogeneous interconnect.

In contrast, our work is more focused on how communication slack in the context of clustered VLIW architecture

can be exploited to gain the energy benefits and to explore the energy-performance trade-off while going from

a BASE architecture to different configurations of clustered VLIW architectures. Our results demonstrate that

compile-time instruction scheduling utilizing a larger view of program can combine the instruction scheduling and

communication scheduling in a profitable manner. On the other hand, a architecture with dynamic scheduling suffers

from the problem of limited program view and incurs overheads and complexities of extra hardware for exploiting

heterogeneous interconnects at run-time. Thus, the choice of a heterogeneous interconnect is more suitable and

beneficial for statically scheduled VLIW architectures as compared to dynamically scheduled architectures.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have proposed a new energy-aware instruction scheduling algorithm for clustered VLIW

architectures that is capable of exploiting interconnect characteristics to get energy benefits without showing high
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performance degradation. A number of experiments were conducted to demonstrate the capability of the proposed

algorithm and to understand the energy-performance trade-offs in going from the BASE architectures to varieties

of clustered architectures on a range of media and networking benchmarks. The major conclusion that we draw

form this work is that clustered architecture with heterogeneous interconnect offers better energy-performance

trade-offs when used with an effective scheduling algorithm as compared to a cluster VLIW architecture with

homogeneous interconnect (which is either optimized or latency or power). Experimental results demonstrate that

our instruction scheduling algorithm achieves 35% and 40% reduction in communication energy whereas energy-

delay product improves by 4.45% and 6.43% respectively for 2-cluster and 4-cluster machines with a marginal

1.64% and 1.11% degradation in performance. We feel that our technique would become even more important with

future architectures, where communication energy would be a larger fraction of total energy consumed. We propose

the following extensions to this work.

1) Understanding the interaction between energy-efficient scheduling for functional components (such as func-

tional units, decoder, instruction buses etc.) and the proposed energy efficient scheduling algorithm for

interconnects to design an integrated cluster scheduling algorithm that reduces the energy consumption in

logic and interconnects.

2) Adapting the proposed algorithm for software pipelining of inner loops and quantifying the associated benefits

in the context of modulo-scheduling.
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