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Abstract

Processor architects have a challenging task of evalu-
ating a large design space consisting of several interact-
ing parameters and optimizations. In order to assist ar-
chitects in making crucial design decisions, we build lin-
ear regression models that relate processor performance to
micro-architectural parameters, using simulation based ex-
periments. We obtain good approximate models using an
iterative process in which Akaike’s information criteria is
used to extract a good linear model from a small set of
simulations, and limited further simulation is guided by the
model using D-optimal experimental designs. The iterative
process is repeated until desired error bounds are achieved.
We used this procedure to establish the relationship of the
CPI performance response to 26 key micro-architectural
parameters using a detailed cycle-by-cycle superscalar pro-
cessor simulator. The resulting models provide a signifi-
cance ordering on all micro-architectural parameters and
their interactions, and explain the performance variations
of micro-architectural techniques.

1. Introduction

Modern processors are evolving at a rapid pace and in
the quest for better performance architects introduce sophis-
ticated micro-architectural enhancements in each new gen-
eration of processors. However, the increasing complexity
of modern architectures has direct consequence on the pro-
cess of designing processors. To arrive at optimal design
points, architects are expected to evaluate a large design
space consisting of several micro-architectural parameters
such as cache sizes and associativities, queue sizes, branch
predictor configuration, pipeline depth etc., each with a
wide range of potential settings. Complex interactions be-
tween these parameters make it hard to gain an intuitive un-
derstanding of their impact on performance.

Designers in many disciplines of science and engineer-
ing deal with design complexity by building abstract mod-

els of the system that relate input parameters to the re-
sponse. The models help designers gain a better under-
standing of the system and answer several key questions; for
instance, which input parameters have the largest impact on
response? How does a particular parameter interact with the
others? What is the expected benefit of an enhancement?
Although there have been several attempts to build models
for processor performance over the past years [10, 16], they
rely on prior knowledge about the significant parameters,
fail to model the design space in sufficient detail, and their
validity across a larger design space is unknown.

The aim of our research is to develop empirical mod-
els for processors that characterize the relationship between
processor response and micro-architectural parameters. As
a first step in building such models we quantify the sig-
nificance of micro-architectural parameters and their in-
teractions. Quantifying the interactions between micro-
architectural parameters is important, and is best illustrated
through a simple experiment. We measured the improve-
ment in average instructions issued per cycle (IPC) due to
out-of-order issue over in-order issue for different L1 data
cache configurations. Improvements in IPC for the SPEC
twolf benchmark are plotted in Figure 1. The impact of out-
of-order issue varies with data cache size, and the varia-
tion depends on cache latency. Such significant interactions
need to be included in the model. In this paper, we show
that precise estimates of the significance of all parameters
and interactions can be obtained by building linear regres-
sion models using simulation-based experiments. We show
how the parameters of the regression model, which reflect
the significance of the corresponding terms, can be empiri-
cally computed without any prior knowledge or understand-
ing of processor dynamics. Since these significant factors
have a large impact on performance and are usually small
in number, they are ideal candidates for further analysis.

In this paper, we draw from past research in the field of
design of experiments and linear model construction and
propose an iterative process for constructing accurate re-
gression models of processor performance consisting of all
significant main effects and interaction terms using a rea-
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Figure 1. IPC performance improvement of
out-of-order issue over in-order issue.

sonable number of simulations. We use this procedure to
build a linear model relating superscalar processor perfor-
mance to 26 key micro-architectural parameters. We also
show how parameters that were originally not a part of the
experiment can be added to the linear model using few ad-
ditional simulations.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the basic concepts of linear regression
models. In Section 3 we identify experimental designs use-
ful in building such models. We describe our iterative pro-
cedure for building the linear model in Section 4, and the
experimental framework in Section 5. Section 6 presents
the results of model construction. We present an overview
of existing processor modeling techniques in Section 7 and
conclude in Section 8 with a discussion of future work.

2. Linear Regression Models

A regression model is a compact mathematical represen-
tation of the relationship between the response variable and
the input parameters in a given design space [15]. Linear
regression models are widely used to obtain estimates of pa-
rameter significance as well as predictions of the response
variable at arbitrary points in the design space. One of the
simpler forms of such models is

���������
	� � �� �
����� ��� (1)

where � is the dependent or response variable, �
� �����������

�! are the independent or regressor variables and � is the
residual - the error due to lack of fit. � � is interpreted as
the intercept of the response surface with the y-axis and� �
� ���"�#�$� �% are known as the partial regression co-

efficients. The co-efficient values represent the expected

change in the response � per unit change in

�&�
and indicate

the relative significance of the corresponding terms.
It is often the case that the regressor variables interact

i.e. the effect of a change in

� �
on � depends on the value

of

�('
. In such cases, the simple model in Eq. 1 is not

sufficient. It is necessary to introduce terms that explicitly
model two-factor interactions as shown below.
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Eq. 3 represents a complete model that include three-
factor, four-factor and all higher order interactions. There
are 0 	 terms in this model and an equal number of unknown
regression co-efficients.
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The linear regression models we develop in this paper can
be represented as a sum of = terms from this complete linear
model, expressed in a generic form as�)�*� � �8� �

� �?> �@� 9
� �-A 767/7 �8� 3CB �

� �ED
F
> ��� (4)

where each

� �-G
is a distinct term from the complete model,

and can be single factor, two factor, three factor or of any
higher order. The collection of terms chosen for a given
linear model will be referred to as the model terms.

In matrix terms, Eq. 4 can be written asHI�KJL�M��� (5)

where � is the vector of regression coefficients and N is the
model matrix. The model matrix has columns correspond-
ing to the regressor variables

�
�PO
�
9 O 5/565 O

�
	 , columns for

interaction terms of any order, and a column of ones defin-
ing the intercept.

Our goal in this paper is to accurately estimate all signifi-
cant micro-architectural parameters and interactions affect-
ing processor performance. We achieve this by performing
simulation-based experiments in which the regressor vari-
ables are set to different values and the resulting perfor-
mance metric is fitted as per Eq. 4, minimizing the num-
ber of terms = and the residual error � simultaneously. As
a by-product, we obtain precise estimates of the partial re-
gression co-efficients and hence estimates and an ordering
of the significant factors and interactions affecting proces-
sor performance.

There are a few guidelines that an architect must keep in
mind while planning and designing the simulation experi-
ments. The guidelines help in the selection of the response
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variable, the set of factors to be included in the experiment,
their ranges and the levels at which each factor is varied
during the experiments.

Factor selection: A designer must initially identify a set
of factors that can potentially influence the system response.
For our experiments, we assume no prior knowledge of fac-
tor effects and select factors conservatively i.e. factors are
included in the experiments even though their impact on
performance may not be significant.

Factor ranges and levels: The choice of factor ranges
and levels is primarily governed by technological con-
straints and the objective of the experiment. If the primary
objective is to determine significant coefficients in a linear
model, as is the case with our study, wide factor ranges are
preferred. We choose a range consisting of values just lower
and higher than potential factor settings under current tech-
nology. During our experiments, each factor is varied at two
levels (encoded as -1 and 1) corresponding to the low and
high value of its range.

Response variable and output transformations: Our sim-
ulator reports simulated processor performance measured in
IPC. However, to build a linear model, it is often beneficial
to use a transformation of the response variable instead of
the response variable itself [2]. Such transformations might
result in response surfaces that are more linear and easier
to fit. We evaluate a family of such transformations in the
context of processor modeling in the following section.

2.1. A Case Study on Building a Linear Model

We illustrate our approach by building a linear regres-
sion model that relates the IPC of SPEC CPU2000 integer
benchmarks to six micro-architectural parameters – namely
the pipeline depth, reorder buffer size, issue queue size, L2
cache size, out-of-order capability, and the memory config-
uration. We limit the number of factors to six so that all
regression co-efficients in the complete linear model can be
exactly determined using a reasonable number of simula-
tions. The factor ranges were chosen based on experimental
design guidelines. During the experiment, simulations were
conducted for the 0�� possible combinations of factor levels
and the regression co-efficients were obtained by solving
Eq. 3 for the measured IPC. The experiment led to the fol-
lowing observations.

Output transformations: We measured the effect of
output transformations on the accuracy of linear mod-
els. We considered a family of transformations ��� O�� �
� 0 O �

�
O ��� 5 	 O � 5
	 O

�
O 0 and ������ ��� as potential candidates.

For each transformation, we computed the regression coef-
ficients and sorted them in decreasing order of magnitude.
We then built linear models incorporating the first = terms,
for different values of = and used the models to predict
the IPC of 64 processor configurations mentioned above.
We then computed the residuals by subtracting the actual
IPC from the predicted IPC and used the maximum residual

Terms
intercept 1.230
pipe depth -0.566
ROB size -0.480
pipe depth*ROB size 0.378
IQ size -0.347
ROB size*IQ size 0.289
pipe depth*IQ size 0.274
pipe depth*ROB size*IQ size -0.219
mem config -0.037
L2 size -0.033
issue order -0.026
L2 size*mem config 0.023
ROB size*issue order -0.015
pipe depth*issue order -0.009
IQ size*issue order -0.007
pipe depth*ROB size*IQ size*L2 size 0.006

Table 1. The most significant terms from the
6-factor model for the weighted mean CPI of
benchmarks. * denotes interaction.

value as an indicator of the accuracy of the model.

Figure 2 plots the maximum residual value against the
number of terms incorporated in the model. We observe that
for all output transformations, the maximum residual re-
duces to acceptable levels even when many terms have been
excluded from the models. Further, the inverse transforma-
tion ( � B � ) results in the lowest maximum residuals. We ob-
serve similar behavior for all benchmarks. Hence, using the
inverse transformation allows the construction of accurate
linear models with the least number of terms. Note that the
inverse transformation of IPC results in the CPI metric. CPI
is an intuitive metric expressible as a dot product of event
frequencies and event penalties within a processor [6] and
it is most amenable for linear model construction. We use
CPI as the performance metric in the rest of this paper.

Sparsity of effects: Our experiment reveals that proces-
sors exhibit the principle of sparsity of effects — system
response is largely governed by a few main factors and low
order interactions and the influence of higher order inter-
actions on response is marginal. As a consequence, terms
corresponding to higher order interactions can be excluded
from the model. Table 1 lists the

�
�

terms, out of the
���

terms in our experiment, that we identified for inclusion in a
simplified model of the processor’s CPI performance. This
observed sparsity of significant effects has a large bearing
on the feasibility of our simulation-based model building
process. We discuss this further in section 2.2.

Significance of factors: Table 1 shows the most signifi-
cant factors and interactions in our regression model. Some
of the two-factor interaction terms are also critical, as is the
three-factor interaction between pipeline depth, ROB size
and issue queue size. These observations highlight the im-
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Figure 2. Number of terms required in linear model under different data transformations.

portance of incorporating second and third order interac-
tions in models.

2.2. Linear Models Incorporating All Factors

Our aim is to build a linear model involving all processor
parameters. For this purpose it is infeasible to experiment
with all combinations of factor levels as was done in the
previous section. However, sparsity of effects makes it pos-
sible to have accurate and compact linear models of the type
specified in Eq. 4 incorporating only significant effects.
Coefficients of the = most significant parameters can usu-
ally be estimated from processor’s response at n different
factor level combinations using least square fitting, where��� = and ����� 0 	 . The least square estimates of the k-
dimensional coefficient vector �*� � ��� O � � 5-5 O � 3 B � ) in Eq.
5 is ��%� � J��EJ � B
	 J��2H (6)

where N is the model matrix for the experimented factor
settings. The variance of the error term in Eq. 5 can be
estimated as � 9 � ����

�� � �
�
� �� � � 9� � = (7)

where
�� � N �� is the fitted response. This least square

fitting method provides useful approximations with simula-
tions reduced close to the number of significant effects.

The coefficients computed as above are only estimates of
the actual linear model coefficients. However, we can com-
pute a bound on this error. Under the simplifying assump-
tion that errors due to non-incorporated terms are normally
distributed, a

�
��� �

�
��� � percent confidence error bound for� ' is � � ' � �� ' � � ����� 9/. � B 3�� �

' ' � 9 (8)

where ����� 9/. � B 3 is the upper ��� 0 percentage point of the t
distribution with � � = degrees of freedom, and �

' '
is the

��� O � � �! entry of � N � N � B � matrix [15]. It follows that the
accuracy of our estimates depend on:" Error Degree of Freedom:.

Increasing � � = , the degree of freedom for the error
term, reduces ���#� 9:. � B&3 in Eq. 8. However, this reduc-
tion decreases as � � = is increased beyond a point." Experimental Design:

The specific set of factor level combinations used for
the experiment determine the �

' '
term in Eq. 8. Hence

appropriate experimental designs are critical to achiev-
ing good accuracy. We discuss this in Section 3." Error Variance:

Minimization of the error variance,
� 9 , in Eq. 8 re-

quires all significant terms to be in the model. How-
ever, since the significant terms are not known a priori
they need to be identified from experimental data. We
describe the procedure we use to identify and include
all significant effects in Section 4,

3 Experimental Designs

An experimental design is a choice of parameter settings
to estimate the coefficients of a specified model. An effi-
cient estimation of coefficients require an appropriate de-
sign of experimental settings. A design can be deficient in
several ways. In a design, if the columns

� � G
and

� � D
in

the model matrix N are identical, the corresponding terms
are said to be “aliased” and their coefficients cannot be inde-
pendently estimated. Further, experimental settings produc-
ing a badly conditioned model matrix make it impossible to
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��� ��� ���

-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1
1 -1 1
1 1 -1
1 1 1

(a)
��� ��� ���

-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

(b)
��� � � � � � � � � � � � � � � � � � � � � � � � �

1 -1 -1 1 1 -1 -1 1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 1 1 1 1 1 1 1

(c)

Table 2. An example of a regular fractional
factorial design (b) of a full factorial design
for 3 factors (a). (c) is the model matrix of (b)
for a complete linear model.

compute the ��N � N � B � matrix required for coefficient esti-
mation. Moreover, large values for the diagonal elements
of ��N � N � B � make the coefficient estimates highly inaccu-
rate. Hence, it is important that experimented parameter
settings are well chosen. In the following subsections we
survey some of the experimental design types and identify
the best one for use in building linear models of processor
performance.

3.1 Fractional Factorial Designs

These designs are fractions of full factorial designs
wherein some of the terms in the complete linear model
are aliased with each other [3]. Table 2 gives an example
for 3 factors - (b) is a fractional factorial design contain-
ing a half-fraction of the experiments in (a), a full facto-
rial design. Table 2 (c) is the model matrix N of design
2 (b) for a complete linear model. The columns for terms
in the model matrix are obtained by taking dot product of
constituent factor columns. For example,

�
�
�
9 column is

the dot product of

� �
and

�
0 columns. The design leaves

some of the columns identical or aliased (e.g,

�
� � �

�
�
9 ),

and such terms cannot be independently estimated by using
the design. These designs provide accurate estimates of all

significant coefficients if no two significant coefficients are
aliased with each other.

Fractional factorial designs are available in various reso-
lutions, according to the nature of aliasing. Designs of res-
olution III, IV and V are important and are defined below:

" Resolution III designs. These are designs where no sin-
gle factor is aliased with any other single factor term.
The example (b) in Table 2 is of resolution III.

" Resolution IV designs. These are designs where no sin-
gle factor term is aliased with any other single factor
or two factor term.

" Resolution V designs. These are designs where no sin-
gle factor or two factor term is aliased with any other
single factor or two factor term.

Building linear models for processor performance require
designs where some of the three and four factor interactions
are not aliased with other significant effects. Even designs
of resolution V are insufficient in this context. It is pos-
sible to de-alias chosen three factor interactions by adding
appropriately designed experiments to the resolution V de-
sign. However, in practice this is difficult since the signifi-
cant three factor interactions are not known a priori.

3.2 Plackett- Burman Designs

Plackett-Burman designs [17] are resolution III designs
which need less experiments than regular resolution III frac-
tional factorial designs. The required simulation count for a
Plackett-Burman design for � factors is the next multiple of�

greater than � . A regular fractional design requires runs
equal to the next power of 2 greater than � . A resolution
IV design can be obtained from a Plackett-Burman design
by fold-over - choosing an additional set of runs where the
signs of the experimented factors are reversed. However,
these designs alone are insufficient for building linear mod-
els of processor performance since they cannot estimate all
significant two-factor and three-factor interactions, which
we have seen are important, from our

�
factor case study.

3.3 Random Designs

A set of � � = random experimental configurations can
be simulated and the observed responses to solve equation
4. The only requirement is that the derived model matrix
should not be ill-conditioned. However, this method does
not guarantee the best values for the diagonal elements of
� N � N � B � , as shown in the next section. Hence, these de-
signs do not provide the most accurate models for a speci-
fied simulation count.
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3.4 D-Optimal Designs

D-optimal designs are algorithmically generated exper-
imental designs optimized to have maximum values for����� ��N � N � for a specified model. Such an optimization
tends to give ��N � N � B � matrices with low values for all
entries, ensuring high accuracy in the estimation of coef-
ficients. These designs are often generated using the co-
ordinate exchange algorithm [14], where an initial random
experimental design is iteratively improved to maximize����� ��N � N � . This algorithm can also produce D-optimal
augmentations to an existing design. We compared the rel-
ative efficiency of D-optimal and random designs for our
purpose of estimating regression coefficients. We computed
the diagonal elements �

' '
obtained for � N � N � B � matrices

derived from the two types of designs. For this we used ��� 0
run designs of 0 � factors, and the D-optimal design was op-
timized for a model incorporating all factors and two factor
interaction terms. Figure 3 plots the �

' '
values. The D-

optimal design is consistently better.
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Figure 3. �
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values for a random and a D-
optimal design for a model with 26 factors
incorporating all main effects and two factor
interactions .

We chose to use D-optimal designs in our model con-
struction process. These designs provide accurate estimates
of linear model coefficients, allow models involving any
specified set of terms, and can be augmented to existing ex-
perimental designs. Furthermore, implementations of the
exchange algorithm for generating these designs are readily
available.

4. Procedure for Model Construction

Our aim in model construction is to obtain accurate esti-
mates of all significant coefficients with minimum number

model set The set of terms included in
a linear model.

union model The model obtained from the
union of two model sets.

term order The number of factors in a term.
union term The term obtained from the union

of factors in two terms.
sub term A term which has a subset

of factors in another term
model hierarchy The property that the model

contains all sub terms
of any included term.

Table 3. Definition of Terminology in Proce-
dure Description.

of simulations. Since the significant effects are not known a
priori, this information has to be extracted from experimen-
tal data. However, designing the best experimental strategy
requires knowledge of significant terms; D-optimal designs
are optimized for an identified set of model terms. Hence,
in order to obtain the best experimental designs having min-
imal simulations we use an iterative procedure where initial
small D-optimal designs are used to learn significant effects,
and this information is used to guide further simulation us-
ing augmented D-optimal designs, until an adequate model
is achieved. Each of the required steps and the complete
iterative procedure are described in the following subsec-
tions.

4.1. Obtaining the Best Model

Given an experimental design and simulation results we
have to determine the best model that fits the data well. We
use Akaike’s Information Criteria (AIC) [1, 20] to select a
model that fits well and has a minimum number of parame-
ters, resulting in the most significant effects being included
in the model, and thus reducing the model over-fitting prob-
lem. In our procedure we use the corrected version of �
	 �
( ��	 �� ) developed for small experimental samples [8] since
it allows us to keep the simulation count low. ��	 ��� for
linear regression models can be written as

�
	 � � � � � ��� � � 9 � � 0 = � 0��4= �
�
� �4= � 0 �

� � � = � ��� � ��� ��� � � (9)

where � is the number of simulations, k is the number of
terms in the linear model, and

� 9 is the error variance.
This measure accounts for model accuracy using error vari-
ance, and model simplicity using the count of model terms.
Amongst several models possible for fixed experimental
data, the best model has the lowest �
	 ��� [20].

Arriving at the best model involves searching for the set
of model terms producing the lowest �
	 � � . Since an ex-

6



haustive search of all model combinations is computation-
ally expensive we used a procedure which stepwise refines
an initial model. This procedure is based on our observa-
tion that the more significant higher order terms are typi-
cally composed of the significant lower order terms and is
detailed in next section, and it described below.

1. Make an initial model containing all main effect terms
to be the candidate model.

2. Compute the regression coefficients of candidate
model for experimental data. Sort the terms in the
decreasing order of coefficient magnitudes. Compute
�
	 � � .

3. Add terms to the model by forming union terms in the
sorted order of terms. The addition is done subject to
the following constraints: (i) the union term has an or-
der one higher than either of the two terms, (ii) ad-
dition maintains model hierarchy, and (iii) �
	 � � gets
reduced by the addition.

4. Compute the regression coefficients for the enhanced
model and sort them. Compute �
	 � � for all subset
models containing the first = terms, for all possible val-
ues of = . Choose the model with best �
	 � � to be the
new candidate model.

5. If the new model is the same as the previous candi-
date model, choose it as the best model and stop. Oth-
erwise, obtain the union of this model with the main
effects model and repeat step 2.

4.2. Determining Model Adequacy

We use the maximum error of estimated coefficients
as the main measure of model adequacy, since our
aim is to get accurate estimates of all significant ef-
fects. This error bound can be obtained from Eq. 8 as
����� 9/. � B 3�� � 9 � �

�
�
' '

, where � �
�
�
' '

is the maximum�
' '

value of the model. We follow the iterative model con-
struction scheme until a prescribed maximum bound on er-
ror is achieved. We also check for violations of the basic
assumptions in estimating regression coefficients and their
bounds by examining the residuals.

4.3. The Iterative Procedure

Our model construction procedure takes as inputs � (the
number of experimented factors), � (the prescribed maxi-
mum error), and � (the confidence level required on the er-
ror), and outputs Error Bounded Linear Models (EBLMs).
We describe it below.

1. Design an initial D-optimal experimental design �
with 0 � runs for an initial linear model having all main
effects. Obtain the best linear model � .

Pipeline Depth pipe depth
Reorder Buffer Size ROB size
Issue Queue Size IQ size
L2 Cache Size L2 size
L2 Cache Associativity L2 assoc
L2 Cache Block Size L2 bsize
L2 Cache Latency L2 lat
Instruction Cache Size il1 size
Instruction Cache Associativity il1 assoc
Instruction Cache Block Size il1 bsize
Instruction Cache Latency il1 lat
Data Cache Size dl1 size
Data Cache Associativity dl1 assoc
Data Cache Block Size dl1 bsize
Data Cache Latency dl1 lat
FTB entries ftb ent
FTB associativity ftb assoc
Operation Latency op lat
Issue Order issue order
Load-Store Queue Size LSQ size
Number of Functional Units num units
DRAM Memory Configuration mem config
Predictor Type pred type
Predictor Size pred size
Processor Width width
Return Address Stack Size RAS size

Table 4. Micro-architectural parameters.

2. Measure the error variance
� 9 of model � , and the

maximum error in estimated coefficients. Stop and fi-
nalize the model if the error is less than � , and residual
plots are free from gross deviations.

3. Augment the experimental design � with additional
D-optimal experiments ensuring the following: (i) the
new design is D-optimal for a model containing union
of terms in � and the main effect terms, (ii) there are
sufficient number of additional experiments such that
the maximum �

' '
value is reduced by half.

4. Obtain the best linear model � for the new augmented
design � . Go to step 2.

The above procedure can be used to obtain linear models
at any specified level of accuracy. We implemented this pro-
cedure as a MATLAB script which takes the required inputs
and completed simulation experimental data, and provides
either the accurate coefficient estimates or a prescription for
further experimentation.

5. Experimental Framework

5.1. Processor Simulator and Benchmarks

We developed and validated a detailed superscalar pro-
cessor simulator for use in our experimentation. Our simu-
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lation framework - FAFSIM - models pipelined, multiple-
issue, dynamically scheduled, speculative execution pro-
cessors. It models all the performance critical micro-
architectural events and structures in superscalar proces-
sors. The pipeline, caches, branch direction and tar-
get predictors, micro-architectural queues, functional units,
DRAM device timing, queuing at the memory controller,
and contention for the memory bus are all modeled. We ver-
ified the functionality of each component of the simulator,
and in addition validated the summary statistics against an-
other similarly configured verified simulator, alphasim [5].
This validation was done for several design points to verify
the simulator’s accuracy across the design space.

FAFSIM models out-of-order and in-order issue dy-
namic schedulers. The out-of-order dynamic scheduler se-
lects and schedules instructions in the issue queue using the
conventional scheduling logic described in [21]. It orders
the issue of load dependent instructions assuming hits in the
data cache, and these instructions are re-issued on a cache
miss. The issue queue is modeled as a centralized pool of
reservation stations, and the stations are deallocated as soon
as there is no possibility of re-issue.

The simulator models a decoupled fetch unit [18], where
the prediction unit and the instruction cache are decoupled
using a a prediction queue. The prediction unit, consisting
of a branch direction predictor, a fetch target buffer (FTB),
and a return address stack, predicts long contiguous instruc-
tion blocks and stores them in the queue. These predictions
are used to guide fetch from the instruction cache. gshare
[13] and perceptron [9] predictors are implemented as the
direction predictors.

FAFSIM models two levels of caches – separate L1 in-
struction and data caches and a shared L2 cache. The caches
are configurable with regard to size, associativity, block size
and latency. An LRU replacement policy, write back and
write allocate policies are implemented in all the caches.
The caches are non-blocking and have an unlimited number
of miss status handling registers.

The simulator models DRAM device timing and queue-
ing for the memory data bus since these components are
becoming more performance critical [4, 6]. This compo-
nent of our simulator models memory channels, queuing at
memory controller, DRAM banks, and contention for the
data bus [4]. A DDR2 DRAM device is modeled with con-
figurable read latency, burst length, and page size.

We used our simulator to run all SPEC CPU2000 integer
benchmarks using the lgred data set in MinneSPEC [11] re-
duced data sets. This was done using traces generated with
IBM PowerPC executables, compiled with xlc compiler ap-
plying the -O3 option.

5.2. Micro-architectural Parameters and Ranges

We experimented with the 26 key micro-architectural pa-
rameters listed in Table 4. The range of parameters are cho-

Parameter Low Value High Value

pipe depth 24 7
ROB size 24 128
IQ size (1/4)* � � � �

L2 size 256KB 8MB
L2 assoc 1 8
L2 bsize 64 256
L2 lat 20 5
il1 size 8KB 128KB
il1 assoc 1 8
il1 bsize 16 64
il1 lat 2 1
dl1 size 8KB 128KB
dl1 assoc 1 8
dl1 bsize 16 64
dl1 lat 4 1
ftb ent 128 8192
ftb assoc 1 8
issue order In-order Out-of-order
LSQ size (1/4)* � � ���

pred type gshare perceptron
pred size 2KB 16KB
width 4 8
RAS size 4 64

Table 5. Parameter ranges.

Functional unit Settings
Low Width High Width
Low High Low High

Integer ALU 1 4 2 8
Integer mult/div 1 2 1 4
Float 1 4 2 8
Float mult/div 1 2 1 4
Branch 1 2 1 4
Load/store 1 2 1 4

Table 6. Number of functional units (num units).

Operation Latency Func. Unit
Low High

Int. arith./logic 2 1 Integer ALU
Int. mult. 15 2 Integer mult/div
Simple float 5 1 Float
Float. mult. 5 2 Float mult/div
Float. div. 35 10 Float mult/div
Branch 3 1 Branch
Load Cache latency Load/store
Store NIL Load/store

Table 7. Operation latencies (op lat).
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DRAM parameter Low High
CPU clock:DRAM clock ratio 24 6
Module read latency 5 3
Module burst length 4 8
Module page size 512 bytes
Bus width in bytes 8 16
CPU clock:Bus clock ratio 12 3
No. of DRAM channels 1 2
No. of banks 1 8

Table 8. mem config parameter settings.

sen to include the complete range of settings possible under
current technology, and is listed in Table 5. Some param-
eters like issue order have only two potential settings and
the low and high values correspond to these. Some of the
parameters - operation latency, number of functional units,
and the DRAM configuration - combine several parameters
for ease of experimentation and their settings are reported
in Tables 6, 7 and 8.

6. Results

6.1. Results of Model Construction

Table 9 presents the most significant terms in the con-
structed error bounded linear models. The significance or-
dering of terms is based on an EBLM of the weighted mean
CPI response computed from the EBLMs constructed for
all twelve benchmarks. Apart from providing an ordering
of the performance significance of effects, the models also
provide information on the interdependence of parameter
settings on processor response. For example, the terms in-
volving issue order provide the complete set of parameters
which determine the performance variation of out-of-order
issue. From the wealth of information provided by these
EBLMs we summarize a few important observations below:" Pipeline depth, reorder buffer size, and issue queue

size are the three most important parameters influenc-
ing CPI performance of superscalar processors. The
two-factor interactions, and the three-factor interac-
tion involving these three parameters are highly sig-
nificant. The load store queue size and its interactions
with these three parameters are also significant, though
at a lower level. Hence, a processor architect should si-
multaneously tune these parameters for optimum sys-
tem performance." L2 cache size and latency have high impact on perfor-
mance. L2 latency interacts with instruction cache size
and block size, and with data cache size and associa-
tivity. L2 cache size interacts with instruction cache
size and DRAM configuration. Since for a given im-
plementation technology, L2 latency is primarily deter-
mined by L2 cache size, the processor architect should

choose an optimal L2 cache size in conjunction with
these interacting parameters." The performance with out-of-order issue is largely de-
pendent on reorder buffer size and data cache latency." Operation latency has high significance, but it has no
significant interactions. Hence, there is performance
to be gained by reducing operation latency irrespective
of the other processor settings." Amongst the predictor related parameters, the number
of fetch target buffer (FTB) entries has the highest sig-
nificance and the branch predictor size and type are
less significant." The processor width has negligible impact on perfor-
mance. However, the functional unit settings chosen
for a given width is important. Hence, providing an ad-
equate number of functional units is likely to be more
beneficial than increasing the issue width beyond 4 in-
structions.

Our error bounding procedure makes it feasible to pro-
duce a complete list of such effects to any desired level of
significance.

6.2. Diagnostics of Model Construction

Our model construction process constructs the EBLMs
with number of simulations close to the minimum required.
Table 10 reports the number of simulations and other diag-
nostics of the construction process of the EBLMs reported
in the previous section. Note that the simulation count is ap-
proximately twice the number of extracted significant terms
for each model. The table also reports the maximum �

' '
values for constructed experimental designs, the error vari-
ance of the EBLMs, and the actual error bounds achieved
by the models.

Achieving better error bounds is possible at the cost
of increased simulation. Figure 4 plots simulation counts
against achieved error bounds. The error bounds globally
decrease with increased simulation, though there are some
local increases in the estimated error bounds. While we
have used an error bound of � 5 �

�
to obtain our EBLMs, bet-

ter bounds are necessary to accurately estimate effects with
values near and less than � 5 � � . In order to understand ac-
tual CPI variations caused by effects at this range, we stud-
ied them with all other parameters kept at suitably chosen
center points. We observe that they contribute less than 2%
of ��� 	 variation. Hence, error bounds smaller than � 5 � �
are necessary only for studying performance variations at a
finer level. The error bounding procedure can be used to
construct models at any level of accuracy.

In other work [22, 23], foldover Plackett-Burman exper-
imental designs have been used to obtain a significance or-
dering of micro-architectural parameters. Hence, we next
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Terms Weighted Mean crafty eon gap gcc gzip
intercept 2.001 2.279 2.085 2.324 2.304 1.664
pipe depth -0.523 -0.563 -0.501 -0.542 -0.574 -0.494
ROB size -0.445 -0.399 -0.477 -0.408 -0.384 -0.456
pipe depth*ROB size 0.343 0.317 0.351 0.317 0.315 0.367
IQ size -0.286 -0.291 -0.247 -0.283 -0.270 -0.307
ROB size*IQ size 0.266 0.268 0.233 0.274 0.270 0.283
pipe depth*IQ size 0.234 0.227 0.208 0.277 0.221 0.251
pipe depth*ROB size*IQ size -0.207 -0.216 -0.191 -0.156 -0.209 -0.227
L2 lat -0.206 -0.409 -0.312 -0.195 -0.313 -0.113
dl1 lat -0.149 -0.081 -0.150 -0.201 -0.170 -0.152
il1 size -0.136 -0.466 -0.287 -0.164 -0.294 0.014
L2 size -0.111 -0.070 -0.013 -0.155 -0.134 -0.076
op lat -0.095 -0.095 -0.130 -0.113 -0.077 -0.072
dl1 size -0.094 -0.102 -0.093 -0.039 -0.124 -0.101
mem config -0.094 -0.053 – -0.260 -0.100 -0.063
il1 size*L2 lat 0.093 0.293 0.210 0.107 0.168 –
issue order -0.093 -0.060 -0.066 -0.111 -0.056 -0.113
L2 size*mem config 0.083 0.050 – 0.201 0.099 0.069
ftb ent -0.071 -0.239 -0.082 -0.068 -0.160 –
dl1 size*L2 lat 0.062 0.049 0.067 0.017 0.057 0.077
dl1 assoc -0.058 -0.041 -0.065 -0.158 -0.035 -0.059
il1 bsize -0.056 -0.222 -0.170 -0.007 -0.099 0.011
il1 size*il1 bsize 0.053 0.206 0.162 – 0.072 –
ROB size*LSQ size 0.049 0.034 0.082 – 0.038 0.042
LSQ size -0.049 -0.038 -0.070 -0.060 -0.023 -0.050
L2 assoc -0.048 -0.030 -0.019 -0.068 -0.053 -0.054
IQ size*LSQ size -0.046 -0.034 -0.085 – -0.021 -0.046
ROB size*issue order -0.046 -0.043 -0.036 -0.056 -0.022 -0.049
L2 size*L2 assoc 0.044 0.035 – 0.046 0.058 0.049
num units -0.044 -0.047 -0.061 -0.014 -0.034 -0.036
il1 bsize*L2 lat 0.043 0.156 0.137 – 0.053 –
L2 bsize -0.042 0.012 -0.014 -0.169 -0.037 -0.013
pipe depth*LSQ size 0.040 0.033 0.076 – 0.017 0.041
ROB size*IQ size*LSQ size 0.039 0.030 0.055 – 0.029 0.046
il1 size*il1 bsize*L2 lat -0.038 -0.140 -0.109 – -0.063 –
pipe depth*ROB size*LSQ size -0.035 -0.024 -0.060 – -0.030 -0.027
L2 assoc*mem config 0.033 0.024 – 0.060 0.052 0.047
L2 bsize*mem config 0.032 – – 0.082 0.032 0.012
issue order*dl1 lat 0.032 0.013 – – 0.050 0.038
pipe depth*IQ size*LSQ size 0.031 – 0.071 – 0.002 0.029

Table 9. The first 40 most significant terms and their co-efficients in the EBLMs of the CPI performance
response of superscalar processors.

Diagnostics crafty eon gap gcc gzip mcf parser twolf vortex vpr
Number of simulations 364 217 158 287 222 274 188 202 222 176
Number of terms 193 108 93 139 94 144 90 98 119 89
Error variance 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.001 0.002 0.002
Max. ����� 0.007 0.011 0.019 0.008 0.009 0.009 0.012 0.012 0.012 0.013
Error bound 0.006 0.009 0.008 0.008 0.006 0.01 0.008 0.007 0.008 0.009
(95% confidence)

Table 10. Diagnostics of the EBLMs with error bound of 0.01 at 95% confidence level.
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Terms mcf parser perlbmk twolf vortex vpr
intercept 3.249 1.701 2.007 2.183 1.885 2.036
pipe depth -0.412 -0.525 -0.585 -0.616 -0.511 -0.561
ROB size -0.444 -0.460 -0.444 -0.394 -0.458 -0.447
pipe depth*ROB size 0.293 0.354 0.367 0.315 0.317 0.337
IQ size -0.293 -0.314 -0.280 -0.284 -0.302 -0.290
ROB size*IQ size 0.239 0.288 0.266 0.260 0.260 0.268
pipe depth*IQ size 0.220 0.266 0.234 0.232 0.236 0.218
pipe depth*ROB size*IQ size -0.194 -0.193 -0.207 -0.207 -0.202 -0.210
L2 lat -0.260 -0.074 -0.206 -0.232 -0.249 -0.159
dl1 lat -0.150 -0.141 -0.149 -0.183 -0.126 -0.128
il1 size -0.009 -0.016 -0.110 -0.161 -0.319 -0.050
L2 size -0.861 -0.137 -0.051 -0.009 -0.078 -0.109
op lat -0.057 -0.056 -0.088 -0.135 -0.047 -0.157
dl1 size -0.102 -0.042 -0.100 -0.158 -0.060 -0.093
mem config -0.964 -0.097 -0.042 – -0.069 -0.057
il1 size*L2 lat – – 0.085 0.115 0.175 0.058
issue order -0.186 -0.093 -0.091 -0.084 -0.042 -0.130
L2 size*mem config 0.593 0.084 0.043 – 0.092 0.083
ftb ent 0.029 -0.014 -0.045 -0.141 -0.151 -0.114
dl1 size*L2 lat 0.066 0.040 0.070 0.082 0.028 0.065
dl1 assoc -0.054 -0.044 -0.059 -0.049 -0.062 -0.074
il1 bsize 0.028 – -0.055 -0.048 -0.079 -0.006
il1 size*il1 bsize – – 0.058 0.049 0.071 –
ROB size*LSQ size 0.049 0.027 0.057 0.056 0.061 0.050
LSQ size -0.038 -0.049 -0.056 -0.036 -0.023 -0.055
L2 assoc -0.141 -0.033 -0.039 – -0.085 -0.065
IQ size*LSQ size – -0.046 -0.058 -0.025 -0.051 -0.039
ROB size*issue order -0.124 -0.060 -0.042 -0.042 -0.022 -0.054
L2 size*L2 assoc 0.233 0.019 0.031 – 0.058 0.069
num units -0.067 -0.041 -0.043 -0.030 -0.016 -0.053
il1 bsize*L2 lat – – 0.047 0.047 0.031 –
L2 bsize -0.525 -0.055 – -0.022 –
pipe depth*LSQ size – 0.051 0.050 0.023 0.044 0.012
ROB size*IQ size*LSQ size – 0.049 0.048 0.042 0.049 0.019
il1 size*il1 bsize*L2 lat – – -0.038 -0.036 -0.040 –
pipe depth*ROB size*LSQ size – -0.035 -0.047 -0.036 -0.039 -0.036
L2 assoc*mem config 0.096 0.024 – 0.057 0.030
L2 bsize*mem config 0.403 0.053 – 0.035 –
issue order*dl1 lat – 0.058 0.031 0.032 0.033 0.043
pipe depth*IQ size*LSQ size – 0.030 0.057 0.060 0.027 0.017

Table 11. Continuation of Table 9 for other benchmarks.

Benchmark gcc twolf
Model type ������� ��� ���
	��� ��� ������� ��� ����	��� ���
Number of simulations 208 56 56 236 56 56
Number of model terms 110 26 22 105 26 24
Error bound 0.009 0.231 0.072 0.007 0.186 0.035
(95% confidence)

Table 12. Chief characteristics of the linear models constructed using different procedures.
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Figure 4. Tightening of error bounds.

eon gzip vortex
Additional simulations 70 40 64
Error Bound 0.010 0.006 0.009

Table 13. The number of additional simula-
tions to include a new factor in model.

compared the simulation costs and estimation error of using
such designs against that of our approach. We ran simu-
lations for the foldover Plackett-Burman designs and com-
puted the coefficients in a main effects model as done in
[22] ( ��� model), and also extracted the best model from
the results using the �
	 � � based model extraction proce-
dure ( ��� � ��	 � � model). Table 12 presents the simula-
tion count, number of model terms, and error bounds for
��� , ��� � �
	 �� , and � � ��� for gcc and twolf. Though
the required simulation count is approximately four times
lower for ��� and ��� � �
	 �� , the achieved error bounds are
much higher. ��� � ��	 ��� achieves lower error bounds with
a small number of simulations. However, even the smallest
achieved error bound of � 5 � � 	 precludes the correct esti-
mation of significant effects. More simulations are clearly
required to extract all the significant effects.

6.3. Evaluating Enhancements

We used our error bounding procedure to rebuild the
model after incorporating a micro-architectural enhance-
ment. An additional parameter was introduced into the
model, with the absence of the enhancement as its low value
and its presence as the high value. We conduct augmented
experiments using our error bounding procedure, after en-
suring that the base model is stable - i.e. increased sim-
ulations do not increase the error bound. The augmented
experiments typically have the enhancement, and our pro-
cedure uses the result data from the additional simulations

Terms eon gzip vortex
il1 bsize*across taken -0.023 – -0.039
L2 assoc*across taken -0.017 – –
ROB size*across taken – – 0.025
ftb ent*across taken – – -0.021
ftb assoc*across taken – – 0.017
across taken 0.010 – 0.005

Table 14. The additional terms in new model
involving fetch across taken branch.

to extract the significant parameter estimates under the en-
hancement. It produces a new set of significant terms and
estimates, and typically some terms with the new factor.

The enhancement we examined is the capability to fetch
beyond taken branches up to the processor width, which was
the motivation behind the design of trace caches [19]. Table
13 gives the number of additional simulations that were re-
quired to produce the 27 factor model with coefficient error
bounds less than 0.01. The number of experiments is always
less than thrice the total number of experimented factors.
Table 14 gives the terms involving the new factor which ac-
count for the performance variations of the enhancement.
The instruction cache block size has the highest variational
effect for both eon and vortex. gzip’s performance is almost
unaffected by the enhancement. The main effect term has
low significance, showing that the benefit of this optimiza-
tion is heavily dependent on other parameter settings.

7. Related Work

Much of the early research in the area of modeling and
analysis of processors focused on deriving performance
limits imposed by programming model constraints such as
data and control dependencies while assuming infinite hard-
ware resources [12]. Subsequent modeling techniques have
used these limits to estimate performance for realistic pro-
cessor configurations by accounting for slowdowns due to
various hardware limitations [10, 16]. For instance, Karkha-
nis and Smith [10] propose an analytical model in which
performance is composed of two components, a constant
idealistic throughput in the absence of any miss events and
the loss in throughput due to branch mispredictions and
cache misses. The impact of individual miss events on per-
formance is modeled and estimates of the loss in throughput
are obtained using various branch misprediction and cache
miss statistics collected via trace driven simulations. In an-
other approach, Fields et al. [7] model program execution
using a dynamic dependence graph and measure the signif-
icance of micro-architectural events and their interactions
by the change in the length of the critical path through the
dependence graph brought by idealizing these events. Per-
haps the approach closest to our work is the experimental
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methodology proposed by Yi et al. [22, 23]. Here, the
significance of the main micro-architectural parameters is
obtained using experiments based on the Plackett-Burman
design.

Our approach overcomes several drawbacks of these
techniques. 1) In existing modeling schemes, the designer
is assumed to have prior knowledge or must make simpli-
fying assumptions about the relative significance of micro-
architectural parameters and their interactions. For in-
stance, experimentation based on the PB design inherently
assumes that all parameter interactions are negligible, and
Karkhanis and Smith [10] assume a set of significant miss
events. Our procedure for building linear models does not
require any prior knowledge or assumptions; all parameters
and interactions are assumed to be significant until experi-
ments prove otherwise. 2) Instead of modeling the effect of
micro-architectural events, our approach directly captures
the impact of individual micro-architectural parameters on
performance. The model therefore enhances the designer’s
understanding of the influence of hardware changes on per-
formance. 3) Adding parameters to the model is a matter of
a few additional simulations.

8. Conclusion and Directions of Work

We have developed an algorithmic procedure to de-
termine accurate estimates of all significant micro-
architectural parameters and interactions using data from a
reasonable number of simulations. This procedure builds
linear models relating a processor’s performance response
to the micro-architectural parameters. Further, it allows the
impact of micro-architectural enhancements to be included
in the model with a small number of additional simulations.
Thus, our procedure provides a cost effective way to ex-
periment with all relevant parameters. The constructed er-
ror bounded linear models explain the variability in perfor-
mance of micro-architectural techniques.

Our use of the reduced MinneSPEC data inputs, moti-
vated by the need to reduce simulation time, does influence
the estimated coefficients and especially the data memory
hierarchy related coefficients [23]. We have used the re-
duced inputs since our primary aim was to show the effi-
cacy of the linear model construction procedure. The same
procedure can be used to build models for full or sampled
simulations using realistic data inputs.

The constructed linear models can be used to predict the
response at other parameter settings. We are continuing our
work to use these models to predict the response at combi-
nations of any chosen parameter levels in the experimented
range.
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