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Abstract

We analyze an algorithm for exact maximum likelihood(ML) de-
coding on tail-biting trellises and prove that under cerrtain assump-
tions the complexity of of the exact algorithm is O(S log S), where S
is the number of states of the tail-biting trellis. We also propose an
approximate variant whose simulated performance is seen to be virtu-
ally indistinguishable from that of the exact one at all values of signal
to noise ratio. We analyze the approximate algorithm and deduce the
conditions under which its output is different from the ML output. We
report the results of simulations for the exact and approximate algo-
rithms on tail-biting trellises for the 16 state (24,12) Extended Golay
Code, and two rate 1/2 convolutional codes with memory 4 and 6 re-
spectively. An advantage of our algorithms is that they do not suffer
from the effects of limit cycles or the presence of pseudocodewords.

1 Introduction

Tail-biting trellises are perhaps the simplest instances of decoding graphs
with cycles and usually approximate algorithms are used for decoding, as
exact algorithms are believed to be too expensive. These approximate algo-
rithms iterate around the trellis until either convergence is reached, or for a
preset number of cycles. To the best of our knowledge, no exact decoding
algorithms other than the brute force algorithm have been proposed so far
for the general case. We analyze an exact recursive algorithm proposed by us
earlier and show that for a class of errors, exact maximum likelihood decoding
has time complexity O(S log S) and space complexity O(S × S0) bits where
S is the number of vertices in the tail-biting trellis and S0 is the number of
vertices at time index 0. The algorithm is always guaranteed to converge.
The complexity term attributed to Viterbi updates is O(S) under certain
conditions. The O(S log S) term comes from the overheads of maintaining a
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data structure called a heap. We also propose two approximate variants that
always converge, and observe their performance on tail-biting trellises for the
(24,12,8) extended Golay code and two convolutional codes of rate 1/2 and
memory of 4 and 6 respectively. The performance of the second approximate
variant is indistinguishable from that of the exact algorithm in terms of bit
error rate and it is guaranteed to update each node in the tail-biting trellis
at most three times i.e it performs a computation equivalent to at most three
rounds on the trellis.

2 Related Work

Aji et al.[1] have shown that iterative maximum-likelihood (ML) decoding
on tail-biting trellises will asymptotically converge to exact maximum likeli-
hood decoding for certain codes. The presence of pseudocodewords sometimes
results in sub-optimal decoding and it is also possible to have situations
where the iterative message passing algorithm does not converge. Several
maximum likelihood decoding algorithms on tail-biting trellises have been
proposed without a theoretical analysis[8, 14, 15, 12, 11], but with good ex-
perimental results. Most of these are sub-optimal algorithms in that they
may not produce the exact maximum-likelihood result on termination. An-
derson and Hladik[2] have given an algorithm that is optimal for bounded
distance decoding.

3 Background

We assume that the reader is familiar with the definition of a tail-biting
trellis for a block or convolutional code and with the notions of linear and
circular spans of codewords. Definitions are available in [12, 3, 5]. Koetter
and Vardy [5] have shown that any linear trellis, conventional or tail-biting
can be constructed from a generator matrix whose rows can be partitioned
into two sets, those which have linear span, and those taken to have circular
span. The trellis for the code is formed as a product[6] of the elementary
trellises corresponding to these rows. We will represent such a generator

matrix as G =

[
Gl

Gc

]
, where Gl is the submatrix consisting of rows with

linear span, and Gc the submatrix of rows with circular span. Let Tl denote
the minimum conventional trellis for the code generated by Gl.

If l is the number of rows of G with linear span and c the number of
rows of circular span, the tail-biting trellis constructed using the product
construction will have qc start states. Each such start state defines a subtrellis
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whose codewords form a coset of the subcode corresponding to the subtrellis
containing the all 0 codeword. If subtrellises T1 and T2 share states from
time indices i to j then the interval [i, j] is called the merging interval of T1

and T2. A pair of subtrellises do not share any states outside their merging
interval. For a vector v of circular span in Gc, the complement of the span
with respect to I = {1, 2, . . . n} is called the zero run of the vector. A tail-
biting trellis is said to satisfy the intersection property if the intersection of
all the zero runs of the members of Gc is non-empty.

4 Decoding

For purposes of decoding we use the unrolled version of the trellis with start
states s0, s1 . . . sl and final states f0, f1 . . . fl. where l is the number of sub-
trellises. An (si, fi) path is a codeword path in trellis Ti, whereas an (si, fj)
path for i 6= j is a non codeword path. For purposes of our discussion we
term the label sequence along such a path as a semicodeword.

The algorithm has two phases. The first phase performs a Viterbi algo-
rithm on the tail-biting trellis and examines surviving paths, called survivors
here, at final states of all subtrellises. A survivor at a final state is either a
codeword (abbreviated as an (si, fi) path) or what we term as a semicodeword
(corresponding to an (si, fj) path with i 6= j.) The metric associated with a
semicodeword survivor in trellis Ti is a lower bound on the cost of a winning
codeword in trellis Ti. Therefore the first step is to discard from consider-
ation all subtrellises whose survivors are semicodewords with metric higher
than that of the best surviving codeword, if there is one as these subtrel-
lises will not contain the shortest path. The next step is to sort the metrics
of all remaining subtrellises whose survivors are semicodewords with metric
lower than that of the best surviving codeword in ascending order. These
subtrellises are called residual trellises and the second phase works only on
these subtrellises with the metrics of the survivors as initial estimates. A
data structure called a heap is employed which stores the metrics of all nodes
which have been visited in the second phase and which are candidates for a
Viterbi update. Initially the set consists of the start nodes of the residual
subtrellises along with their associated metrics. The heap when queried can
deliver the minimum element in constant time, and each time an element is
inserted into it, the complexity of restructuring it to preserve the constant
time querying property is logarithmic in the number of elements it contains.
A node taken off the heap has a metric and a subtrellis identification number
associated with it. If it is taken off the heap for exploration, the path ending
at the node corresponding to a codeword prefix has the best current metric.
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The metric at a node is a sum of two quantities–the length of the shortest
path to it from the start node of the associated subtrellis, and an estimate
of the shortest path from the node to the final state in the subtrellis. The
second phase begins by taking the node with minimum metric off the heap
and expanding it using function Expand. This calls function Update which
examines and updates the metrics of all successors of the node. Whenever
function Expand is called at a node we say the node is closed, whereas nodes
in the heap are called open nodes. If a node is closed in a subtrellis then the
shortest path to that node in the subtrellis has been found. At any instant
in the second phase, the algorithm is moving forward on a single path in
some subtrellis, closing nodes which lie on surviving paths in the first phase
in that subtrellis. Each time Update returns from execution at a node, func-
tion Expand checks if the metric has increased or not. If it has, this is an
indication that this was not a surviving path in the first phase and the node
is put on the heap and Expand either calls Update at the next successor, or
returns to its calling instance if no more successors are left to be examined.
If the metric has not increased, Expand is invoked recursively at the node
thereby closing the node. When a return is made to the start node of a sub-
trellis, trellis switching takes place, and some other trellis which is seen to
have the best potential to deliver the minimum cost path is taken up. Thus
the algorithm may switch from one subtrellis to another during the course
of its execution. However it is always guaranteed to eventually zero in on
the ML path. A central issue therefore is the number of updates it has to
perform before it finds the ML path, as this determines the size of the search
space.

The functions SecondPhase, Expand and Update are described in Figure 1.

5 Analysis

The proof that on termination the algorithm always outputs the optimal
path is provided in [10].

During any point in the second phase, the algorithm is exploring some
path in a candidate subtrellis called the current trellis even though it may do
so in discontinuous steps. This path is called the current path in that subtrel-
lis. The metric which it uses to decide whether to continue on the current
path on the current trellis, say Ti, or forsake it in favour of another path
either in the current trellis or on another candidate trellis is initially e(si, fi).
We have the following lemmas specifying the behaviour of the algorithm.
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Due to lack of space, we omit the proofs.

Lemma 5.1 During the second phase if the current path updates a node v
using function Update where the survivor in the first phase was not in the
current trellis then the metric becomes e(si, fi) + ∆(i, v) where ∆(i, v) is the
difference between the cost of the least cost path ending at v in the current
trellis and the survivor at v during the first pass.

The following properties hold for the metric. Let mi(N) denote the metric
in subtrellis i at node N :

Lemma 5.2 Let an (sk, fi) path be the winner at fi in the first phase and
let it win over an (si, fi) path at node A. Then mi(A) = mi(fi) and mi(B) <
mi(fi) for any proper predecessor B of A.

For each shortest path in a subtrellis i the nodes where it was overtaken
by paths originating at the start nodes of other trellises in the first phase are
the nodes where its metric will be updated. These nodes are called updating
points.

Lemma 5.3 Let subtrellises Ti and Tj share a node N and between them, let
Ti be the first to close the node in the second phase. Then mi(N) ≤ mj(N).

Lemma 5.4 For nodes A and B let (A, B) be a path segment in the merging
interval of Ti and Tj and let mi(A) ≤ mj(A). Then mi(B) ≤ mj(B).

We next try to estimate the number of nodes that are examined by the
algorithm before the ML path is reached. We first show that any path from
an arbitrary start node to any final node represents a vector in a vector space.
For the sake of simplicity we restrict our arguments to binary codes.

Lemma 5.5 The set of all labels from an arbitrary start node to any final
node is a vector space.

Proof Assume that each of the c vectors in the submatrix Gc of the gen-
erator matrix is of the form vi = [hi,0, ti] where hi stands for the sequence
of symbols before the zero run, and is called the head and ti stands for the
sequence of symbols following the zero run and is called the tail and 0 is the
zero run containing the appropriate number of zeroes. Let {v1, v2 . . . vc} be

the vectors of Gc. Then the matrix Gs defined as Gs =

[
Gl

G′
c

]
, where G′

c

consists of 2c rows of the form [hi,0], [0, ti], 1 ≤ i ≤ c, (where the number of
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zeroes in 0 makes up a total of n elements for the row) generates the set of
labels of all paths from any start node to any final node. This set has 2l+2c

elements. This can be verified from the product construction. The set of
elements of this vector space consists of semicodewords and codewords. Each
semicodeword is the label of an (si, fj) path i 6= j.

We use a result of Tendolkar and Hartmann[13] stated below.

Lemma 5.6 Let H be the parity check matrix of the code and let a codeword
x be transmitted as a signal vector S(x). Let the binary quantization of the
received vector r = r1, r2, . . . rn be denoted by y. Let r′ = (|r1|, |r2|, . . . |rn|)
and S = yHT . Then ML decoding is achieved by decoding a received vector
r into the codeword y + e where e is a binary vector that satisfies S = eHT

and has the property that if e′ is any other binary vector such that S = e′HT

then e.r′ < e′.r′ where . is the inner product.

Since the space explored by the algorithm, namely the space of semi-
codewords and codewords is a vector space, we can analyse the algorithm
assuming that the ML codeword is the all 0 codeword and examine how
many semicodewords are explored by the algorithm before it converges on
the all 0 codeword. Let e be an error pattern that has the same syndrome
with respect to Hs the parity check matrix for Gs, as the binary quantization
of the received vector. Let Cs denote a semicodeword and C an arbitrary
non zero codeword. The lemma below establishes the condition under which
the path corresponding to a semicodeword will be explored by the decoding
algorithm.

Lemma 5.7 Assume the all 0 codeword is the ML codeword. Let e be the
binary quantization of the received vector. For the error pattern e the decoding
algorithm explores a path corresponding to a semicodeword Cs satisfying

metric(Cs + e).r′ < e.r′ < (C + e).r′ (1)

for all nonzero codewords C.

Let us refer to the first inequality in the lemma as inequality A and the
second as inequality B.

Inequality A specifies that the metric of semicodeword corresponding to
Cs corrupted by e is more likely than the all zero path corrupted by e.
Inequality B, specifies that for error e the all 0 path is more likely than any
non zero codeword corrupted by e. So the question is, given e satisfying
inequality B, how many semicodewords are there satisfying inequality A, as
these correspond to paths that are fruitlessly explored. If this number is
O(S0) then the number of nodes closed is at most O(S0 × n) = O(S).
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Since semicodewords share prefixes and suffixes with codewords, only
error patterns that drop the metric of a semicodeword enough to satisfy
inequality A but not violate inequality B cause fruitless searches of semi-
codewords. Since semicodewords share prefixes and suffixes with codewords,
such error events may not be too frequent.

The complexity of the algorithm is established by the following theorem.

Theorem 5.1 The two pass exact decoding algorithm has time complexity
O(S log S) and space complexity O(S × S0) bits for all error patterns e such
that the number of semicodewords satisfying equation 1 of Lemma 5.7 is
O(S0).

Proof Phase 1 of the algorithm has complexity O(S). The sorting opera-
tion at the end of the first phase has complexity O(S0 log S0). If the number
of semicodewords explored is O(S0), then the number of calls to function
Expand is O(S0 × n)= O(S). Each call takes either constant time if the
node is closed, or time O(log h) where h is the size of the heap, if the node
is inserted into the heap. For each node expanded, at most 2 insertions into
the heap are possible, hence the size of the heap is O(S) from which we get
the specified time complexity. In addition to the O(S) space for storing all
the survivor costs, we need O(S) space for the heap, and a bit vector of size
O(S0) at each state to indicate which trellises share that state, giving a space
complexity of O(S × S0) bits.

Note that if S0 is at most the word size of the machine, the space require-
ments are also O(S).

6 An Approximate Algorithm and Simula-

tions

While it is possible to argue that not too many semicodewords will be exam-
ined before the ML path is output, we would like to explore a variation of
the algorithm which explicitly bounds that number. Therefore we propose
an approximate algorithm which closes a node at most once and hence the
total number of Viterbi updates in the first and second phases is at most 2S.
Since a node is closed at most once it is conceivable that a node that is on
the ML path is closed by a trellis that does not contain the ML codeword.
In such a case the result produced will be different from the ML result. We
now analyse the conditions under which this happens.The symbols are the
same as those defined for Lemma 5.7. Recall that the intersection property
requires the intersection of all the zero runs of vectors in G′

c to be non-empty.
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Lemma 6.1 If the tail-biting trellis satisfies the intersection property, the
approximate algorithm produces a non-ML output for error patterns e satis-
fying equation 1 whenever Cs is a semicodeword which is formed as a linear
combination of rows of Gs that contain at least one vector from Gl.

The lemma provides an explanation of the observation that decoding errors
are infrequent even in the approximate algorithm, so much so that the bit er-
ror rate curves are practically indistinguishable. This is because low weight
semicodewords are those consisting of heads hi followed by all 0’s or tails
ti preceded by all 0’s. These semicodewords cannot cause decoding differ-
ences between the ML algorithm and the approximate algorithm because of
Lemma 6.1. Also if it is the case that the intersection of all the zero runs of
the circular span vectors in Gc is nonempty, (as is the case for all three codes
on which simulations are run), then even linear combinations of the above
semicodewords cannot cause decoding differences.

One could get an even better approximation by allowing a node to be
closed at most twice. We have experimented with this and observe that the
bit error rate for this approximation is indistinguishable from that of the
exact algorithm at all values of signal to noise ratio. The significance of this
is that the time complexity can be explicitly bounded by the complexity of
at most three updates for each node of the tail-biting trellis, one in the first
phase and at most two in the second phase.

We show the results of simulations on minimal tail-biting trellises for the
16 state tail-biting trellis [3] for the extended (24,12,8) Golay code on an
AWGN channel with antipodal signalling and tail-biting trellises for two rate
1/2 convolutional codes, the (133,171) code(also called the (554,774) code)
with memory 6 and circle size 48 and the (35,31) code(also called the (72,62)
code) with memory 4 and circle size 20. We compute the variation of both,
the average as well as the maximum number of Viterbi updates(counting
both phases) with the signal to noise ratio, and compare this with the num-
ber of Viterbi updates needed for the brute force approach. For the Golay
code the number of expansions for the brute force is 1744 and the maximum
and average vary from 602 and 245 respectively at 0dB to 396 and 193 re-
spectively at 5 dB. The maximum heap size varies from 285 at 0dB ro 135 at
5dB. The number of nodes of the tail-biting trellis is 192. For the (133,171)
convolutional code the number of expansions for the brute force are 159552,
and the maximum and average of the exact algorithm vary from 22311 and
4414 respectively at 0 dB to 4693 and 3088 respectively at 5 dB.. The num-
ber of nodes in the tailbiting trellis is 3072. The maximum heap size varies
from 13064 at 0 dB to 1059 at 5 dB.For the (35,31) convolutional code the
number of expansions for the brute force are 4368, and the maximum and
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average of the exact algorithm vary from 1437 and 426 respectively at 0 dB
to 660 and 322 respectively at 5 dB. The number of nodes in the tailbiting
trellis is 320. The maximum heap size varies from 701 at 0 dB to 241 at 5
dB. We also display the performance of the approximate algorithms closing
nodes at most once for the first approximation, and at most twice for the
second approximation in Figures 2, 3, 4 and and find that there is virtually
no difference between the bit error rates for the second approximation and
the exact ML algorithm.

Acknowledgement The code used in these simulations is a modified
version of that developed with our collaborators in [9].
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Figure 1: Functions SecondPhase, Expand and Update of the Decoding Al-
gorithm

function SecondPhase
/* This phase begins with r residual trellises whose metrics have been
sorted in increasing order*/
/* First create a heap H with these r metrics; each element of the heap is
a record containing the trellis number, the node, the time index, and the
metric*/
for i = 1 to r do

InsertHeap(H, i, startV ertex(Ti), 0, e(si, fi))
while IsEmpty(H) = false do

h := DeleteMin(H)
S := S ∪ h.node /*Add h.node to the set of closed nodes*/
Expand(h.trellisNo, h.state, h.timeindex, h.metric)

end while
end for

function Expand(trellisnumber, state, index, metric)
if index = n− 1 then

output P (state); return
else

for each successor succ of state do
Update(trellisnumber, state, succ.state, succ.metric, index)
if succ.metric ≤ metric then

S := S ∪ {succ.state};
Expand(trellisnumber, succ.state, index, succ.metric)

else
InsertHeap(H, trellisnumber, succ.state, index, succ.metric)

end if
end for

end if

function Update(i, node1, node2, metric, timeindex);
timeindex := timeindex + 1
newcost := node1.cost + edgecost(node1, node2)
if newcost ≤ node2.cost then

/* update the current shortest path to node2 */
P (node2) := (P (node1), node2)
node2.cost := newcost
metric := node2.cost + e(si, fi)− node2.cost1
/* node2.cost1 is the cost of the survivor in the first phase */

end if
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Figure 2: BER of the Exact and Ap-
proximate Algorithms for the (24,12) Ex-
tended Binary Golay Code
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Figure 3: BER of the Exact and Ap-
proximate Algorithms for the rate 1/2
(133,171) Convolutional Code with cir-
cle Length 48
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Figure 4: BER of the Exact and Approximate Algorithms
for the rate 1/2 (35,31) Convolutional Code with circle
Length 20
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