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Abstract

An important trend in the design of embedded computing systems
is the proliferation of energy conscious architectures. Another impor-
tant trend is the emergence of Java as a popular platform of choice
for implementing various applications that run on mobile and hand
held devices. General purpose cache architectures that support Java
in embedded systems do not respond well to special properties and
behavior of object oriented programs and thus consume a significant
fraction of the total processor energy. In this paper we present an
adaptive, energy-efficient object cache architecture and a hardware
implementable reconfiguration algorithm to alleviate the problem of
increased energy consumption of cache architectures in embedded sys-
tems that typically support runtime environments for object oriented
programs.

An Object-cache architecture consists of a data cache (reduced in
size) and an additional small cache structure that caches only the ob-
jects. Certain special properties of object oriented programs such as a
high degree of temporal locality among object references and a short
life span of objects ensures good performance of such an architecture.
At the same time, the reduced active cache size, at times accompa-
nied by minor improvements in performance, leads to a significant
improvement in the energy behavior of programs. However, both en-
ergy behavior and performance vary widely with the configuration of
the Object-cache. Thus we propose an adaptive object cache archi-
tecture and a reconfiguration algorithm for dynamically reconfiguring
the size and associativities of the Object-cache such that it obtains
the best possible energy efficiency with the least impact on perfor-
mance. Using applications from SPECjvm98 benchmarks and a cycle
accurate simulation, the adaptive Object-cache architecture is shown
to reduce average data cache energy consumption by up to 43% and
also improve performance by about 1%.
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Figure 1: Memory hierarchy with Object Cache

1 Introduction

In our previous work [2], we discuss the impact of an Object-cache on the
energy consumption of the memory hierarchy and the overall system en-
ergy consumption. As discussed in this work, objects typically are small,
short-lived and frequently accessed during their short life span. Thus ob-
ject references exhibit certain characteristic properties that make the object
fields referred by them suitable candidates to be cached separately in a cache
structure known as an Object-cache. An Object-cache is a cache structure,
separately designed for caching only objects. It creates a parallel data access
path for objects. The typical memory hierarchy in the presence of an Object-
cache is shown in Fig. 1. The object references are directed through the
Object-cache while the other references are directed through a regular data
cache. Demultiplexing of the references to their respective caches could be
carried out by the hardware. Two additional registers, object-heap-start and
object-heap-end are used to bind the object area on the heap where objects
are allocated. Any reference that is addressed to this object area is cached in
the Object-cache by the hardware while the remaining references are directed
through the regular data cache. The object-heap-start and object-heap-end
registers could be set by the JVM during its initial boot and subsequently
maintained to bind the region in which objects are allocated.

The performance and energy behavior of the benchmark programs was
found to be extremely sensitive to the configuration of the Object-cache, when
the optimal configuration was determined on a per-application basis. The re-
altionship between the configuration and performance and energy charecter-
istics of a program (of the entire application) can be explained as follows. A
direct mapped Object-cache is more energy efficient per access, consuming
only about 30% of the energy of a similar sized four-way set associative cache

2



[9]. This reduction occurs because a direct mapped cache accesses only one
tag and data array per access, while a four-way cache accesses four tag and
data arrays per access. A direct mapped cache can also have a shorter access
time in part because multiple data arrays need not be multiplexed. While a
direct-mapped caches hit rate may be acceptable for many applications, for
some applications a direct-mapped cache exhibits a very poor hit rate and
hence suffers from poor performance and energy consumption. Adding set
associativity increases the range of applications for which a cache has a good
hit rate, but for many applications, the additional associativity is unneces-
sary and thus results in wasted energy and longer access time. Deciding on a
Object caches total size involves a similar dilemma. A small Object cache is
more energy efficient and has a good hit rate for a majority of applications,
but a larger cache increases the range of applications displaying a good hit
rate, at the expense of wasted energy for many applications.

Recent research on this area has focussed on configurable cache archi-
tecture designs. However, most of these works seem to ignore the issue of
selecting the right configuration at the right time. Merely having a config-
urable cache is not sufficient until we have a mechanism to decide on the
right configuration. The major problem involved in deciding the optimal
configuration for the object cache is that the applications are dynamically
downloaded and their behavior is not predictable. Also, each application has
a dynamically varying cache configuration requirement over the period of
execution. Setting a single configuration for the whole application execution,
specially an application with unknown charecteristics (such as Java programs
downloaded on mobiles or PDAs) does not result in either optimal energy or
optimal performance results.

In this paper, we describe an adaptive Object-cache architecture that dy-
namically tunes itself to an optimal configuration. The granularity of tuning
the configuration during program execution was given due importance and
with an eye on minimizing the overhead involved in the tuning process. A
direct relationship between program phase and cache configuration was ob-
served. Whenever the program execution phase changed, it was necessary to
change the configuration and it was also observed that there was no necessity
to change the configuration when a program is executing in the same phase.
We use a simple hardware based scheme for detecting phase changes and fur-
ther study the effectiveness of such an architecture by evaluating it with an
algorithm that choses the ideal configuration and propose a simple algorithm
which approximates the ideal case to decide on an optimal configuration. En-
ergy consumption and performance behavior of typical Java programs such
as the SPECjvm98 benchmarks are evaluated on the architecture with the
above mentioned algorithms.
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The remainder of the paper is organized as follows. Section 2 discusses
some related work. Section 3 motivates the need for adaptivity and a phase
level granularity for configuring the Object-cache. In Section 4, architecture of
the Adaptive Object-cache is discussed in detail. The experimental details,
simulation methodology and experimental results are described in Section
5. An ideal reconfiguration algorithm is proposed in Section 6. Section 7
describes a simple algorithm for reconfiguring the object cache and approx-
imating the ideal reconfiguration algorithm. Some concluding remarks are
provided in Section 8.

2 Related Work

Energy benfits of an anotation based allocation of objects in a local memory
is studied in [7]. They propose an object allocation strategy to reduce the en-
ergy consumption of Java applications. This object allocation strategy uses
a part of the on-chip memory resources as a local memory to achieve better
performance than a cache only architecture. A few chosen objects are per-
manently allocated by the virtual machine on the local memory. The object
allocation strategy uses an annotation based approach where in Java classes
are annotated based on profile data from the execution of programs.This
technique requires major modifications in the memory management schemes
of the virtual machine. The anotation scheme itself requires tedious modifi-
cations to all Java classes involved. Our proposed Object-cache scheme which
is a simpler and more amenable solution aims to capture similar application
behavior without the tedium of annotating Java classes and modifying the
memory management of the virtual machine.

A phase in a program is an interval of execution during which a measured
program metric is relatively stable. Recently, it has been shown that many
programs execute as a series of phases, where each phase may be very differ-
ent from the others, while still having a fairly homogeneous behavior within
a phase. Taking advantage of this time varying behavior can lead to, among
other things, improved power management, cache control, and more efficient
simulation. Sherwood [1] proposes an efficient run-time phase tracking ar-
chitecture that is based on detecting changes in the proportions of the code
being executed. Since this phase tracking implementation is based upon code
execution frequencies, it is independent of any individual architecture metric.
Independence from architecture metrics allows us to consistently track phase
information as the programs behavior changes due to phase based optimiza-
tions.

A highly configurbale cache architecture was proposed by Zhang in [8].
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Figure 2: Algorithm for finding the ideal configuration

Many cache parameters like cache size, cache line size and associativity can
be tuned dynamically in this architecture. The configuration of associativity
is implemented by a technique we call way concatenation. The register value
directly acts as a control to the circuitry involved in the cache. Tuning of
cache size is also permitted through way shutdown. The shutdown logic uses
sleep transistors to reduce static power dissipation. We use this architecture
for the Object cache to reconfigure the cache along with the phase detection
hardware to decide when to reconfigure and implement our hardware based
reconfigurability algorithms in order to reduce energy consumption.

Pokam [3] proposes a compiler scheme for phase based cache resizing
which allows the compiler to detect phase changes and add additional in-
structions to change the configuration. The compiler directed reconfiguration
is not a possibility for an Object-cache, as we target to run the dynamically
downlaoded applications whose bytecodes cannot be easily modified Thus,
our work is different from this work in the sense that we propose a totally
hardware based reconfiguration scheme including phase change detection and
reconfiguration along with a simple algorithm to choose the optimal config-
uration.

3 Motivation

As we stated earlier, the energy consumption per access of the cache is a
direct function of its configuration. It increases almost linearly with cache
size and associativity. For example, A direct mapped Object-cache is more
energy efficient per access, consuming only about 30% of the energy of a
similar sized four-way set associative cache and a cache which is half the
size as the other consumes about 50% of the energy as the later. At the
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same time some applications ( or parts of applications to be more precise)
require higher end configurations for good performance. By having a fixed
configuration through out the execution of an application we fail to capitalize
on the varying requirements of parts of applications.

Pokam [3] suggests that we could use a phase as a unit of execution for
reconfiguration. In order to verify this, we conducted experiments to find an
optimal configuration (among 4 selected configurations) in terms of the en-
ergy consumption for every interval of 10 Million instructions (Any interval
lesser than this for a reconfiguration might hurt the performance ). Figure
2 plots the percentage of the total number of intervals that had a given con-
figuration as the optimal energy configuration. About 40% of the intervals
have optimal configuration as one of the 4K cache configurations while the
rest are 8K cache configurations. It clearly indicates that there is no single
optimal energy configuration across the intervals. Also it was observed that,
in 73% of the intervals, the optimal energy (lowest) configuration was also
the optimal performance (highest) yielding configuration for that particular
interval. It is evident because the energy condumption of a module is itself
dependant on the performance and if performance decreases energy consump-
tion would increase. Further phase information collected also suggested that,
the optimal energy configuration at the start of the phase was the optimal
one in 87% (on an average across the benchmarks) of the intervals within
that phase. Thus we need not reconfigure the Object cache within a single
phase (other than in the beginning). Also, an optimal configuration change
occured in 84%(on an average across the benchmarks) of the phase changes
that occured suggesting that we need to reconfigure the Object cache on the
onset of a new phase. Thus our reconfiguration algorithms need to focus on
reconfiguring once for every phase change.

4 Adaptive Cache Architecture Design

Our hardware based reconfiguration setup builds upon the highly reconfig-
urable cache architecture described by Zhang in [8] and uses a simplified
version of phase tracking and prediction hardware proposed by Sherwood [1]
to detect phase changes. The structure of the phase tracking and prediction
hardware proposed in [1] is shown in Figure 3. The key idea in this hardware
is to capture basic block information during execution, while not relying on
any compiler support. Larger basic blocks need to be weighed more heavily as
they account for a more significant portion of the execution. To approximate
gathering basic block information, branch PCs and the number of instruc-
tions executed between branches is captured. The input to the architecture
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Figure 3: Phase Tracking
and Prediction Hardware

Figure 4: Phase Change De-
tection Hardware

is a tuple of information: a branch identifier (PC) and the number of in-
structions since the last branch PC was executed. This allows to roughly
capture each basic block executed along with the weight of the basic block in
terms of the number of instructions executed. Such Footprints of execution
are calculated over an interval and whenever the Basic Block vector differs
from those in the Past Foot Prints Table by a certain distance a new phase
is said to have occured.

The phase tracking and prediction hardware needs to store footprints of
many previous phases so that it could predict the phase that is likely to oc-
cur next assuming the same kind of phases occur repeatedly over the period
of execution of the program. We eliminate the Past Foot prints Table and
Phase ID Table and instead store the footprint information of the previous
phase only as we only need to detect a phase change. The Phase Change
Detection Hardware is shown in Figure 4. A threshold of 1 Million, man-
hattan distance between the current basic block vector and previous phase’s
footprint has been experimentally determined to be suitable for an interval of
execution of 10 Million instructions as presented in [1]. We also have found it
reasonable and used the same threshold and interval size in our experiments.
Whenever the Phase Change Detection hardware detects a phase change, a
reconfiguration algorithm needs to determine the optimal configuration of
the Object cache for the new phase.

5 Experimental Setup

To determine the benefits of our adaptive Object-cache architecture with re-
spect to reducing energy consumption, we simulated the architecture using
Dynamic Simplescalar cycle level simulator ([6], [5]) running Jikes RVM Java
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Table 1: Experimental Setup

Cache and Memory Hierarchy

Simulation Parameter Parameter Value

L1 Data Cache 16 KB, 32 byte blocks, 2-way associative
L1 Instruction Cache 16 KB, 32 byte blocks, 1-way associative
L2 Cache (unified) 512 KB, 32 byte blocks, 4-way associative
Data TLB 32 entries, 30 cycle miss latency
Instruction TLB 16 entries, 30 cycle miss latency
Memory 100 cycle latency

interpreter. Dynamic SimpleScalar (DSS) is a simulator suite for the PPC
instruction set. It has Wattch [4] integrated with it for energy measure-
ments. Cycle level simulation has several advantages for our studies. Firstly,
it captures the timing details of memory accesses hence accounting for cer-
tain latency hiding optimizations. Secondly, it captures intricate interactions
among other units easily. For instance the intricate interactions between the
energy and performance of load-store queue unit with cache performance are
inherently captured in a system simulation model. Thirdly, system perfor-
mance results are easily obtained while in the cache simulation based model
only the cache miss rate is available which does not necessarily model the
performance behavior of the entire program. The only disadvantage of cycle
level simulation is its extremely slow speed.

The experimental setup for the simulation experiments is shown in Ta-
ble 1. The configuration of data cache shown in Table 1 is the default data
cache only configuration in all our experiments. Whenever we refer to an
Object cache configuration, the data cache size is reduced to 8K and the
Object cache is added whose configuration would be mentioned. For better
clarity about the results obtained, we compare our results against both data
cache only configuration and static (non-adaptive) object cache configura-
tions. SPECjvm98 benchmarks have been used for simulation experiments.
S100 full length reference inputs have been used as input.

6 Ideal Reconfiguration Algorithm

We use four alternative configurations for the adaptive object cache (4K and
8K direct mapped configurations and 4K and 8K 2way associative configu-
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Figure 5: Algorithm for finding the ideal configuration

rations). The job of the reconfiguration algorithm is to select one optimal
configuration out of these so as to minimize energy consumption for the ex-
ecution of the program ( not on a per access basis) and maintain the perfor-
mance without allowing for any significant degradation in the performance.
By carefully selecting the optimal configuration which consumes least en-
ergy with a permissible degradation in performance, we can achieve optimal
energy results.

In order to control the worst case degradation in performance, we designed
an ideal algorithm for highest energy savings with worst case performance
degradation as a parameter. The simple but idealistic algorithm is presented
in Figure 5. The algorithm has PERF THRESHOLD as a parameter that
stands for the maximum permissible percentage performance degradation
as compared to the best achievable performance with the given resources.
The algorithm proceeds by finding the least energy consuming configuration,
with performance above the permissible threshold, for each phase. If the
lowest energy configuration leads to a performance degradation of more than
the threshold, it then selects the next higher energy configuration until the
performance degradation is less than the allowed limit. The worst case of
the algorithm is when the highest energy configuration is the configuration
that yields the best performance and all other configurations lead to per-
formance degradations above the threshold value. Since we select the ideal
configuration for each phase, we obtain optimal results for the entire program
execution.

The data cache energy savings with Ideal reconfiguration algorithm as
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Figure 6: Data cache energy
savings for Ideal reconfigu-
ration algorithm

Figure 7: Performance be-
havior for Ideal reconfigura-
tion algorithm

compared to static object cache configurations of 4K direct mapped and
8K 2 way associative caches is shown in Figure 6. All energy savings are
with respect to the data cache only configuration. The energy savings with
Ideal reconfiguration algorithm is as high as 43% while that of even a static
4K direct mapped configuration is about 35% and that of a static 8K 2
way associative configuration is about 25%. The additional energy savings
as compared to even the 4K configuration, comes from the fact that the
performance is not allowed to degrade beyond the given degradation limit
in case of Ideal reconfiguration algorithm (actually in all cases it gains on
performance as shown in Figure 7). Whenever performance is likely to be
hurt by the 4K configuration, the Ideal reconfiguration algorithm shifts to a
higher end configuration and maintins good performance, inturn leading to
good overall energy behavior.

We set the worst case percentage performance degradation threshold to
1% and 2%, so that we could obtain performance results that are atleast
as good as the optimal single configuration case [2]. But the results of our
experiments indicated much better results. The performance behavior of
various benchmark programs with Ideal reconfiguration algorithm compared
against static object cache configurations of 4K direct mapped and 8K 2 way
associative caches is shown in Figure 7. The performance of benchmarks on
data cache only configuration is our reference (100%). In both cases (1% and
2% for PERF THRESHOLD), we actually observed a performance gain of
about 1% as compared to data cache only configuration and an improvement
even over the 8K, 2way associative static configuration for the Object-cache.
In every phase we choose the ideal configuration in terms of energy which
has performance better than the PERF THRESHOLD degradation limit.
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Optimal energy configuration coincides with the optimal performance con-
figuration for more than 73% of the intervals, this results in overestimating
the performance threshold, without leading to any additional energy con-
sumption at almost every phase. The combined effect of this is visible in the
form of the observed incerase in performance.

In both energy and performance, we observe that the difference between
Ideal reconfiguration algorithm with PERF THRESHOLD as 1% and 2% is
minimal. This can also be explained by the fact that, for more than 73% of
the intervals, optimal energy and optimal performance configurations coin-
cide. This configuration is going to have the best performance and energy.
Therefore, the selected configuration is anyway going to remain the same in
case of 1% and 2% performance degradation limits. The small differences
that occur happen due to alternate configurations chosen among the other
intervals (actually phases). This observation that optimal energy and per-
formance configurations coincide in a majority of phases, leads us to think
of approximating the ideal reconfiguration algorithm, in a realistic hardware
implementable manner.

7 Approximation Using Energy Delay Prod-

uct

The Ideal reconfiguration algorithm is hard to be implemented in hardware
as it requires sorting of all the configurations in ascending order of their
energy consumptions. Further, the complexity of the hardware for sorting
values might not be scalable as it may turn out to be prohibitively high
for a set of eight alternative configurations. To overcome this complexity in
implementing the algorithm we need to device an approximation algorithm
that closely tracks the reconfiguration mechanism of the Ideal reconfigura-
tion algorithm and is scalable. As mentioned earlier, the observation that
most of the optimal energy configurations coincide with the optimal per-
formance configuration which inturn is the configuration that needs to be
chosen, indicating that the energy-delay product metric is a good choice for
approximating the Ideal reconfiguration algorithm as energy delay product
would be lowest for such configurations.

In evaluating new architectural features that influence both energy con-
sumption and performance, energy performance trade offs have to be mea-
sured. It has been demonstrated by Horowitz([10]) that the energy-delay
product metric causes the architectural improvements that contribute the
most to both performance and energy efficiency to stand out. A smaller en-
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Figure 8: Data cache energy
savings of our energy de-
lay product based approxi-
mation algorithm relative to
data cache only configura-
tion

Figure 9: Performance of
our energy delay product
based approximation algo-
rithm relative to data cache
only configuration

ergy delay product indicates a better configuration. We could use an energy
model similar to that used in [3] to keep track of the energy while merely
counting the number of cycles taken to execute for completing an interval of
10 Million instructions is sufficient to keep track of the performance. Once
the energy values and delays are evaluated for each configuration, in the
beginning of a phase, they are simply multiplied and the configuration for
which the product is lowest is selected for the remaining part of the phase.

As observed in our experiments, whenever an optimal energy configura-
tion (low energy consumption) coincides with optimal performance configu-
ration (low delay), energy delay product is at its lowest. Thus the selected
configuration by the lowest energy delay product approximation is the same
as Ideal reconfiguration algorithm in atleast 73% of the cases. In fact, the
approximation turns out to be tracking the ideal reconfiguration algorithm
to a good accuracy (to an accuracy of less than 1% difference) as depicted
in Figure 8 and Figure 9 in terms of both energy and performance. In case
of the energy delay product based approximation, we observe average en-
ergy consumption savings of 41.5% and an improvement of about 0.87% as
compared to data cache only configuration.

8 Conclusion

The paper presents an adaptive cache architecture for the Object-cache. Po-
tential energy benefit by reconfiguring the cache at the granularity of a phase
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of execution is exploited by phase change detection hardware and a simple
reconfiguration algorithm. The hardware based reconfiguration mechanism
for energy efficiency ensures that the optimization is benefitial to the dy-
namically downloaded Java applications. It is also shown that our simple
algorithm based on energy delay product approximates the ideal configu-
ration selecting algorithm to a good accuracy in both energy savings and
perofrmance. Impressive results were obtained where in 43% of data cache
energy savings were reported along with a 1% performance gain.
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