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Abstract

Two decision problems related to the computation of stopping sets

in Tanner graphs are shown to be NP-complete. It follows as a conse-

quence that there exists no polynomial time algorithm for computing

the stopping distance of a Tanner graph unless P=NP.

1 Introduction

Stopping sets were introduced in [1] for the analysis of erasure decoding
of LDPC codes. It was shown that the iterative decoder fails to decode
to a codeword if and only if the set of erasure positions is a superset of
some stopping set in the Tanner graph [8] used in decoding. Considerable
analysis has been carried out on the distribution of stopping set sizes in LDPC
code ensembles, giving valuable insight into the asymptotic performance of
message-passing decoding on LDPC ensembles — see for example [2, 3].
Since small stopping sets are directly responsible for poor performance of
iterative decoding algorithms, it is of interest to determine the size of the
smallest stopping set in a Tanner graph, called the stopping distance of the
graph. Construction of codes for which there are Tanner graphs that do not
contain small stopping sets has been studied — see for example [4, 5]. The
stopping distance of the graph, is of interest as it gives the minimum number
of erasures that can cause iterative decoding to fail.

The relationship between stopping distance and other graph parameters
like girth has been explored in [6] where it is shown that large girth implies
high stopping distance. Pishro-Nik and Fekri [12] showed that by adding a
suitable number of parity checks the stopping distance of a Tanner graph
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for a code can be increased to the maximum possible, viz., the minimum
distance of the code. Schwartz and Vardy [7] define the stopping redundancyof a code as the minimum number of rows in a parity check matrix for the
code, such that the stopping distance of the corresponding Tanner graph is
equal to the minimum distance of the code, and prove some bounds on thestopping redundancy for various classes of codes. Further investigations on
stopping redundancy may be found in [13].In this correspondence, we show that the computational problems of de-
termining whether a given Tanner graph has a stopping set of a given size
or of at most a given size are NP-complete. These are shown, respectively,by reductions from the well known NP-complete problems of determining
whether a given graph contains a vertex cover of a given size or of at most a
given size. As a consequence of the latter result, it follows that there existsno polynomial time algorithm for the problem of computing the stopping
distance of a Tanner graph unless P=NP.

2 Background

Given a parity check matrix H = [hij] ∈ GF (2)(n−k)×n, 1 ≤ k ≤ n for an
(

n, k) binary linear code, the Tanner graph is the undirected bipartite graph
G = (

L, R, E) where L = {xi, 1 ≤ i ≤ n}, R = {cj

, 1 ≤ j ≤ n − k} andE = {(

xi, cj

) : hji = 1, 1 ≤ i

≤ n, 1 ≤ j ≤ n − k}. The set L corresponds to
the set of codeword elements and R corresponds to the set of parity checks.We refer to the set L and R as the set of left and right vertices respectively.
Note that as G is undirected, E consists of unordered pairs and thus both
(

xi, cj

) and (

cj

, xi) refer to the same edge in the graph for all 1 ≤ i ≤ n, 1 ≤j ≤ n − k. For S ⊆ L ∪ R, we define N(

S) = {y : (

x, y) ∈ E, x ∈ S}. S ⊆ L
is a stopping set if S is non-empty and for all cj ∈ N(

S), |N(

{cj}) ∩ S| ≥ 2i.e., every vertex connected to some vertex in a stopping set must have at
least two neighbors in the stopping set. The stopping distance of a Tanner
graph is the size of the smallest stopping set in the graph. We define twodecision problems concerning stopping sets:

Problem

1 STOPPING SET: Given a Tanner graph G and positive integer
t, does G have a stopping set of size t?

Problem

2 STOPPING DISTANCE: Given a Tanner graph G and positive
integer t, does G have a stopping set of size at most t?

Note that the corresponding decision problems arising out of the problemof finding the minimum distance of a code were shown to be NP-complete in
[15] and [14].
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It is clear that if either STOPPING SET or STOPPING DISTANCE can
be solved in polynomial time, then invoking the algorithm at most |L| times,
the problem of actually finding the stopping distance of a Tanner graph can
be solved. Conversely, if there is a polynomial time algorithm for finding the
stopping distance of a given Tanner graph G, then we can use the algorithm
to solve STOPPING DISTANCE since G has stopping distance less than or
equal to t if and only if G contains a stopping set of size less than or equal
to t. Note that it is not immediately clear how to solve STOPPING SET
in polynomial time even if a polynomial time algorithm for computing the
stopping distance of a Tanner graph is known.

The notion of NP-completeness was introduced in [11], and is well estab-
lished in the computer science literature for the analysis of the computational
complexity of problems (see [9, 10] for a detailed account). Typically, a prob-
lem is posed as a decision problem, i.e., one where the solution consists of
answering it with a yes or a no. All inputs for which the answer is a yes
form a set. We identify this set with the problem. A decision problem A
belongs to the class NP if there exists a polynomial time algorithm Π such
that, for all x ∈ A, there exists a string y (called a certificate for member-
ship of x in A), with |y| polynomially bounded in |x|, such that Π accepts
(x, y), whereas, for all x /∈ A, Π rejects (x, y) for any string y presented to
the algorithm. In other words, problems in NP are precisely those for which
membership verification is polynomially solvable. We say a decision problem
A is polynomial time many-one reducible to a decision problem B if there
exists a polynomial time algorithm Π′ such that, given an instance x of A,
Π′ produces an instance z of B satisfying z ∈ B if and only if x ∈ A. In
such case, we write A �p B. A problem A ∈ NP is NP-complete if for every
X ∈ NP, X �p A. It is generally believed that NP-complete problems have
no polynomial time algorithms.

Given an undirected graph (not necessarily bipartite) G = (V, E), S ⊆ V
is a vertex cover in G if for all (u, v) ∈ E either u ∈ S or v ∈ S or both.
We will be using in our reductions the following decision problems associated
with the computation of vertex covers in a graph.

Problem 3 VERTEX COVER(=): Given a graph G and a positive integer
t, does G contain a vertex cover of size equal to t?

Problem 4 VERTEX COVER: Given a graph G and a positive integer t,
does G contain a vertex cover of size at most t?

VERTEX COVER is shown to be NP-complete in [10, p. 190]. VERTEX
COVER(=) is shown to be NP-complete in [9, pp. 949–950] (in fact, in
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Figure 1: A graph G and its vertex-edge incidence graph

this reference, the authors refer to this problem as the VERTEX COVER
problem).

In the following section we show that both STOPPING DISTANCE and
STOPPING SET are NP-complete by establishing polynomial time many-
one reductions from VERTEX COVER and VERTEX COVER(=) respec-
tively to the above problems.

3 Hardness of STOPPING DISTANCE

Let (G = (V, E), t) be an instance of the VERTEX COVER problem. Let
|V | = n, |E| = m. Excluding trivial cases of the problem we may assume
1 ≤ t ≤ n−1. We shall make the further assumption that G is connected. It
is not hard to show that both VERTEX COVER and VERTEX COVER(=)
remain NP-complete even when restricted to connected graphs.

The vertex-edge incidence graph of G is the undirected bipartite graph
G′ = (L, R, E ′) with L = V , R = E and edges (e, u) and (e, v) in E ′ for each
e = (u, v) ∈ E. Fig. 1 shows the vertex-edge incidence graph for a graph G
with n = 4 and m = 3.

The advantage of assuming that G is connected arises out of the following
lemma:

Lemma 3.1 Let G′ = (L, R, E ′) be the vertex-edge incidence graph of a
connected graph G = (V, E). Let S be a stopping set in G′. Then S = L.

Proof Suppose to the contrary that L \ S 6= ∅. Then, as G is connected
there exists v ∈ L \ S and u ∈ S such that (u, v) ∈ E. Let e = (u, v). Then
e ∈ N(S). Since S is a stopping set |N({e})∩S| ≥ 2. But the only neighbors
of e in G′ are u and v. Hence v ∈ S contradicting v ∈ L \ S.

We construct an undirected bipartite graph G′′ = (L, R, E ′′) as follows:
L =

⋃m+1
i=0 Li, R =

⋃m+1
j=0 Rj, where, R0 = {z1, ..., zm−1}, Rj = {ur

j, u ∈ V }
for 2 ≤ j ≤ m + 1, R1 and L0 are copies of E, the edge set of G and
Li = {u`

i, u ∈ V } for 1 ≤ i ≤ m + 1. Edges in G′′ are connected as follows:
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Figure 2: Construction of G′′

• Connect u`
i ∈ Li to ur

i ∈ Ri, 2 ≤ i ≤ m + 1.

• Connect u`
i ∈ Li to ur

i+1 ∈ Ri+1, 1 ≤ i ≤ m.

• For each e = (u, v) in E, connect e ∈ R1 to u and v in L1.

• For each e ∈ E, connect e ∈ L0 to e ∈ R1.

• For the purpose of defining the edges between R0 and L0, temporarily
re-label vertices in L0 as e1, e2, ..em in some arbitrary way. Add the
edges (ei, zi) for 1 ≤ i ≤ m − 1 and the edges (ei, zi−1) for 2 ≤ i ≤ m.

The example in Fig. 2 illustrates the construction of G′′ for the graph
G in Fig. 1. The graph G′′ consists of a copy of the vertex-edge incidence
graph of G (vertex sets L1 and R1). Additionally, there are m copies of the
vertex set V on the left (L2, L3, ..., Lm+1) and right (R2, R3, ...Rm+1). The
connections between R0 and L0 ensure that any stopping set in G′′ containing
any one vertex in L0 must contain the whole of L0. The vertex ur

i in Ri has
neighbors u`

i−1 and u`
i for each 2 ≤ i ≤ m + 1 and each u ∈ V . This ensures

that if a stopping set S in G′′ contains u`
i for some i ∈ {1, 2, ..m+1} then all

the m+1 vertices u`
1, u

`
2, ...., u

`
m+1 must be present in S. These observations,

summarized below, play a crucial role in the arguments that follow.

Observation 3.2 A stopping set S ′ in G′′ satisfies u`
i ∈ S ′ for some 1 ≤ i ≤

m + 1 if and only if it satisfies u`
i ∈ S ′ for every 1 ≤ i ≤ m + 1. Moreover

either L0 ⊆ S ′ or L0 ∩ S ′ = ∅.

The following two claims establish the connection between vertex covers
in G and stopping sets in G′′.

Lemma 3.3 If G contains a vertex cover S of size t for some 1 ≤ t ≤ n− 1
then G′′ contains a stopping set of size t(m + 1) + m.
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Proof Consider the set S ′ = L0 ∪ {u`
i : u ∈ S, 1 ≤ i ≤ m + 1} in G′′.

Clearly S ′ has t(m + 1) + m elements. Let w ∈ N(S ′). Then either w = ur
i

for some u ∈ S, i ∈ {2, 3, ...m + 1} or w ∈ R1 or w ∈ R0. In the first case,
both u`

i and u`
i−1 are neighbors of w. If w ∈ R1, then by construction, w must

correspond to some edge e = (u, v) in E. Since L0 ⊆ S ′, e ∈ L0 is a neighbor
of w. Since S is a vertex cover in G, either u or v or both must belong to
S. Hence one or both of u`

1 and v`
1 are neighbors of w which belong to S ′.

Finally if w ∈ R0, then both the neighbors of w are in L0, and therefore in
S ′. Thus in all cases w has at least two neighbors in S ′. Consequently S ′ is
a stopping set.

We now prove that every stopping set in G′′ of size less than n(m + 1)
must correspond to some vertex cover of size t in G for some 1 ≤ t ≤ n − 1
and must have size exactly t(m + 1) + m

Lemma 3.4 Let S ′ be a stopping set in G′′ of size less than n(m+1). Then
the following must hold:

• L0 ⊆ S ′,

• |S ′| = t(m + 1) + m for some 1 ≤ t ≤ n − 1 and |S ′ ∩ Li| = t for every
1 ≤ i ≤ m + 1

• S = {u ∈ V : u`
1 ∈ S ′} is a vertex cover of size t in G.

Proof Suppose L0 is not contained in S ′. Then by Observation 3.2, L0 ∩
S ′ = ∅. Since S ′ 6= ∅, There must be some u ∈ V and i ∈ {1, 2, .., m + 1}
such that u`

i ∈ S ′. By Observation 3.2, u`
1 ∈ S ′. Since vertices in the set R1

are connected only to L1 and L0, every neighbor of S ′ in R1 must have two
neighbors in S ′ ∩ L1 in order for S ′ to satisfy the conditions of a stopping
set. In other words, S ′ ∩ L1 must be a stopping set in the subgraph of G′′

induced by the vertices L1 ∪ R1. Note that this subgraph is the vertex-edge
incidence graph of G. Applying Lemma 3.1 we get S ′ ∩ L1 = L1. Hence
Observation 3.2 shows that S ′ =

⋃m+1
i=1 Li. But in that case |S ′| = n(m + 1),

a contradiction. Hence L0 ⊆ S ′ and |L1 ∩ S ′| < n. Let |S ′ ∩L1| = t for some
1 ≤ t ≤ n − 1. Applying Observation 3.2 once again, |S ′ ∩ Li| = t for all
1 ≤ i ≤ m + 1. Hence |S ′| = t(m + 1) + m.

To complete the proof of the lemma, it is sufficient to prove that S =
{u ∈ V : u`

1 ∈ S ′} is a vertex cover of G. Since L0 ⊆ S ′, R1 ⊆ N(S ′).
Since every vertex e in R1 has only one neighbor in the set L0, for S ′ to
satisfy the stopping set condition e must have a neighbor in L1 ∩ S ′. Then,
by construction {u ∈ V : u`

1 ∈ S ′} must be a vertex cover in G as required.

As a consequence of Lemma 3.3 and Lemma 3.4 we have:
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Corollary 1 G has a vertex cover of size t if and only if G′′ has a stopping
set of size t(m+1)+m, 1 ≤ t ≤ n−1. Hence (G, t) ∈ VERTEX COVER(=)
if and only if (G′′, t(m + 1) + m) ∈ STOPPING SET.

Corollary 2 G has a vertex cover of size at most t if and only if G′′ has
a stopping set of size at most t(m + 1) + m, t ∈ {1, 2, .., n − 1}. Hence
(G, t) ∈ VERTEX COVER if and only if (G′′, t(m + 1) + m) ∈ STOPPING
DISTANCE.

We are now ready to prove:

Theorem 3.5 STOPPING DISTANCE and STOPPING SET are NP-complete

Proof

Since G′′ can be constructed from G in polynomial time (O(mn) time
suffices), it follows that VERTEX COVER(=) �p STOPPING SET and
VERTEX COVER �p STOPPING DISTANCE from Corollary 1 and Corol-
lary 2 respectively. It is easy to verify whether a given set of left vertices of
a bipartite graph forms a stopping set in time linear in the size of the graph.
Hence both STOPPING DISTANCE and STOPPING SET belong to the
class NP.

As a consequence, we have:

Corollary 3 There is no polynomial time algorithm for computing the stop-
ping distance of a Tanner graph unless P=NP.
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