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Abstract

When a software system enters maintenance phase, Regression
Testing becomes an important Software Engineering activity. Large
size and complex nature of the software, frequent releases and low de-
fect rate demands in subsequent releases and patches makes it imper-
ative to carry out regression testing in a near exhaustive and efficient
manner.

This paper presents a method of partial automation of specifica-
tion based regression testing, ESSE (Explicit State Space Enumera-
tion). The central idea of ESSE method is the extraction of a finite
state model of the system making use of an already tested version of
the system under test. We demonstrate the usefulness of the finite
state model thus obtained by presenting two new algorithms for test
sequence computation — both based on our finite state model gener-
ated by the above method. We also provide the details and results
of the experimental evaluation of ESSE method. Comparison with a
practically used random-testing algorithm has shown substantial im-
provements.

1 Introduction

1.1 State Space Representation of a Program

A program can be approximated by a finite state model. The concept of
modelling a program by a finite state automaton is there for a long time.
Such a model, if it exists, can be fruitfully used as a software engineering aid
in a variety of ways. For instance, in model-checking, a finite state model,
called the labeled transition system (LTS), is used to represent the system to
be verified. Similary, there is a whole body of literature that demonstrates
the use of finite state models for automatic generation of test-data.
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Figure 1: An example program.

However, the major body of works in verification (model-checking), and
model-based testing, presuppose the existence of a finite state model. How-
ever, this is not always the case. Due to the dearth of a finite state model of
the system, it becomes difficult to put many powerful test automations into
practice.

In this work we present an algorithm which reverse-engineers a finite state
model of a system. We then demonstrate the usefulness of such a model with
an elaborate example of its application in the area of specification based
software regression testing, and with a brief example of its application in
software verification.

1.2 Examples

A computer program may be thought of as a state based system. What
is considered to represent its state can vary from case to case, primarily
depending upon the purpose of modelling. For example, consider the program
in figure 1

There are more than one ways of modelling the system shown in figure 1
as a finite state machine. For instance, considering each program point as a
state can be one way. That will give us the transition system as shown in
figure 2.

Another way of finite state modelling of the same program is by consider-
ing each value of variable x as a state. then the program will be represented
by a model shown in fig 3.

Yet another model would be to consider intervals of values taken up by
x as individual states. for example, if we partition the domain of x in the
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Figure 2: Finite state model with program points as states.

(-

Figure 3: Finite state model with individual values of x as states.
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following manner:

(0, 9), (10, 19), ... (90, 99), (100, 109) ...

Then we get another finite state model as shown in figure 4.

If we model the system by the values of another abstract state variable y
such that y = %3, then we get the state machine as shown in figure 5.

The purpose behind citing many such examples was to clarify that for a
single given system there could be arbitrarily many ways of creating a finite
state model of that system. Which one is actually selected is dependent on
the purpose of modelling.

In the program analysis community, the finite state model of choice is the
control flow graph which implicitly models each basic-block boundary as a
state, as in figure 1 and figure 2. Model checing community prefers label-
transition system as the finite state model of choice, as described in the rest
of the examples. In testing community both control-flow graph and labelled
transition systems are of interest, primarily because testing researchers adapt
methods and techniques of both model checking and program analysis for
automating test data generation.

As in the case of all modelling, finite state modelling of a program involves
abstracting out the relevant details while leaving out the rest. A model’s use-
fulness as an object of analysis rests on its being simpler in some appropriate
way than the system it models. Simplification and reduction in model size
are, therefore, two prime objectives of modelling.

For example, when in the above example the program is modelled as
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Figure 4: Finite state model with intervals of values of x as states.
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Figure 5: Finite state model with y = x % 3 as states.

CFG, we are modelling the program points as the state-variable. In a real-
life implementation a program point is essentially nothing but the value of
the program counter(PC). In reality, however, the target machine implemen-
tation of any program would naturally contain many more program points —
and hence distinct values of the machine program counter — than are explicit
in the example program. However, many of those PC values are of little
interest in most problems of program analysis. The CFG model created in
practice would generally appear as it is shown, and not any more elaborate.
Similarly, in the remaining examples, a model explicitly models each individ-
ual values that the variable x takes; and ends up having 101 states. Another
model models states in terms of continuous intervals of 10 values each, re-
sulting in a reduced state space of 11 states. Modelling the same program
by each state representing a distinct value of %y results in an even further
reduced state-space of 4 states.

Economy of the resultant model on the one hand, and the fine-grainedness
of the information content on the other, are the two main factors that have
to be considered while choosing an appropriate level of abstraction in the
model.

1.3 Reactive Systems and Finite Modelling

A large body of softwares today can be put into the class of reactive systems.
Reactive systems are systems which do not run from start to end on being
invoked, in the manner a compiler does. Instead, such a system waits (po-
tentially endlessly) for inputs from the user or the environment, and carries
out some computation in response to that. GUI applications, embedded ap-
plications, web-server applications, operating systems etc. are some typical
examples of reactive systems.

Finite state modelling is popular in thinking about reactive systems.
Hence, they have been used extensively in design (UML statechart and its



variants), verification and validation of such systems.

1.4 An Example of A Reactive System — An Applica-
tion Programming Interface

An application programming interface (API) can also be looked at as a reac-
tive system. The API functions are the ways by which input events can be
sent to the API. Consider the complete program shown in figure 6.

The contents of the two files PUT.h and PUT. cpp constitute a very trivial
API program. An external code can link to this code (PUT.cpp could be
compiled beforehand and be provided as a library), and make calls to the
API functions. A possible stub making a sequence of calls to PUT API is as
shown in figure 7.

Together with main we have created a trace that PUT API can traverse
through. This would be a substring of some valid run through the automaton
that models the PUT API.

If we model PUT by representing each value of x as a state of the state-
space graph, it would appear as shown in figure 8.

1.5 Problem Context

In the above example, x is the state-variable whose value is determining the
state. In lines similar to that described in the last section, some other state-
variable could have been chosen. It would have given us another state-space
model of the system. The choice of the state-variable, and hence the state
space model, depends on the specific requirement of modelling.

In our present context, the purpose of modelling is testing.

In a typical scenario of software maintenance, a large API is used by
many groups within an industrial software development firm. A dedicated
group is continuously involved in all kinds of maintenance activities upon this
APT library — bug fixing, enhancement (both feature and performance), and
preventive. Thus, new minor releases arrive quite frequently. Before the new
patch can be integrated with all client modules, extensive regression testing
is necessary. Due to the nature and scale of the software, this regression
testing is done as a black-box testing, possibly by yet another team of testers
having no access to the source code of the API library. The above process is
diagrammatically represented in figure 9.

The process shown in figure 9 is endlessly cyclic. Moreover, it is con-
strained by tight release-cycles. The testing team, more than any other team,
is under strong pressure to carry out the regression testing as efficiently as
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#ifndef PUT_H
#define PUT_H

int get_x ();
void set_x (const int);

void f1 ();
void f2 (const int, const int);

void reset ();

#endif

/171717777 /PUT.cpp//////////11////7/

#include <iostream>
#include "PUT.h"

using namespace std;

static int x = -10;

int get_x () { return x;
void f1 () { x++; ¥
void £f2 () { x += 23 by
void £3 () { x += 10; }
void reset () { x = -10; b

Figure 6: An example of an API



//main. cpp
#include "PUT.cpp"

int main ()

{ // x == -10
f1 O; // x == -9
f1 O; // x == -8
2 O); // x == -6
f1 O; // x == -5
£3 (); // x == 5

return O;

Figure 7: A stub for creating a trace from the state-space of the program in
figure 6

x> 10

2]

Figure 8: Explicit state space of the program in figure 6
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Figure 9: Regression testing process

possible with as little loss in completeness as possible. In short, automatic
methods of carrying out specification based regression testing are of great
importance to the testing team in a setup of this kind.

1.6 Contributions

In this direction this work contributes by providing a specification based
regression-testing method. We have implemented our central idea in a pro-
totype tool named ‘Modest’ (Model-Based Tester). The main contributions
of this research work are:

1. An algorithm, called GraphMaker, to generate a finite state-space model
of an API library, as described in the last section.

2. Demonstration of the application of such a model in test sequence com-
putation by integration with many new algorithms and existing tools
for computation of efficient test sequences.

3. Experimental evaluation of ESSE approach in comparison with an in-
dustrially used variant of random-testing, called legal random call ap-
proach throwing light on the performance of both methods.
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Figure 10: Example of a DFS strand

2 GraphMaker

GraphMaker is an algorithm which generates a state space model of an API
system by explicitly exploring the bounds. The GraphMaker algorithm is es-
sentially an adaptation of the preorder depth first search (DFS) algorithm.
The fundamental difference is, of course, that there is no graph to traverse
when the algorithm starts executing. Nodes are created as GraphMaker tra-
verses them. The order in which the nodes of a graph are created is the same
as that in which the nodes of a digraph get marked in a preorder DFS.

2.1 GraphMaker-DFS, The DFS version of GraphMaker

As mentioned above, the GraphMaker algorithm is a preorder DFS algorithm.
The basic ideas are as follows. To understand the GraphMaker in its core,
just consider a simpliflied version of it — a depth first traversal algorithm
without backtracking which we call GraphMaker-DFS. These essentials carry
over fully to GraphMaker, the algorithm for the creation of the state space
graph, with some minor additions.

2.1.1 DFS Strand

The operational difference between GraphMaker-DFS and preorder DFS is
that GraphMaker-DFS cannot literally backtrack.

Consider the graph shown in figure 10. The order in which a preorder
DFS would traverse this graph is: 1, 2, 3, 4, 5, 6, 7. Same would be the
order in which GraphMaker would create the nodes while making the graph.
However, the traversal order of GraphMaker-DFS is as follows:

1,2 3,4, 3, reset, 1, 2, 5, 4, reset, 1, 2, 5, 6, reset, 1, 2, 5, 7, 1, reset, 1,
2, 7, reset.



The underlined node identifiers denote that that node is being visited
for the first time. Observe that each time the preorder DFS backtracks,
GraphMaker-DFS resets, i.e. it goes all the way back to the initial state. It
then traces its way back to the node the backtracking would have taken it to,
and proceeds as the preorder DFS. We call each portion of the node traversal
sequence of GraphMaker-DFS between two consecutive resets as a DF'S strand.
Formally, a DFS strand is a portion of the DFS traversal that results from
a traversal starting at the root node and going on till it can. For example,
figure 10 shows two DFS strands through the edges drawn in bold: in (a) it
is 1, 2, 3, 4; and in (b), it is 1, 2, 5, 4.

The conditions of termination of a DFS strand are the same as those for
backtracking in DFS, that is:

1. Encountering a leaf
2. Encoutering an already visited node

In both the above cases GraphMaker calls reset(), causing a return to the
initial state.

Each DFS strand has two phases. The former phase, phase 1, constitutes
of a traversal through 0 or more already created nodes (and edges) to a node
that would have been the destination of a backtrack in a proper preorder
DFS. The latter phase, phase 2, is constituted of traversal through 1 or
more untraversed edges, and 0 or more uncreated nodes of the state-space
graph. Please note that traversal through already traversed edges and already
created nodes is always contiguous in the phase 1 of a DFS strand. There
cannot be traversed any already traversed edge or already created node once
the DFS strand has terminated phase I and entered the phase 2. In fact, a
DF'S strand terminates if it encouters an already created node, as mentioned
in (2) of the termination conditions of a DFS strand above.

2.1.2 LastFork

The ‘backtracking’ feature of DFS is simulated in GraphMaker-DFS by reset-
ting the system and returning to the destination of the backtracking step
from the root of the state space graph. We call this node the LastFork in
GraphMaker-DFS. It is the lowest node in the current DFS strand which has
untraversed outgoing edges.

In figure 11, we have shown two snapshots of the process of graphmaking
in a typical run of GraphMaker. In both (a) and (b), the nodes and edges
drawn in bold indicate the current DFS strand. The bottommost node in
this DFS strand is the most recently touched node. The shaded node (2

10
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Figure 11: Example of a LastFork

in (a) and 5 in (b)) are the LastForks in the respective snapshots. Precise
characteristics of a LastFork node are as follows:

1. It is a member of the current DFS strand.
2. It has got atleast one outgoing edge which has yet not been traversed.

3. If it (i.e., say [, labelled LastFork) is above the node currently being
traversed, say n, there should not be another node, say [’, in the current
DFS strand such that the path p €(current DFS strand) joining [ with
n, contains [’

If [ is after n in the DFS strand, then in the last DFS strand, say
DFSS’, there should not be another node I’ € DFSS’, such that the
number of outgoing edges from [’ is not equal to 0, and there exists a
path p € DFSS’ from [ to I'.

4. All edges and nodes covered after encountering the LastFork in the
current DFS strand have been created in this strand itself. This is a
direct corollary of the basic definition of the LastFork.

2.1.3 PrevFork

During the traversal of DFS strand, the LastFork mark may shift both down-
ward or upward. The downward shift happens when, after crossing the
present LastFork node [, the DFS strand encouters (by creating) a new node,
I', with atleast 2 outgoing edges. On this, I’ becomes the LastFork. Another
mark name PrevFork is associated with [.

Upward shift of the LastFork mark happens when during the traversal,
all the outgoing edges of current LastFork node get traversed. The LastFork
mark then is shifted to the node marked PrevFork.

11
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Figure 12: Various cases in GraphMaker algorithm inputs.

The PrevFork mark always travels downward. The PrevFork mark begins
its journey down a DFS strand starting at the root, when a DFS strand
begins. During phase 1 of the DFS strand, PrevFork keeps hopping down
to every subsequent node found having more than one untraversed outgoing
edge. It may travel down to meet the LastFork mark if and only if before the
traversal hits the LastFork (thus ending its phase 1), the LastFork node has
atleast two untraversed outgoing edges. Instead, if the number of untraversed
outgoing edges on the LastFork is only one (remember, it cannot be zero), then
the PrevFork stops one hop short of this node. That means, the moment the
only remaining untraversed outgoing edge of the current LastFork is traversed,
the LastFork travels up to meet the PrevFork. Thus, PrevFork mark keeps
track of the node that is going to be the LastFork for the next DFS strand.

The pseudo-code for the GraphMaker-DFS is given in algorithm 1.

2.2 Analysis of GraphMaker-DFS Algorithm

The execution time taken by the GraphMaker algorithm is equal to the time
required to create each edge. We currently ignore the the time taken for
executing the API functions. They can be validly assumed to take constant
time, which doesnot affect the overall complexity of the algorithm.

The best case happens when each execution (or traversal of an edge) is
accompanied by the creation of an edge and/or a node. The worst case
happens when most of the edge traversals are through already created edges.
For instance, (a), (b) and (¢) in figure 12 correspond to good cases; (d) and
(e) correspond to bad cases; (f) correpsonds to the worst case, as will be

12
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proved shortly.

We observe that the worst case would comprise of paths where a large
number of already created nodes are traversed to create each single new node.
A graph of type in (d), (e) and (f) in figure 12 provide us with this.

Consider the case shown in figure 13. The total number of nodes are n.
x is the number of nodes in the common vertical strand. y is the number of
nodes below the division of the strand as shown. We have

T+y=n (1)

The total execution time for the GraphMaker algorithm needed to create the
graph is:
T=(z—1)y 2)

Substituting equation 1 in equation 2.
T=(x—-1)(n—2) (3)

To find the maximum, we differentiate w.r.t. x:

ar d
= = 7@ =1)(n - )] (4)
Gives: T
%:—Qm—l—(n—l—l) (5)
Equating this to 0 for maximum, gives:
n+1
o= (6

13



Substituting this in equation 2:

T:iof+n+m:om% (1)

Each time an edge is traversed, it is checked whether the destination state

is already created. This basically searches through the complete set of nodes

aready created at any point. This process is roughly O(n), and happens for

each of the above steps. Thus, the modified execution time of GraphMaker
algorithm is:

T' =T O(n) = O(n*) O(n)
T = 0(n?) (8)

Further, if the search is done on a sorted list, then both the search and
creation time of a node would be O(log(n)). In that case, 7" modified gives:

T" = O((n” +log(n)) O(log(n))

T" = O(n*log(n)) (9)

Finally, the node creation and search times can be further reduced to
O(n) with the use of hash-tables. Thus,

T" = O(n?) (10)

2.3 GraphMaker

Now consider the case where the graph being traversed doesnot exist a priori,
but has to get created as the traversal happens. That is, when the traversal
visits a node for the first time, it is preceded by the node’s creation. This
version is the proper GraphMaker. The only point where it is different from
GraphMaker-DFS described in 2.1 is the following.

At the time a node is created by GraphMaker, it is complimented
by the creation of a ReadySet for that node. A ReadySet for a
node is the set of API functions whose preconditions are satisfied
in the state represented by that node.

Notice the switch statement towards the end of the GraphMaker-DFS
algorithm 1. The case where the
UnMarkedChildList.Size is equal to 0, the processNode function returns.
The same happens due to either of the following two things:

1. The current DFS strand has hit a leaf.

14



2. The current DFS strand has hit an already visited node.

In either case, the current DFS strand ends; processNode returns. This activ-
ity becomes slightly more complicated in GraphMaker. Whenever the algo-
rithm is traversing a heretofore untraversed edge in the phase 2 of the DFS
strand, the API function which corresponds to that edge has to be executed.
The resulting state of that execution has to examined to see if it corresponds
to a state represented by a node that has already been created. If the answer
is no, then a new node is created and the traversal proceeds. Otherwise, the
node corresponding to the destination state is connected through the edge
to the source node, and DFS strand terminates.

We cover the other relevant details about GraphMaker in the rest of this
section.

2.4 Input to GraphMaker
Following are the inputs to the GraphMaker.

2.4.1 Baseline

A baseline version of the implementation under test (IUT) — the API library
— is required. GraphMaker will assume that this version is fully tested and is
free of bugs. Two more requirements from this baseline are:

o A set of functions made available to observe the state variables.

o A reset() function that, on being called, takes the system back to its
initial state.

Both the above functions require access to the internals of the SUT.
Therefore, they have to be provided by the SUT providers themselves. On
the other hand, these functions can be made available only for the testing
purpose and can be omitted from the release version. The observer functions
are getter functions provided to GraphMaker. They have no side-effects and
are in control of the APT providing team and no one else. The reset() function
does have a side effect but its effect is limited to its announced function —
bringing back the system to its true initial state.

The API program shown in figure 6 is an example of a baseline sys-
tem. The header file PUT.h and the implementation, either as the source file
PUT. cpp, or more typically as a linkable library.

15



2.4.2 API Specification

GraphMaker requires some additional information about the API apart from
what its API header file provides. They are as follows:

1. List of state variables that constitute the state-vector of the API.

2. Since the model created is finite, the number of distinct values that
each state variable can assume must be provided to GraphMaker in
some form.

3. getter function corresponding to each state variable required to observe
its value.

4. Type and list of arguments to each API function, especially alongwith
the finite set of all distinct values the arguments may take.

5. Preconditions and postconditions of each API function.

All the above information is provided through an API specification. The
API specification follows a language that is shown in figure 14. An example
of the API specification for the API of figure 6 is shown in figure 15.

2.5 Output of GraphMaker

The graph generated by GraphMaker for the API shown in figure 6 and
the corresponding API specification shown in figure 15 is shown in figure 16.
This representation of the state-space graph is a commonly followed format
where each edge of the graph is a triple enclosed with a pair of brackets
such that the first and third elements represent the labels on the source and
destination nodes respectively, and the second element is the label on the
edge. A portion of the same graph is shown diagrammatically in figure 17.
Please compare this with the state space graph shown in the figure 8. Some
edges of figure 8 are found missing in figure 17. This is due to two reasons:

1. Precondition for API functions which restrict the set of functions that
are callable at each state.

2. Finitisation of the allowed values of the state variable (in this case, x),
which causes all the edges, whose destination corresponds to a state out
of the bounds set by the limits of the state variable values as specified
in the API specification, to disappear.

16



S —"application name" ’:’ application — name ’;’
"path" : path ’y
speclist
speclist —
| speclist spec
| spec
spec — variable
| function
variable —"variable"

7{7

id

"type" " type
limit 7

get functionname ’;

7}7

function — "function"

7{7

Zd ’; )
"type" ' type
arguments
precondition
postcondition
7}7
type — "int"
| "float"

| "void"
arguments — list of variables
precondition — a C-like boolean expression
postcondition — a C-like boolean expression with a possible "@pre" after some
variable names

Figure 14: Grammar of the API specification language
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application name : PUT;

path : ./casestudy/target;
variable {

x;

type : int;

(-10, 10);

get_x;
¥

function {
£3;
type : void;
arguments

{3
precondition
{
x == 0
¥
postcondition
{
x == xQpre + 10
¥

}

function {
f2;
type : void;
arguments

{3
precondition
{
x % == 0
}
postcondition
{
x == xQ@pre + 2
¥
¥
function
{
f1;
type : void;
arguments
{3
postcondition
{
x == xQ@pre + 1
}
}

Figure 15: A tiny example of API specification

18
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(2, £f1, 3)
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(5, £1, 18)
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(7, £3, 8)
(7, £f2, 9)

(7, £1, 17)
(9, f1, 10)
(10, f2, 11)
(10, f1, 16)
(11, f1, 12)
(12, f2, 13)
(12, f1, 15)
(13, 1, 14)
(14, f1, 8)
(15, f1, 13)
(16, f£1, 11)

a7, f1, 9)
(18, f1, 6)
(19, f1, 4)

(20, f1, 2)

Figure 16: State space graph generated by GraphMaker

Figure 17: Diagrammatic view of the graph in figure 16
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Figure 18: Implementation of GraphMaker
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Therefore, resultant state-space graph is finite in a true sense.
This state space graph is subsequently utilised for test sequence compu-
tation as described in the further sections.

2.6 GraphMaker Implementation

GraphMaker is implemented slightly differently than the way it has been de-
scribed earlier in this section. In fact, the graph generation happens in two
steps as shown in figure ?7. The two steps are:

1. Generation of GraphMaker code from the API specification.

2. Generation of the state-space graph by executing GraphMaker.

The non obvious step 1 above is because the algorithm needs to be cus-
tomised depending on the particular API specification. This process is com-
pletely automatic. Hence, the overall process can still be viewed as a single
algorithm. The breakup into two steps is just an implementation decision.

3 Test Sequence Generation

Now we turn our attention to a way in which the system state space graph
that is generated by using the algorithm described in section 2 can be used
for regression testing.

Typically, a regression test suite for an API system is a collection of API
function-calls (not just functions), qualified with suitable arguments, that
should be called. Coming out with this set of function-calls, based upon
some coverage criterion, is the problem of regression test data generation —
a non-trivial problem in its own right, and has been the favourite focus of
software testing research in various scenarios.

Let us denote this set of function-calls as F' = f1, fo, f3...fm, Where m is
the number of function-calls identified, by some appropriate test-data gener-
ator, for regression testing. From the point of view of our state-space graph,
these function-calls are nothing but edges in our state-space graph. Testing
will comprise of a sequence of function calls of which F' will be a subset.
We call this complete set of function calls the test sequence. Depending on
the test requirements there would be additional constraints. For instance, it
may be required that members of F' form a subsequence of the test sequence.
Similarly, the requirement may be slightly relaxed in that it may be allowed
for the members of F' to occur in any order.

An API function can be called only when its precondition is met. A
call made to an API function when its precondition is not satisfied is not

20



guaranteed to result in deterministic behaviour. Hence, before some function
f € F is invoked, the system must first be brought to a state where the
precondition of f is satisfied. In absense of a state-based model, this problem
is intractable.

In this scenario, one way of maximising coverage through testing is by
making legal random calls. This method scales well to testing problems of
industrial proportions, but suffers from the inherent disadvantage of being
unable to provide a complete coverage as per any coverage criterion. The
methods assumes the lack of an explicit state-based model. Instead, it pre-
dicts a required number of function calls which would give a reasonable con-
fidence on the completeness of the testing process. The predicted number,
being a result of probabilistic analysis, exceeds the minimum number of func-
tion calls actually required to completely cover all the function calls if the
preconditions of the API functions are non-trivial (trivial means true in all
states). And yet — as mentioned above — it fails to provide complete coverage.

In this section, we present algorithms which successfully compute good —
and in many cases, optimal — test sequences to provide a complete coverage of
the test suite. All of them make use of the finite state space graph generated
by GraphMaker. We present some ways of specifying the test requirement,
and provide a corresponding algorithm that computes a good test sequence.

The test sequence computation algorithms we present in this section form
only a representative subset of various algorithms that can be employed for
the purpose, depending on the regression test requirement.

3.1 Test Requirement Type 1

Requirement: The test requirement names a set set F of function-calls
through explicit enumeration. F s an ordered set. The test sequence T
computed should be a sequence of function-calls such that F' is a subsequence
of T.

This type of test specification assumes that the set of edges listed in the
regression test specification are to be traversed in that sequence. In other
words, the set of edges selected should be a subsequence of the string of edges
that constitutes the test sequence.

The basic idea behind this algorithm is to build the test sequence progres-
sively starting from the root node. The shortest path in the graph starting
from the root node to the source of the first member of 7°'S(7°S[0]) is added
as the first string in the test sequence. Thereafter, the shortest path between
the destination of the 7°'S[0] and the source of T'S[1] is added. The same step
is repeated for all the subsequent members of T'S. In the end the algorithm
returns a continuous test path 7' that contains all the member edges of T'S
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as a subsequence of itself. The algorithm will take O(n) time to run, n be-
ing the number of edges in the regression test suite. However, the steps on
lines 3, 8, 9 should be implemented to run in O(1) time for that.

3.2 Test Requirement Type 2

Requirement: The test requirement names a set set F of function-calls
through explicit enumeration. F' is an unordered set. The test sequence T
computed should be a sequence of function-calls such that F' is a subset of T'.

In this algorithm we assume that there is no restriction as to the order
in which the edges listed in T'S are covered during testing. Therefore, The
algorithm does not pick up each subsequent edge of T'S in the same order.
Instead, in each iteration, the algorithm picks up that member of T'S to the
SOURCE of which the distance of the DESTINATION node of the edge which is
the current last member of T', is the shortest. Hence, this algorithm optimises
the path more aggressively, and will potentially yield shorter test sequences.

The execution time for this algorithm is more implementation dependent
than the previous one. The step in line 9 gets executed in every iteration. If
it is implemented to execute in ¢ time (O(n), O(logn), and O(1) implemen-
tations are possible), the overall execution time will be O(n) % t, n being the
number of test cases in the regression test suite 7'S. Of course, that requires
steps 12, 13 and 3 to implemented as O(1). The execution complexity
of steps 15 and 16 also get multiplied to the overall complexity in both
algorithms.

Note: Both algorithm 2 and 3 make use of an array AllPaths, which
contains the pairwise shortest distances between each of the nodes in the
state-space graph G. For simplicity we assume that edges have uniform
weights. This array is populated as a preprocessing step of both algorithm 2
and algorithm 3. It uses a simplified version of Dijkstra’s shortest path
algorithm to compute the pairwise shortest paths between each node in the
state-space graph.

4 Modest — A Regression Testing Tool

The architecture of Modest, a prototype regression testing tool we are de-
veloping, has been shown in figure 19. The modules shown in bold (P1.0
and P3.0) embody the ideas described in section 2 and section 3 respectively.
The other modules concern aspects not covered in this paper.
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Figure 19: Architecture of Modest

The general workflow of Modest is as follows: The system specifica-
tions(D1), the API specification in this case, and the baseline system(D8) are
used to generate test data(P5.0) and also to generate state space graph(P1.0)
of the system. Baseline test data(D3) comprises of test cases that ensure
complete coverage of the system as per some coverage criterion. The base-
line system can be assumed to have been completely tested. The activities
till this point can be viewed as preprocessing steps, in the sense that they
happen only once, and not everytime regression test is carried out. At the
beginning of regression testing, test data selection happens in module P2.0,
which may involve both automated and manual processes. This gives us
the final test specifications(D5), which is a combination of the reduced test
data(in this case, a reduced set of function calls) and certain additional con-
straints as to how the testing should be carried out. This, along with the
state space graph(D2), is used by the module P3.0 to select a test sequence.
The generated test sequence(D6) is used to execute the regression test(P4.0)
to give the test output(DT).

5 Experimental Evaluation

Random testing [6] has been considered a practical method of testing, and
various variants of it [7] have been devised and successfully used. In the
scenario of our interest, i.e. specification based regression testing of API
programs, we found a variant of random testing, called legal random call
(LRC) [10] approach, appropriate for comparative evaluation. We evaluated
the approach described in this paper, i.e. explicit state-space enumeration
(ESSE) method, against LRC.
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In LRC approach, the central idea is to try to achieve coverage by picking
a function call randomly from the list of all function calls. If the precondition
of this function is found satisfied in the present state, it is called. Else,
another function call is selected in a similar way. Of course, the function
calls figuring in the test specification will be given priority in interest of
coverage. The process continues until either required coverage is achieved,
or the prespecified maximum testing time (or test sequence length or some
other metric of testing cost) is exceeded.

We present here an overview of our priliminary results.

5.1 Experiment Design

Algorithm 4 shows the general workflow of regression testing. In case of
ESSE, the preprocessing level 1 consists of creation of the state space graph.
This is a one-time activity. Preprocessing level 2 has to be repeated every
time there is an arrival of a new test specification. In ESSE, it comprises
of employing either or both of algorithm 2 or algorithm 3 to compute test-
sequence. Similarly, for LRC approach, preprocessing level 1 and preprocess-
ing level 2 are apparently empty procedures.

Initial intuition says that the while ESSE approach would pay a heavy
computing price in preprocessing level 1 step, it would save computation
during the actual regression testing. Our experiments are designed to validate
this intuition.

We subjected two example API programs — API1 and API2 — to test se-
quence computation both by ESSE and LRC. For each of API1 and API2
a certain number of test specification files were generated automatically, by
random selection of function calls (also referred to as test-cases), with the
names, testspec.APIi.n.j.dat Here, iiseither 1 or 2; n € {50, 100, 150, 200, 250}
denoting the number of function-calls specified in that specification file. Five
test specification files corresponding to a given value of n are created, and
are numbered with j € {1,2,3,4,5}.

On running ESSE on any such file, the resulting output was stored in a
corresponding file named
testspec.APIi.n.j.dat.ESSE.out.

LRC was run on each of the test specification files, with various values of
coverage levels required. FEach run of LRC gave an output file named
testspec.APIi.n.j.dat.LRC.k.dat, where k is the coverage required of
that run. Hence, for a test specification 7" containing n test-cases, a cover-
age value of k% would generate an output that would contain an execution

sequence containing at least i function calls out of T' or the maximum
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Figure 21: Performance of LRC for various coverage levels.

prespecified test sequence length, which we had set to 200,000 for our exper-
iments.

5.2 Results

Both pathFinderl (algorithm 2) and pathFinder2 (algorithm 3) yield test se-
quences nearly linear in length with respect to the test specification size as
seen in figure 20. The figure also shows that their performance is compa-
rable, with pathFinder2 giving slightly shorter output test sequences than
what pathFinderl gives, for test specifications of larger sizes. However, this
comparison carries minor weightage, because pathFinderl and pathFinder2
serve for two different types of test requirement specifications, as explained
in section 3.

Figure 21 summarises the performance of LRC method with API2. It
shows the growth of the logarithm (base-10) of the generated test sequences
w.r.t. the coverage requirement. Each curve corresponds to the average trend
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for test specifications of a particular size. The near-linear growth in the chart
is indicative of an approximately exponential relation between the coverage
and the generated test sequence length.

We point out here that there are hidden costs associated with carrying out
LRC testing. The sample space of function calls has to be created a priori for
their random selection. This process is actually exponential in computational
complexity in the number of state-variables and function arguments. This
can be regarded as the preprocessing step 1 (ref algorithm 4) for LRC, and
compares in cost with the state-state graph building of ESSE.

More elaborate experimental evaluations are underway. We are enchanc-
ing the software infrastructure of Modest to be able to give larger and realistic
API programs and specifications to it as inputs. We strongly believe that
more elaborate experimentation will only reaffirm the trends visible in our
initial experiments.

6 Related Work

[2] describes Korat, a automatic test data generator for Java programs with
interface specifications written in JML. This work uses the concept of state
space finitisation by putting a limit on the size of the data structure to be
tested. The interface specification language used in [2] is JML [§]. [3]
describes the use of JML and JUnit in automatic generation of unit test
cases for Java programs.

[6] is one of the early papers which evaluates random testing as a practical
method of software testing. [7] is a recent work integrating the concept of
random testing with test vector generation using a theorem prover.

Reverse engineering a (finite state) model of the the system under test
in the absense of an explicit formal model is one of the intuitive things
to do, and has been discussed widely in various flavours. [1] discusses a
machine-learning based method of extracting a finite state model from an
implementation. [9] gives a theoretical treatment of testing viewed as a state
identification and machine identification problem. Both the above speak
about automatically inferring a finite state model by observing the behaviour
of the system. [5] describes the closing of an open reactive system, i.e. filling
up parts of the SUT which are missing as they are supposed to be calls to
an external library.

Model checking [4] [8] is used successfully both in verification and also
in software testing. Model checking has been used for regression testing in
[11]. The finite state-space graph of ESSE is amenable to test sequence com-
putation by couterexamples generated by a model checker. This integration
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is in our short-term agenda.

7 Conclusions and Future Work

We have presented a technique for specification based regression testing of
application programming interfaces. One of the chief theoretical contribu-
tions of this work is an algorithm, called GraphMaker, that reverse engineers
a finite state model of the API system by using a formal API specification
and a baseline version of the API. The other important contribution is the
demonstration of the use of such a finite state model to the problem of test
sequence computation. We have presented two ways of representing regres-
sion test specification, and have presented an algorithm for computing good
test sequences for each of them. It is easy to see that depending on the
test requirements, many more languages could be used to express the regres-
sion testing specification. A rich set of algorithms and tools can be devised
or adapted for test sequence computation for each of these languages. We
have implemented these two ideas in a regression test automation tool called
Modest.

On drawing performance comparisons with legal random call approach,
explicit state space enumeration approach seems to be doing promisingly
better. The ESSE approach is able to come up with efficient test sequences
within very reasonable computation. LRC approach, on the other hand,
simply gives up if coverage levels higher than approximately 50% is expected
of it. In ESSE, the initial one time computation price paid in creating the
state-space graph of the system is more than compensated when compared
with the performance of LRC, which seems to worsen much more rapidly
than that of ESSE with rising program size, and coverage requirement of the
testing.

We point out following directions in which we will focus our future efforts.

1. We understand that GraphMaker algorithm doesnot scale well to sys-
tems of large dimensions due to state space explosion. We intend to
handle this problem using methods already in use in areas of verifica-
tion and devised by us.

2. We intend to explore more ways of expressing regression testing re-
quirements; e.g. LTL, regular expressions and predicate logic. This
idea will result in the integration of a richer set of languages for ex-
pressing regression test specification, and algorithms corresponding to
these languages for computing good test sequences.
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3. Subsequently, we intend to focus on other modules of the test automa-
tion system shown in figure 19 to make Modest a more complete test
automation tool.

The API specification language we have designed is a prototype language
we has sufficed as an aid to our main work. The theoretical limits to how
much more powerful the API specification language could be made depends
on our ability to generate the GraphMaker code from it, and computability
of the expressions just generated. We also intend to explore these limits. We
also intend to try plugging into Modest a standard modelling language like
JML or Larch instead of our API specification language.
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A  The Demo

A.1 Introduction

Right at this moment, we are ready just with the demo version, which is
expected to give a flavour of the working of Modest. To go through the
demo, please go to the demo directory.

$ cd demo
Next just observe the directory structure.
data/
input/
spec/
apil/
apil.spec
PUT. cpp
PUT.h
api2/
api2.spec
PUT. cpp
PUT.h
testspec/

testspec.apil.100.1.dat
Modest takes as input two files:

1. A correctly written API specification
2. A correctly written test specification

The data/input/spec/apil/ and data/input/spec/api2/ directories
contain example APIs and their specification in apil.spec and api2.spec
respectively. An example test specification file by the name testspec.apil.100.1.dat
is placed in the data/input/testspec/ directory. Please note that this file
is a valid specification only for apil.

To get a hint as to the command line options available with Modest, you
could do: $./modest -h

We reproduce the output of the same here:
Usage: ./modest [options]
-—esse : executes the Explicit state space enumeration
—--1lrc : executes the legal random call (LRC) testing
-s filename : inputs ’filename’ as the API specification
file
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-t filename : inputs ’filename’ as the Test specification
file

-c confidence : sets confidence-requirement of LRC to
’confidence’ percent (applicable only for LRC)

-h : prints this help

A.2 Executing the demo

Try executing Modest by typing the following command.

$./modest --esse -s data/input/spec/apil/apil.spec -t \
data/input/testspec/testspec.apil.100.1.dat

Which basically takes as API specification,
data/input/spec/apil/apil.spec, and as test specification,
data/input/testspec/testspec.apil.100.1.dat.

The following things happen on running Modest.

1. GraphMaker code is generated in data/input/spec/apil/.
2. GraphMaker is built.

3. GraphMaker is executed. The output is the finite state space graph file
named data/input/spec/apil/graph.out.

4. graph.out is copied into data/.
5. pathFinder 1 runs and the resulting output test sequence is displayed.
6. pathFinder 2 runs and the resulting output test sequence is displayed.

The first observation that can be made about the output is the length of
the test sequences output by pathFinder 1 and pathFinder 2. We observe here
in this case that pathFinder 2 gives a test sequence of a perceptibly smaller
length. The direct implication of this is that when the two test sequences
are actually executed during testing, the output of pathFinder 2 will finish
executing earlier owing to its smaller length.

A.3 Generating Additional Test Cases

We have provided the test case file
data/input/testspec/testspec.apil.100.1.dat. It was generated by
randomly picking up 100 edges from a state space graph of apil. This is
done by a small convenience utility called tc (standing for ‘test cases’).
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You may wish to generate more test cases by random selection for addi-
tional experiments. tc can be used for this purpose. Here are the typical
steps to generate test cases:

1. $ cd tc
2. $ make (in case tc is not already built)

3. $ ./tc -h will display the command line options which we reproduce
here.
Usage: ./tc [options]

-1 filename : input file name

-p filename : generates test case files of the
name '"testcase.filename..."

-d directory : generates the output testcases in
the given ’directory’

-n number : outputs ’number’ number of test case
files

-t number : each output test spec file will have so
many test cases

-h : prints this help
The filename provided after the —-i options must be present. The
directory provided after the —d option must be an existent directory.

4. For example, command :
./tc -i data/graph.out -d data -n 2 -t 100 -p api30
will cause tc to look for the input graph file graph.out in data di-
rectory. The output test specification file will also be dumped into the
data directory (due to the -d option). The number of test specification
files generated will be 2 (due to the -n option). Each test specification
file will contain 100 test cases (due to the -t option). The two test
specification files generated will be named as
testspec.api30.100.1.dat and
testspec.api30.100.2.dat.

A.4 Legal Random Calls

Modest currently simulates — and doesn’t really implement — the legal random
call approach for experimental purpose. Although a full-fledged implemen-
tation is in the agenda, a simulation sufficed for carrying out meaningful
experiments. Here’s a simple explanation of the legal random call approach:
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In LRC approach, the central idea is to try to achieve coverage
by picking a function call randomly from the list of all function
calls. If the precondition of this function is found satisfied in the
present state, it is called. Else, another function call is selected
in a similar way. Of course, the function calls figuring in the
test specification will be given priority in the interest of coverage.
The process continues until either required coverage is achieved,
or the prespecified maximum testing time (or test sequence length
or some other metric of testing cost) is exceeded.

The simulation uses a simple ‘cheating’ here. Instead of the real SUT,
the Modest LRC module simply uses the state-space graph of it created by
a previous run of ESSE, perhaps. And instead of actually calling a function,
the LRC merely traverses the corresponding edge. The selection of a function
call for calling is random — in the same way as it would be in case of an actual
execution. Therefore, the test sequence thus generated would be exactly the
same as in case of a real run.

The LRC can be run in the following manner:
$ ./modest --lrc -t data/input/testspec/testspec.apil.100.1.dat \

-c 50
The above command will result in a run of the LRC (due to the --1rc op-
tion) to be run on the test specification file
data/input/testspec/testspec.apil.100.1.dat (due to the -t option).
The run will try to achieve a 50% coverage of the test specification (due to
the —c option).
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Algorithm 1 GraphMaker-DFS

GRAPHMAKER-DF'S ()

1 SetrootastheLastFork;

2 while LastFork # null do

3 PrevFork «— null

4 PROCESSNODE(ro0t)

5 endwhile

PROCESSNODE (NodeN)

1 if N = LastFork then

2 HasSeenLastFork «— true

3  endif

4 if HasSeenLastFork = false then

5 if NUnMarkedChildList.Size > 2 then
6 mark N as PrevFork

7 endif

8 C «— N.MarkedChildList.Last

9 PROCESSNODE(C')

10 else

11 if N = LastFork then

12 if UnMarkedChildList.Size = 1 then
13 Shift LastFork mark to the node

14 currently marked PrevFork

15 break

16 endif

17 else

18 if UnMarkedChildList.Size = 0 then
19 return

20 else if UnMarkedChildList.Size = 1 then
21 do nothing

22 else if UnMarkedChildList.Size = anythingelse then
23 Mark the node currently marked as
24 LastFork as PrevFork

25 Mark N as LastFork

26 endif

27 endif

28 C «— N.UnMarkedChildList.First

29 MARK(NN)

30 PROCESSNODE(C)
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Algorithm 2 pathFinderl

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

for i —0... TS.Ss1ZzZE — 1 do

if 1 =0 then

Source <+ G.ROOT.NUMBER
else

Source < TS[i — 1].DESTINATION
endif

Destination «— TS[i].SOURCE

Sourcelnder «— G.GETINDEX(Source)
DestinationInder — G.GETINDEX (Destination}
NextPath < All Paths|Sourcelndex][DestinationIndex)
T <« T + NextPath

TS «— TS\ {TS[0]}

endfor
T «— T + TS[TS.S1ZE — 1|.DESTINATION
return T

Algorithm 3 pathFinder2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

while TS ISEMPTY = false do

if i =0 then
Source +— G.ROOT.NUMBER
else

Source «+ E.DESTINATION
where F is the edge whose SOURCE is the last
member of T
endif
Destination < E'.SOURCE
where E’ is the edge in T'S whose distance is the shortest
from Source
Sourcelnder «+— G.GETINDEX(Source)
DestinationIndex — G.GETINDEX (Destination}
NexztPath < All Paths|Sourcelndex][DestinationIndex)
T «— T + NextPath
TS — TS\ {E'}

endwhile

T—T+d

where d is the DESTINATION of the last edge removed
from TS

21 return T
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Algorithm 4 Regression-Testing

do preprocessing level 1
while true do
do preprocessing level 2
while regression test specifications don’t change do
run regression test
endwhile
endwhile
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