
A Combinatorial Family of LDPC Codes

K. Murali Krishnan L. Sunil Chandran Priti Shankar

IISc-CSA-TR-2006-4

http://archive.csa.iisc.ernet.in/TR/2006/4/

Computer Science and Automation

Indian Institute of Science, India

May 2006

A Combinatorial Family of LDPC Codes

K. Murali Krishnan L. Sunil Chandran Priti Shankar

Abstract

An elementary combinatorial construction for a family of Low Density Parity
Check (LDPC) codes is presented. The construction allows flexibility in the choice
of design parameters like rate, average degree, girth and block length of the code.
The construction complexity of codes of the family grows only quadratically with
the block length.

1 Introduction

The fact that iterative decoding on LDPC codes performs well when the underlying
Tanner graph [5] has large girth was observed right from the time of their inception [6].
Recent revival of interest in LDPC codes owing to their near capacity performance on
various channel models has resulted in considerable research in the construction of LDPC
code families of high rate and large girth. These constructions fall roughly into random
codes (for example see [1, 11]), codes based projective and combinatorial geometries (see
[12, 13, 14] and references therein), circulant matrices [2, 3, 9], algebraic constructions
(see [16, 8]), expander codes [15] etc. These codes perform very well and most are fairly
easy to implement although the mathematical machinery required to understand them is
often complex. However, the construction complexity of the codes are often large albeit
polynomial.

In this note, we present an elementary graph theoretic construction for an LDPC code
family. The construction gives flexibility in fixing the parameters of the code and is an
adaptation of a large girth graph construction known in the graph theory literature [7]
for the problem of code design. We prove some very general bounds on code parameters
achieved by the construction. The complexity of the construction grows quadratically
with the block length of the code. The construction here is similar in spirit to the graph
construction in [17] discovered independently. The theoretical advantage of the proposed
method is that the lower bound on the girth of the resultant graph is independent of
the particular run of the algorithm whereas, the bound in [17] depends on the parameter
dc — the maximum degree of a right vertex in the graph, which does not seem to be
explicitly bounded although the parameter achieves good values in practice.

2 The Code Construction

Given a bipartite graph G = (L, R, E ⊆ L × R), |L| = n, |R| = m, the m × n parity
check matrix H(G) = [hi,j] defined by hi,j = 1 if and only if (j, i) ∈ E specifies a binary

1

linear code C(G). We say G is the Tanner graph for C(G). C(G) is an LDPC code if
the maximum degree of any vertex in G is bounded by a constant. The length of the
shortest cycle in G is called the girth of G denoted by g(G). In the following, we describe
the construction of a bipartite Tanner graph and give bounds on the parameters of the
code defined by the graph.

Let m, n, p, q and d be positive integers with p < q, np = mq and let d < min{(m +
4p + 1)/(5p − 1), (n + 4q + 1)/(5q − 1)} be a fixed constant. We construct a bipartite
graph G = (L, R, E) as follows. Initially L = {1, 2, ..., n}, R = {1, 2, ..., m} and E = ∅.
We denote by deg(x) the degree of a vertex x ∈ L∪R. Define weighted degree of a node,
w(x) = q.deg(x) for x ∈ L and w(x) = p.deg(x) for x ∈ R. Denote by δ(x, y) the length
of the shortest path from x to y in G. Clearly deg(x) = w(x) = 0 and δ(x, y) = ∞ for all
x, y ∈ L ∪ R initially. The algorithm operates in d phases. During each phase np edges
are added to G. Each edge is formed by connecting a vertex in G of minimum weighted
degree to the farthest possible node in G preserving bipartition. The steps are formalized
below:

Repeat steps below for each phase i, i = 1 to i = d

• Repeat until np edges are added

• 1. Select x ∈ L ∪ R such that w(x) ≤ w(y) for all y ∈ L ∪ R.

2. If x ∈ L, Let S = {z ∈ R : δ(x, z) > 1 and deg(z) < qi + q}. Select a y ∈ S
such that δ(x, y) ≥ δ(x, z) for all z ∈ S.

3. If x ∈ R, Let S = {z ∈ L : δ(x, z) > 1 and deg(z) < pi + p}. Select a y ∈ S
such that δ(x, y) ≥ δ(x, z) for all z ∈ S.

4. Add (x, y) to E.

Theorem 2.1 C(G) is an LDPC code with rate R ≥ 1 − p/q.

Proof Since H(G) is an m×n matrix, R ≥ 1−m/n. Since m/n = p/q by assumption,
the claim on rate follows. By construction, the left and right degrees of any node in G is
bounded by pd + p and qd + q, and hence the graph is low density.

The following statement proven by induction establishes the invariants maintained by
the algorithm.

Lemma 2.2 After phase i, 1 ≤ i ≤ d, pi − p ≤ deg(x) ≤ pi + p for each x ∈ L and
qi − q ≤ deg(y) ≤ qi + q for each y ∈ R.

Proof Initially the hypothesis holds. Assume the statement true for some i, 0 ≤ i < d
and consider the sequence of edges added during phase i + 1. Let ej, −p ≤ j ≤ p and
e′k, −q ≤ k ≤ q denote the number of vertices of degrees pi + j and qi + k in L and R
respectively after phase i. By induction hypothesis

p∑

j=−p

ej = n (1)

2

Since each phase adds np edges to G, the sum of degrees of all vertices in L must be inp
after phase i. This gives:

p∑

j=−p

(ip + j)ej = inp (2)

substitution for n using (1) yields:

1∑

j=−p

jej =

p∑

j=1

jej (3)

Also,

p∑

j=−p

jej ≤

p∑

j=−p

pej ≤ pn (4)

where the last inequality follows from (1). Using (3) we get:

1∑

j=−p

jej =

p∑

j=1

jej ≤ np/2 (5)

Similarly,

1∑

k=−q

ke′k =

q∑

k=1

ke′k ≤ mq/2 (6)

The upper bound on the degree of a vertex in phase i + 1 is explicitly guaranteed by the
algorithm. Hence to show that the induction hypothesis will hold after phase i + 1, it
suffices to show that every vertex in L has degree at least ip and every vertex in R has
degree at least iq after the algorithm has completed phase i + 1.

To satisfy the above condition, during phase i+1, the algorithm is required to increase
the degrees of vertices in L by

∑
1

j=−p
jej which amounts to at most np/2 (by (5)) and

degree of vertices in R by
∑

1

k=−q ke′k which amounts to at most mq/2 (by (6)). Since
np = np/2 + mq/2 edges are added in phase i + 1, the number of edges added in phase
i + 1 is sufficient to satisfy the induction hypothesis. Therefore, it suffices to show that
the edges are always added to the deficient vertices.

Since the algorithm adds an edge to a vertex of minimum weighted degree, the algo-
rithm will pick vertices in L and R with degree less than ip and iq respectively for adding
edges before considering vertices of higher degrees. Since the number edges added to G
during phase i+1 is sufficient to increase the degrees of all vertices in L and R to at least
ip and iq respectively, it follows that when the algorithm successfully completes phase
i+1, every vertex in L and R must have degree at least ip and iq respectively as required
by the induction hypothesis.

However it remains to be shown that the algorithm will indeed complete phase i + 1
successfully. The algorithm may fail to complete phase i + 1 if at some stage the set S
constructed by the algorithm is empty. We must also prove that the degree of the vertex
of minimum weighted degree does not exceed the degree bound. The following claim rules
out such cases:

3

Claim 2.3 During phase i+1, suppose x ∈ L (respectively x ∈ R) satisfies w(x) ≤ w(y)
for all y ∈ L∪R, then deg(x) < (i + 1)p (respectively deg(x) < (i + 1)q) and there exists
a vertex y ∈ R (respectively y ∈ L) that satisfies δ(x, y) > 1 and deg(y) < q(i + 1) + q
(respectively deg(y) < p(i + 1) + p).

Proof Assume the contrary. Let x ∈ L. Then every non-neighbour of x has degree
q(i + 1) + q. Since w(x) ≤ w(y) for all y ∈ L, x must have minimum degree in L. As
the average left degree of G after phase i + 1 is at most (i + 1)p, deg(x) ≤ (i + 1)p − 1
(establishing one part of the claim, the case when x ∈ R is handled similarly). Thus x
must have at least m − (i + 1)p + 1 non-neighbours. By induction hypothesis, deg(x) ≥
ip − p and each neighbour of x has degree at least iq − q. Hence, the total degrees of all
nodes in R adds up to:

(m − (i + 1)p + 1)((i + 1)q + q) + (ip − p)(iq − q)

≤ m(i + 1)q (7)

where, the right side of the inequality follows from the fact that the average degree of
nodes in R after phase i + 1 must be (i + 1)q. On simplification this yields:

i + 1 ≥ (m + 4p + 1)/(5p − 1) (8)

A contradiction as i + 1 ≤ d < (m + 4p + 1)/(5p − 1) by assumption. The case when
x ∈ R is proved similarly.

This completes the proof of the lemma.

Theorem 2.4 g(G) ≥ 2 logst min{m(st − 1)/2(s + 1), n(st − 1)/2(t + 1)} = Ω(logn),
where s = pd + p − 1, t = qd + q − 1.

Proof Assume that a smallest length cycle in G of length g(G) = 2r was formed during
phase i of the algorithm. Assume x ∈ L had the least weighted degree and was connected
to y ∈ R causing the cycle. Let T = {z ∈ R : δ(x, z) ≥ g}. x had to be connected
to y and not to any node in T because deg(z) = qi + q for all z ∈ T . i Note that this
implies that |T | ≤ e′q during phase i + 1. But qe′q ≤

∑q

k=1
ke′k ≤ mq/2 by (6). Hence

|T | ≤ e′q ≤ m/2. This yields the lower bound |R − T | ≥ m/2. But all nodes in R − T
must be at a distance at most g − 1 = 2r − 1 from x. Since the maximum left and right
degrees of a node in G are bounded by s and t respectively, the number of such nodes
is bounded above by (s + 1) + (s + 1)(st) + ... + (s + 1)(st)r−1 ≤ (s + 1)(st)r/(st − 1).
Combining the lower and upper bounds,we get:

m/2 ≤ (s + 1)(st)r/(st − 1). (9)

A similar argument for the case x ∈ R and y ∈ L yields the inequality:

n/2 ≤ (t + 1)(st)r/(st − 1). (10)

The statement of the theorem follows as one of (9),(10) must hold.

4

3 Complexity

Assuming adjacency list representation for the graph, the selection of a farthest non-
neighbour satisfying the degree bound necessary during each edge addition may be per-
formed by a simple breadth first search in O(n) time. Since the total number of edge
additions is linear when d is fixed constant, the overall construction complexity is O(n2).

References

[1] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson and R. Urbanke, ”Finite length
analysis of low-density parity-check codes on the binary erasure channel”, IEEE
Trans. Inf. Theory., Vol. 48, no. 6, pp. 1570-1579, June 2002.

[2] T. Tian, C. Jones, J. D. Villasenor, R. D. Wesel, ”Construction of irregular LDPC
codes with low error floors”, IEEE Intl. Conf. Comm., 2003, pp. 3125-3129.

[3] A. Ramamoorthy, R. Wesel, ”Construction of short block length irregular LDPC
codes”, ICC 2004, Paris, June 2004.

[4] A. Orlitsky, R. Urbanke, K. Viswanathan, J. Shang, ”Stopping sets and girth of
Tanner graphs”, ISIT 2002, June 2002.

[5] M. Tanner, ”A recursive approach to low-complexity codes”, IEEE Trans. Info.
Theory, Vol. 27, pp. 533-547, Sept 1981.

[6] R. G. Gallager, ”Low density parity-check codes”, MIT Press, 1963.

[7] L. Sunil Chandran, ”A High girth graph construction”, SIAM J. Discrete Math.,
Vol. 16, no. 3, pp. 366-370, 2003.

[8] R. M. Tanner, D. Sridhara, T. Fuja, ”A class of group structured LDPC codes”,
Proc. ICSTA 2001, Ambleside, England, 2001.

[9] R. M. Tanner, D. Sridhara, A. Sridharan, T. Fuja, D. J. Costello Jr., ”LDPC block
and convoluational codes based on circulant matrices”, IEEE Trans. Info. Theory,
Vol. 50, no.12, 2004. .

[10] C. Kelley, D. Sridhara, ”Pseudocodewords of Tanner Graphs”, arXiv: CS.
IT/0504013, April 2005.

[11] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, ”Improved low
density parity check codes using irregular graphs and belief propagation”, IEEE
Trans. Info. Theory, Vol 47, pp.585-588, Feb. 2001.

[12] Y. Kou, S. Lin, M. Fossorier, ”Low density parity check codes based on finite geome-
tries: A rediscovery and new results”, IEEE Trans. Info. Theory, Vol 47, pp.2711-
2736, Nov. 2001.

[13] B. Vasic, O. Milenkovic, ”Combinatorial constructions of low density parity check
codes for iterative decoding” IEEE Trans. Info. Theory, Vol 50, No. 6, June 2001.

5

[14] H. Tang, J. Xu, Y. Mou, S. Lin, K. Abdel-Ghaffar, ”On algebraic construction of
Gallager and circulant low-density parity-check codes”, IEEE. Trans. Info. Theory,
Vol. 50, No. 6, June 2004.

[15] M. Sipser, D. A. Spielman, ”Expander Codes”, IEEE. Trans. Info. Theory, Vol. 42,
pp.1710-1722, Nov, 1996.

[16] J. Rosenthal, P. O. Vontobel, ”constructions of regular and irregular LDPC codes
using Ramanujan graphs and ideas from Margulis”, Proc. ISIT 2001, p 4. June 2001.

[17] Xiao-Yu Hu, ”Regular and irregular progressive edge-growth Tanner graphs”, IEEE.
Trans. Info. Theory, vol. 51, no. 1, Jan. 2005, pp. 386-398.

6

