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Abstract

We compare the expressiveness of variants of Metric Temporal
Logic (MTL) obtained by adding the past operators ‘S’ and ‘Sy’.
We consider these variants under the “pointwise” and “continuous”
interpretations over both finite and infinite models. Among other re-
sults, we show that for each of these variants the continuous version is
strictly more expressive than the pointwise version. We also prove a
counter-freeness result for MTL which helps to carry over some results
from [3] for the case of infinite models to the case of finite models.

1 Introduction

The timed temporal logic Metric Temporal Logic (MTL) [6] has received
much attention in the literature on the verification of real-time systems. It
is interpreted over (finite or infinite) timed behaviours and extends the until
operator of classical temporal logic with an interval which specifies the time
distance within which the formula must be satisfied. Over dense time the
logic has traditionally been interpreted in either of two ways which have
come to be known as the “pointwise” and the “continuous” semantics. In
the pointwise version temporal assertions are interpreted only at time points
where an “action” or “event” happens in the observed timed behaviour of a
system, whereas in the continuous version one is allowed to assert formulas at
arbitrary time points between events as well. For instance consider a timed
word comprising two events: an a which happens at time 1 and a b which
occurs at time 3. Then the MTL formula $py 110 (a “boccurs at a distance of 1
time unit”) is not true at any point in this model in the pointwise semantics,
since there is no action point from which the action b happens at a distance
of 1 time unit. However in the continuous semantics the formula is true at
the time instant 2 in the model since at this point the event b occurs at a
time distance of 1.



There are many results in the literature regarding the decidability of
these logics and the the reader is referred to [2, 1, 8, 9] for more details.
In this paper we are more interested in the expressiveness of the variants
of MTL obtained by adding the past operators S (“since”) and S; (interval
constrained “since”), under the pointwise and continuous interpretations,
for both finite and infinite models. We will refer to these logics as MTLg
and MTLg, respectively, and add the superscripts pw and c to denote the
pointwise and continuous versions of the logics respectively.

It is easy to see that for each of these variants the continuous version is
at least as expressive as the pointwise version, as one can characterize the
action points in the continuous semantics, and hence mimic the pointwise
interpretation. There have also been some strict containment results. In [3],
it is shown that the language Lg,, which consists of timed words in which
there are two occurrences of b’s in the interval (0,2), is not expressible by
MTL in the pointwise semantics but is expressible by MTL in the continuous
semantics, and also by MTLg in the pointwise semantics. It is also shown that
the language L, o, Which consists of timed words in which the last symbol
in the interval (0,1) is an a, is not expressible by MTL in the continuous
semantics but is expressible by MTLg in the continuous semantics. However
these results hold for the case of infinite words and do not extend readily
to the case of finite words. The proofs exploit the fact that the models are
infinite by using the property that the futures of two distinct points in the
models are the same (which is never true for any finite model).

In [4], it is shown that MTL in the continuous semantics is strictly more
expressive than MTL in the pointwise semantics for the case of finite words.
This is done by showing that the language L,; (for “no insertions”) over the
alphabet {a,b}, consisting of timed words in which for every two consecutive
a’s the time period between them translated by one time unit does not contain
any events, is expressible in the continuous semantics, but its expressibility
in the pointwise semantics would render the logic undecidable, contradicting
the decidability result in [8].

The diagram below shows the known relative expressiveness results. The
solid arrows denote “strict containment”, the dashed arrows represent “con-
tainment”, the dashed line says that “relative expressiveness in not known”
and no arrow or line denotes “incomparable”.
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In this paper we first show a way of carrying over the results of [3] to the
case of finite words by proving a kind of “counter-freeness” property of MTL.
We show that for a given MTL formula ¢, there cannot exist finite timed
words 1, T and v, such that for infinitely many 4’s, u7v is a model of ¢, and
for infinitely many #’s, u7’v is not a model of ¢. This is true for the pointwise
semantics and we show a similar result for the continuous semantics which
takes into account the “granularity” of ¢. These results help us in extending
the results of [3] to finite models.

Next we show that each of the continuous versions of the logic is strictly
more expressive than its pointwise counterpart. We do so by showing that the
language Lgi,s, which consists of timed words which contain two consecutive
a’s such that the time period between them when translated by one time
unit contains two a’s, is not expressible by MTLg, (and hence by MTLg and
MTL) in the pointwise semantics, but is expressible by MTL (and hence by
MTLg and MTLg,) in the continuous semantics.

Finally we show that the language L., (for “exact match”), which con-
sists of timed words such that for every a in the interval (0,1) there is an
a in the interval (1,2) at distance 1 from it, and vice versa, is expressible
by MTLg, in the pointwise semantics but not by MTLg in the pointwise
semantics. This result holds for both finite and infinite words.

The picture below summarizes the relative expressiveness of the various
version of MTL after the work in this paper.
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We note that it is still open whether MTLY, is strictly more expressive
than MTL¢ and whether MTL?I” is contained in or incomparable with MTLS.

2 Preliminaries

We begin with some preliminary definitions. As usual, A* and A“ will denote
the set of finite words and the set of infinite words over an alphabet A,
respectively. For a finite word w = a; - - - a,, we use |w| to denote the length
of w (in this case n). Given finite words u and v, we denote the concatenation
of u followed by v as u- v, or just uv. We use u’ to denote the concatenation
of u with itself ¢ times, and u* to denote the infinite comprising repeated
concatenations of u. We extend these notations to subsets of A* in the
standard way.

The set of non-negative and positive real numbers will be denoted by R
and R, respectively, the set of positive rational numbers by Q.(, and the
set of non-negative integers by N.

We now define finite and infinite timed words which are sequences of
action and time pairs. An infinite timed word « over an alphabet ¥ is an
element of (¥ x Ry¢)“ of the form (ay,%1)(ag,t2) - - - satisfying:

e (Strict monotonicity) t; < to < ---.
e (Progressiveness) For every ¢ € Ry, there exists ¢ € N such that t; > ¢.

Wherever convenient we will also denote the timed word « above as a se-
quence of delay and action pairs (dy, a1)(da,as) -+, where for each i, d; =
t; — t;_1. Here and elsewhere we use the convention that ¢y denotes the time
point 0.

A finite timed word over ¥ is an element of (X x Ry¢)* which satisfies
the strict monotonicity condition above. Given o = (ay,t1)(ag, ts) - - - (an, tn),
we use time(o) to denote the time of the last action, namely t,,. The delay
representation for the above finite timed word o is (dy, a1) - - - (dy, a,,) where
for each i, d; = t; — t;_1. Given finite timed words o and p, the delay
representation for the concatenation of o followed by p is the concatenation
of the delay representations of o and p. We will use T%* for the set of all
finite timed words over Y, and TX“ for the set of all infinite timed words
over X.

We now give the syntax and semantics of the two versions of the logic
MTLg,. Let us fix an alphabet X for the rest of this section. The formulas
of MTLg, over the alphabet ¥ are built up from symbols in ¥ by boolean
connectives and time-constrained versions of the temporal logic operators U
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(“until”) and S (“since”). The formulas of MTLg, over an alphabet ¥ are
inductively defined as follows:

o =al|=¢|(eV )| (eUrp)|(eSre),

where a € Y and [ is an interval with end points which are rational or oco.

The models for both the pointwise and continuous interpretations will be
timed words over X. With the aim of having a common syntax for the point-
wise and continuous versions, we use “until” and “since” operators which are
“strict” in their first argument.

We first define the pointwise semantics for MTLg, for finite words. Given
an MTLg, formula ¢, a finite timed word o = (a1, t1)(ag, t2) - - - (an, t,) and
a position ¢ € {0,...,n} denoting the leftmost time point 0 or one of the
action points ¢y, %y, - - ,t,, the satisfaction relation 0,7 =,, ¢ (read “o at
position 7 satisfies ¢ in the pointwise semantics”) is inductively defined as:

0,1 F=py @ iff a; = a.

0,1 F=py TP iff 0,4 fEpw @

0,1 FEpw 01 Vo It 0,1 =py @1 OF 0,1 Fpy ©o.

0,1 =pw p1Urpe  iff 3j:i<j <|o|suchthatt; —¢t; € I, 0,] Fpuw ¥2,
and Vk such that i < k < j, 0,k =pu ¢1.

0,% F=pw 15192 Mff 35 :0 < j <isuchthatt; —t; € I, 0,] Epw ¥2,
and Vk such that j < k <1, 0,k =py ¢1.

The timed language defined by an MTLg, formula ¢ in the pointwise
semantics over finite timed words is given by L (¢) = {0 € TY*| 0,0 £,
¢}. We will use MTLY” to denote the pointwise interpretation of this logic.

We now turn to the continuous semantics. Given an MTLg, formula ¢,
a finite timed word ¢ = (a1,%1)(ag,t2) - - - (an, tn) and a time ¢ € Ryg, such
that 0 < t < time(o), the satisfaction relation o,t =, ¢ (read “o at time t
satisfies ¢ in the continuous semantics”) is inductively defined as follows:

o,tEca iff Jisuchthatt; =tanda; = a.

o,t = iff o,t e e

0-7t):C SDIVQDQ iff Uat ):c (Ploro-at):c V2.

o,t = p1Urpy  iff  Ft'suchthatt < ¢ < time(o), t' —t € I, o,t' = o
and Vt" such that t < t" <1/, 0,t" =, 1.

o,t Eec p1Srpe  iff Ft'suchthat0 <t/ <t t—t' €1, 0,t' = o
and V" such that ¢ <" <t, 0,t" = ¢1.

The timed language defined by an MTLg, formula ¢ in the continuous
semantics over finite timed words is defined as L°(¢) = {0 € TX*|0,0 =,



¢}. We will use MTLg, to denote this continuous interpretation of the MTLsg;,
formulas.

We can similarly define the semantics for infinite timed words. The only
change would be to replace time(o) and |o| by co.

We define the following derived operators which we will make use of in the
sequel. Syntactically, Creis TUrp, Orp is O, 01U ps is p1U,00) P2, O
is Cpo,00)p; O is 7O, S is TS1p, B is 99, 91592 18 91.5)0,00) P25
G 18 Qp,00)p and Elp is ~Omp.

The fragment of MTLg, without the Sy operator will be called MTL. The
fragment of MTLg, obtained by replacing Sy with the derived operator S will
be called MTLg. We denote their pointwise and continuous interpretations
by MTL?" and MTL®, and MTLL" and MTLg respectively. The continuous
versions of the above logics can be seen to be at least as expressive as their
pointwise versions. This is because one can characterize the occurrence of an
action point in a timed word in the continuous semantics using the formula
Dact = vaEE a. We can then force assertions to be interpreted only at these
action points.

3 Ultimate satisfiability of MTL""

In this section we show that that an MTL formula in the pointwise seman-
tics is either ultimately satisfied or ultimately not satisfied over a periodic
sequence of timed words, leading to a “counter-freeness” property of MTL.

We first define the notion of when a formula is ultimately satisfied or
ultimately not satisfied over a sequence of finite timed words. Let (o;) be a
sequence of finite timed words gy, 01,---. Given a j € N and ¢ € MTL, we
say that (o;) at j ultimately satisfies p, denoted (0;), 7 Eus ¢, iff 3k € N :
VE' > k,op,j Epw @ We say that (o;) at j ultimately does not satisfy ¢,
denoted (0;),j =un ¢, iff 3k € N2 VE' > k, 01, ] F=pw —p. We refer to the
least such k in either case above as the stability point of ¢ at j in (o).

We now define a periodic sequence of timed words. A sequence (o;) of
finite timed words is said to be periodic if there exist finite timed words u, 7
and v, where |7| > 0, such that o; = uriv for all i € N.

The following theorem says that a periodic sequence of timed words at a
position j either ultimately satisfies a given MTL formula or ultimately does
not satisfy it. This is not true in general for a non-periodic sequence. For
example, consider the sequence (o;) given by oo = (1,a), o1 = (1,a)(1,b),
oy = (1,a)(1,b)(1,a), etc. Then the formula &(a A =OT), which says that
the last action of the timed word is an a, is neither ultimately satisfied nor
ultimately not satisfied in (o;) at 0.



Theorem 1 Let (0;) be a periodic sequence of finite timed words. Let ¢ be
an MTL formula and let j € N. (0;),7 FEus © 07 {0:), ] Eun -

Proof Since (0;) is periodic, there exist timed words p = (dy,a1) - - - (dy, ),
7= (e1,b1) -+ (€m, b) and v = (f1,¢1) - - - (fa, ¢p), such that o; = pr'v. Let
put? = (ag, to)(ai, t1) - - -. We use induction on the structure of .

Case ¢ = a: If a; = qa, then clearly (o), ] =us @, otherwise (0;), j Fun -

Case ¢ = = If (0y),7 Fus ¥, then (0;),7 Eun ¢. Otherwise, by
induction hypothesis, (0;),j Eun ¥ and hence (0;),j FEus ©-

Case ¢ = 1V ¢: Suppose (0;),] Eus 1 0or (0;),] Fus ¥. Let k be the
maximum of the stability points of n and ¢ at j. For all &' > k, o1, j =puw 1
or for all k" > k,op,j =pw ¥, and hence for all k' > k,op, 7 F=pw 1V 9.
Therefore, (0;),7 Fus 7V ¥. Otherwise, it is not the case that (0;),j Fus 1
and it is not the case that (0;), j Fus ¥. By induction hypothesis, {(0;),j Fun
n and (0;),j Fun Y. So, (0:),] Fus ™ and (0;),j =us . Let k be the
maximum of the stability points of —n and —) above, at j. Then for all
k' > k,or,j Epw —m and for all k' > k,op,j FEpw 1, and hence for all
kK' > k,or,j Epw —m A —1p. Therefore, (0;),j =us —n A =t and hence
(0i),7 Eus 7(n V). So, (i), J Fun 1V .

Case ¢ = nUpy: We consider two cases, one in which there exists j' > j
such that ¢ty —t; € I and (0;),j’ =us ¥ and the other in which the above
condition does not hold.

Suppose there exists j' > j such that ¢t;; —t; € I and (0;), j' =us . Let
js be the smallest such j'.

Now suppose for all k£ such that j < k < js, (0:),k Eus 1. Let ng be
the stability point of n at k for each £ above and n;, that of ¢ at j;. Let n'
be the maximum of all ny’s and n,,. So, for all n” > n', o, j =pw NUIY.
Hence (0;), ] FEus -

Otherwise there exists & such that j < k < j; and (03), k Fun n- Let my
be the stability point of n at k. For each j < k' < js such that ty —; € I,
(0:), k" =un % (because we chose j; to be the smallest). Let ny be the
stability point of each k" above. Take n' to be the maximum of m;, and n;’s.
For all n" > n', o,n, j Fpw nUry. Hence (0;), j FEun ¢-

Now turning to the second case, suppose that for all j* > j such that t; —
t; € 1, it is not the case that (0;),j’ F=us ¥. Then by induction hypothesis,
<Ui>7jl ’:un ¢

Suppose I is bounded. If there is no j' such that t; —¢; € I, then it is
easy to see that (0;),j Eun nUr®. Otherwise there exist finite number of j"’s
which satisfy ¢ —¢; € I and (0;),j' =un ¢ since I is bounded. Let n; be
the stability point of ¢ at each of these n;’s. Take n’ to be the maximum of
all n;’s. Then for all n" > n', oy, j Fpw NUrY. Hence (0:), 5 Eun -
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Suppose [ is unbounded. Let S = {s1,s9, -, S,} be the suffixes of 7
in the order of decreasing length. Thus s; = (e;, b;) - - - (ém, bm). Let W =
{w1, we, -+ ,w,} be the suffixes of v in the order of decreasing length. Let
X =WuU(S-7*-v). (We note that we can arrange the timed words in X in the
increasing order of length such that the difference in lengths of the adjacent
words in this sequence is one and that the succeeding string in the sequence is
a prefix of the present. The sequence is wy,, Wy_1, - , W1, SpV, Sp_1V,*** , S1V,
SpTV, -+ , 81TV, SyT2V, - -+ , 8172V, and so on.)

We now claim that ¢ is satisfied at 1 for only finitely many timed words
from X. Otherwise v is satisfied at 1 for infinitely many timed words from
W US -7 v and hence for infinitely many from s; - 7* - v for some 7. Hence
(0:), L+ 1 Fus @ (I is the length of u) and therefore (0;),l + i+ cm FEus @, m
is the length of 7 and ¢ € N. Since [ is unbounded there exists j' > j such
that ¢ty —t¢; € I and (0),j" F=us ¥. This is a contradiction.

Every j” > j such that t;» —t; € I and j" < |u|, (0:), j" F=un ¥ (by the
assumption of the present case). Let n;» be the stability point of the j"’s
(which are finite in number).

Suppose there is no timed word in X which satisfies ¢ at 1. Let n’ be
the maximum of n;»’s. For all n” > n', o,n, 5 Fpw nUrY. Hence (0:),] Eun
nUry.

Suppose there exists a timed word in X which satisfies ¢ at 1. Since we
proved that they are finite in number, let I’ be the length of the largest such
timed word.

Suppose that there exists a timed word in X whose length is greater than
" and which does not satisfy n at 1. Let the length of one such timed word
be [”. Let n' be a number which is greater than or equal to the maximum
of nj»’s and which satisfies |0,/ > maz(j, ||) + I". Now for all n"” > n/,
OnryJ Fpw MUY since the smallest j' > j where 1 is satisfied is || — I
but before that there is the point |o,#| — I" where 7 is not satisfied. Hence
<0-z'>aj ):un Pp-

Suppose that all timed words in X whose length is greater than [’ satisfy
n at 1. Now if there exists j < k < |u| such that {(0;),k =un 7, then let
n' be such that it is larger than the n;»’s and the stability point of n at &k
and |o,| > |p| 4+ 1'. For all n” > n', o, j Fpw nUr. Hence, (0;), ] Eun -
Otherwise for every j < k < |u|, (0:), k F=us - Take n' to be greater than the
maximum of the stability point of  at k’s and such that |o,/| > j+n; + ',
where n; is such that ¢;,, —t; € I. For all n" > n', o, j =pw nUr¢ and
hence (0;), ] Fus ¢- O

It is well known that linear-time temporal logic (LTL) and counter-free



languages [5, 7] are expressively equivalent. We recall that a counter in a
deterministic finite automaton is a finite sequence of states qpq; - - - ¢, such
that n > 1, gy = ¢, and there exists a non-empty finite word v such that every
g; on reading v reaches ¢;;1 for : = 1,--- ;n — 1. A counter-free language
is a regular language whose minimal DFA does not contain any counters. It
is not difficult to see that the following is an equivalent characterization of
counter-free languages. A regular language L is a counter-free language if
there does not exist finite words u, v and w such that uv*w € L for infinitely
many 4’s and uv'w ¢ L for infinitely many 4’s.

We show a similar result for timed languages defined by MTL formulas.
We call a timed language L counter-free if there does not exist finite timed
words p, 7 and v such that u7riv € L for infinitely many 4’s and ur‘v & L
for infinitely many 4’s. The following theorem follows from the ultimate
satisfiability result for MTL?Y.

Theorem 2 FEvery timed language of finite words definable in MTLPY is
counter-free. a

As an application of the above theorem, we show that the timed language
L cyen_p, which consists of timed words in which the number of b’s is even, is not
in MTL?". Consider the periodic sequence (o;) where p =€, 7 = (1,b) and
v = €. Suppose that ¢ € MTLPY expresses Leyens- If ¢ is ultimately satisfied
at 0 in (o;) then it is satisfied by infinitely many timed words not in Leyen p-
Otherwise ¢ is ultimately not satisfied at 0 in {o;) and hence is not satisfied
by infinitely many timed words in L.ye, » Which is a contradiction. Hence
Leyen_p is not expressible by an MTL formula in the pointwise semantics.

4 Ultimate Satisfiability of MTL®

In this section we show an ultimate satisfiability result for the continuous
semantics analogous to the one in the previous section for pointwise seman-
tics. We show that an MTL® formula with granularity p is either ultimately
satisfied or ultimately not satisfied by a p-periodic sequence of timed words.

We say that an MTL formula ¢ has granularity p where p € Qs if all
the end-points of the intervals in it are either integral multiples of p or oo.
A periodic sequence of timed words (o;) has period p if there exist u, 7 and
v such that time(7) = p and for each i, o; = ur‘v. Note that every periodic
sequence has a unique period.

We now proceed to define the notion of ultimate satisfiability for the
continuous semantics. Given a sequence (o;) of finite timed words, ¢t € R
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and ¢ € MTL, we say that (0;) at t ultimately satisfies ¢ in the continuous
semantics, denoted (o;),t =S, o, iff 35 : V& > j, 0%, t =c . And we say that
(0;) at t ultimately does not satisfy ¢ in the continuous semantics, denoted
<0-i>7t ’:fm ¥, ift 3.7 :Vk > 7,0k, |:c .

In the proof of the ultimate satisfiability for the pointwise case in the
previous section, we extensively use the fact that if a formula is ultimately
satisfied at all points in a bounded interval then there is a point in the periodic
sequence after which all timed words in the sequence satisfy the formula at
all points in the interval. However the same is not true in the continuous
semantics since there are infinitely many time points even in a bounded
interval. Towards tackling this problem, we define a canonical set of time
points in a timed word such that the satisfiability of a formula is invariant
between two consecutive points in the set. So given a finite timed word
o= (a1,t1) -+ (an,t,) and a p € Qsg, we define the set of canonical points in
o with respect to p to be the set containing 0 and {¢|3i,j,c € N: t = t;—cp}.
Since this set is finite, we can arrange the time points in it in increasing order
to get the sequence r = rgry - - - 1, which we call the canonical sequence of o
with respect to p. We mention below some of the properties of » which we
will use later.

Proposition 1 Let o be a finite timed word andp € Qso. Letr =rori-- -1y
be the canonical sequence of o with respect to p. Then

1. o does not contain any action in the interval (r;,ri11).

2. If there does not exist r; such thatt < r; < t', then there does not exist
r; such that t + cp < r; <t'+ cp.

Lemma 1 Let o be a finite timed word, p € Qso and 14 = 071 - T, be
the canonical sequence of o with respect to p. For any ¢ € MTL(p) and for

all t,t" € (ri,ri41), 0, = @ iff 0,1 e @.

T \ \

t t Tt+le t' + le t+7i t' 4T
1

Ty Tr Tpt

Proof Proof by induction on the structure of ¢. For the cases when ¢ is
atomic or boolean combinations of formulas, the proof is straightforward.
Let us consider the case when ¢ = nUj.

Without loss of generality, let us assume ¢t < ¢'. Suppose I is an open
interval, i.e I = (le,ri) where le = ¢p and i = ¢'p or co. o,t =, ¢ iff
Tt <ty:o,ty Eeihty—te IVt <t" <t o,t" =1

10



Case ts € t+INt +1): oty = Pty €t +Tand V" 1 ¢/ < ' <
ts,0,t" E. @ (since t < t').

Case ty € (t+ 1 —t' + I): From proposition 1, there exist [ and !’ such
that r; < t+1le < t; < t'+le < rpand ' =1+ 1. Since o,t; =, 1,
o, t" e forall mp <t < rp. Let t, € (' +le,ry) Nt + 1. o,t), . 9.
Let t, € (t,t + le) N (r,t + le). Since o,t, E. 1, 0,t" E. n for every
t" € (ry,ry). Hence o, = ¥, € ! + I, and V" : ¢! < t" < r,0,t" =01
and V" . < t" < t,,0,t" .. So, 0,1 . @.

In the other direction, o,t" =, ¢ iff 3t < t; : 0,ts = Y, t, —t € I, V" :
t<t"<tsot E=en.

Since 7; < t < t' < r;y1 and there exist ¢, such that ¢ < t, < ;.1 and
0,1y Ec 1, by induction hypothesis o,t" =, n for all r; < t" < r;4;.

Case t; € (t+ 1INt +1): o,ts e ¥,ts € t+ 1 and V" : ! < 1" <
ts,0,t" Ecnand VE" i t < t" <t o,t" =.n. Hence o,t =, ¢.

Case t; € (' + 1 —t+I): Then I is bounded. From proposition 1, there
exist 7 and 7’ such that r, < t+7ri < t, <t +ri <rpand " =r + 1.
Since o,ts . ¥, o,t”" =, ¢ for all r, < t" < r by induction hypothesis.
Let t'. € (r,,t+ri)Nt+ 1. ot = 1. Let t, € (¢',t5) N (rr,ts). Since
o,ty Ec 1, 0,1 = n for every t" € (r,, 7). Hence o,t. =, 1,1, € t + 1, and
VE st <t <ot e, Yt <t < 1oyt e and Vi, < 7 <
th,o,t" =c.n. So, 0,t = p.

Suppose I is a singular interval, i.e, I = [cp,cp] and assume ¢ # 0.
o,t Eepiff It 1 ts =t+cep,o,ts Ec v and V"' 1 t < ' < t5,0,t" = p. From
proposition 1, there exist [ and !’ such that r; < t+c¢p < t' +¢p < rp and
I"=1+1. Since o,t+cp . 9, 0,t' +cp =, ¥. Since there exists ¢, such that
r; < tp < t+cpsuch that o,t, =, 1, 0,t" =, nfor all r; > t” < rp by induction
hypothesis. Hence o,t + ¢p =, ¥, and for all t" : ¢ < t" < r,o0,t" =1
(since t < t') and for all t" : 7, < t" < t' + ¢p,0,t" =. n and hence o,t' =, .

The other direction is similar except that we need o,t" =, n for all
t < t" < t', and this is true since r; < t < t' < r;;; and there exists a
tp such that t' < ¢, < r;y1 and o,t, =, 1, and hence o,t" =, n for all
r; < t" < r;y1 by induction hypothesis.

O

With each o we associate a sequence of delays which specifies the delays
between the consecutive canonical points in r. So given r = rgry---ry,, a
canonical sequence of o with respect to p, we call the sequence of delays D =
e1€s - - e an tnvariant delay sequence of o with respect topife; = r; —r;_1.
Given any subword of o, (d;, a;) - - - (dj, a;), we can associate a delay sequence
with it in a natural way which is given by e; - --e;; where ¢’ and j' are such
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Proposition 2 Let 0 = utv be a finite timed word such that time(T) = p
and p € Qsg. Let D = D1DyD3 be the invariant delay sequence of o with
respect to p where Dy, Dy and D3 are the delay sequences corresponding to
the subwords u, T and v. Then for any j, the invariant delay sequence of
utiv with respect to p is Dy(Dy)? Ds.

Proof Let r = r'r?r® be the canonical sequence of ¢ and p such that

rl, r? and r® correspond to D!, D? and D3. Let r! = rory---ry,, 72 =

3
Tni+1Tni+2 " " Tni+ng and r° = rn1+n2.+1rn1+n2+2 * Tnit+natns: One can see
that the sequence associated with ur/v is
7"0',"1 « e /rnl

Tni+1Tni+2 " " Tnitng
Tni+1 + PTni+2 +p--- Tni4ns +p
Tnl—l—l + 2p TTL1—|—2 + 2p Tt Tn1+n2 + 2p

Tni+1 + (-7 - 1)p7n711+2 + (.7 - 1)p Tty T (-7 - 1)p
Tnitna+l T JPTnidna+2 T JP * " Tnitna4ng T D - _ _
Hence the invariant delay sequence associated with yr/v is DY(D?*)?D3. O

Given a canonical sequence r = ryry - - - 1, 0of 0 with respect to p, we define
the invariant interval sequence of o with respect to p to be J = JyJi - - Jo,
where Jy; = [r;, 73] and Jojy1 = (ri,7i41). It follows from lemma 2 that the
satisfiability of an MTL(p) formula is invariant over the interval J;.

Given a delay sequence D = d;---d,,, we can associate an interval se-
quence J = JyJi -+ - Jo,, with it where Jy = [0,0], Jo; = [t,t] where ¢ =
Zj:l,---,i dj and Jyiy1 = (t1,12) where t; = ijo,---,i djand ty = Zj:o,---,H—l d;.
Note that the interval sequence associated with an invariant delay sequence
is the invariant interval sequence.

Lemma 2 Let 0 = ptv be a finite timed word such that time(T) = p where
p € Qug. Let D = D1 DyD3 be the invariant delay sequence of o with respect
to p where D1, Dy and D3 are the delay sequences corresponding to the sub-
words p, T and v. Let (o;) be a periodic sequence of finite timed words where

o; = ut'v. Let J = JyJi--- be the interval sequence corresponding to the
delay sequence Dy(Ds)“. For allt € J; and ¢ € MTL(p),

1. if (0:),t =S, @ then there exists n; such that for alln > n; and t' € J;,
on,t' Ec @ and

12



2. if (0i),t =5, @ then there exists nj such that for alln > n; and t' € J;,
On, ' e .

Proof It follows from proposition 2 that the invariant delay sequence as-
sociated with pr'v is DY(D?)'D3®. Hence the invariant interval sequences
associated with purv,urTv, prrrv,-- - are of the form K, K, K3' \ K1 K, K3 K/,
K\ K,K3K,K5',--- where K;’s are themselves interval sequences. So given
any J; there is a k such that for all ¥’ > k, the satisfiability of ¢ € MTL(p)
is invariant over the interval J; in o}. If (0;),t =5, ¢, then there exists m
such that for all m' > m, o, ,t =, p. Taking n = max(k, m), we have that
for all ' > n, for all ' € J;, o, t' =c ¢. We can similarly prove the other
claim. O
We call the n; above, the stability point of ¢ at J; in (o).

Proposition 3 Let (0;) be a periodic sequence such that o; = ur'v and
time(T) = p, where p € Qsg. Let t € Ryg such that t > time(p). Let c € N
and let ¢ € MTL. Then {(0;),t =5, ¢ iff (0:),t +cp =S, ©.

Proof oy, t = ¢ iff oppe,t +cp = . Fj V) > j0p,t =@ iff Jj+ ¢
Vi" > j+c,o5,t+cp e p. Hence (0;),t =5, ¢ iff (o), t +cp =55 . a

Theorem 3 Let (0;) be a periodic sequence with period p, where p € Q.
Let ¢ be an MTL(p) formula and let t € Rxq. (0:),t =S, @ or (0:),t S, ¢

Proof Since (o;) is periodic with period p, there exist finite timed words u,
7 and v such that for each i, o; = ur'v and time(r) = p. Let p = pur¥ =
(ao, to)(ay,ty)---.

We now use induction on the structure of ¢. For the atomic case and
boolean combinations of formulas, the proof follows that for the pointwise
case.

Case ¢ = nUryp: We assume 0 ¢ I. Let D = DyDyD3 be the invariant
delay sequence of urv, where Dy, Dy and D3 correspond to p, 7 and v
respectively. Let (J;) = JoJ1J2--- be the interval sequence associated with
D, (Dy)“. We define between(i, j) to be the indices of intervals between the
i-th and j-th intervals. Hence between(i,j) = {i+1,---,7 — 1} U S; U Sy
where S; = {i} if 7 is odd, @) otherwise and So = {;} if j is odd, () otherwise.

We consider two cases, one in which there exists ¢’ > ¢ such that ¢’ —t € I
and (o;),t =<, 1, and the other in which the above condition does not hold.

Let t € J;. In the first case, there exists j' such that ¢’ € Jy, ¢ > t,
t'—t el and (0;),t S, 1. Let js; be the smallest such j'.

13



Now suppose for all k € between(j, js), {(0:),t" ES, n for some t" € Jj.
Let ny be the stability point of n at Jx. Let m be the stability point of 1 at
Jj,. Let n' be the maximum of all n;’s and m. It can be seen that for all
n' >n', opn,t = nUy. Hence (0;),t =<, .

Otherwise there exists k € between(j, js) such that for all t" € Jj, it is not
the case that (0;),t" =S, n. By induction hypothesis, then for all ¢ € Jj,
(0:),t" =X, n. Let my, be the stability point of 1 at Ji. Let m be the stability
point of ¥ at Jj,. For every j” such that j” < j; and J» Nt + 1 # 0, let nj»
be the stability point of ¢ at J;». Let n’ be the maximum of m, n;»’s and
mg. Then for all n” > n', o, t . nU. Hence (03),t =5, .

Now turning to the second case, suppose that for all ¢ > ¢ such that
t'—t € I, it is not the case that (g;),t" =<, ¢. Then, by induction hypothesis,
for all ¢ > t such that t' — ¢ € I, (o), t' =, .

Suppose [ is bounded. If there is no ¢’ such that t' — ¢ € I, then it is easy
to see that (o;),t ¢, nUrt. Otherwise there exist finite (non-zero) number
of j”’s such that J;y Nt + 1 # (). For each such j', let n; be the stability point
of ¢ at Jy. Let n’ be the maximum of n;’s. For all n" > n', o, t {=. nUe.
Hence (0;),t =5, .

Suppose [ is unbounded. Let Dy = dy---d;, Dy = e1---¢,, and D3 =
fi-+- fa, where D = DD, D3 is the invariant delay sequence of urv with re-
spect to p, and D, Dy and D3 correspond to u, 7 and v, respectively. Let 7 =
( ’1,a’1)---( rany) and v = (df,a)---(dl,, an). Given any suffix D;
e; -+ - em of Dy, we can associate with it a suffix 7, = (d', a},)(d}, 1, 0}, ) - -
(dyay,) of 7 such that 37, . ep =d + > i . d. Similarly we
can associate suffixes of the timed word v with suffixes of the delay sequence
Ds.

Let S = {s1,59,---,sm} be the suffixes of 7, where s; corresponds to
€+ -em. Similarly let W = {wy,ws,---,w,} be the suffixes of v. Let
X = WuU(S- -7 -v). It can be seen that for any timed word 7 =
(90,00)(g1,b1) - - - (gu, br) in X, the satisfiability of an MTL(p) formula is in-
variant in the interval (0, go). We call go the first delay of 1. Hence we
say that a timed word 71 in X satisfies at point, an MTL(p) formula ¢, if
71,0 Ec @1 and 71 satisfies in interval, an MTL(p) formula ¢4, if 71,t . @1
for all t' € (0, go) (or equivalently some t' € (0, go)).

We now claim that only finitely many timed words from X satisfy v at
point or in interval. Otherwise infinitely many timed words from WU(S-7*-v)
would satisfy ¢ at point or in interval and hence infinitely many from ({s;} -
7*-v) would satisfy 1) at point or in interval, for some 7. It they satisfy at point
then (o;), t' =<, ¢ where t' = time( )+ k=1,.. i1 & Otherwise they satisfy
in interval and hence (0:), " EC, Y forallt’ € tzme( )+ ket i1 (0, 7).
Hence by proposition 3, {o;), t' +cp S, ¢ for all ¢ € N, where p = time(r).
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Therefore there exists ¢’ € ¢t 4+ I (since [ is unbounded) such that ¢ —¢ €
and (0;),t" =S, ¢. This is a contradiction. So, only finitely many timed
words from X satisfy ¢ at point or in interval.

1 is ultimately not satisfied at every ' € t 4+ I N (¢, time(p)). Since this
interval is bounded there are only finitely many j"’s such that J;» has a non-
empty intersection with this interval. Let n;» be the stability point of 1) at
Jju.

Suppose there exists no timed word in X which satisfies i) at point or
in interval. Then let n' be the maximum of all n;»’s. For all n" > n/,
opr,t e nUry. Hence (0;),t =5, ¢.

Suppose there exists a timed word in X which satisfies 1) at point or in
interval. Since we proved that such timed words are finite in number, let
I" = time(71) where 71 € X is such that it satisfies ¢ at point or in interval,
and for all 7, € X such that time(ry) > time(r), 2 does not satisfy 9 at
point and 75 does not satisfy ¢ in interval.

Suppose 71 satisfies 1 at point. Suppose there exists 73 € X such that
time(73) > time(7;), and 73 does not satisfy n at point or 73 does not satisfy 7
in interval. Then let n’ be such that time(o,/) > mazx(time(p),t) + time(7s).
It can now be argued that for all n” > n, o,n,t {=. nUr. Hence (0;),t =5, ¢.

Suppose 11 does not satisfy ¢ at point. Then 77 satisfies ¢ in interval.
Now, suppose there exists 73 € X such that time(73) > time(71), and 73 does
not satisfy 7 at point or 73 does not satisfy 7 in interval. We can then use
an argument similar to the previous case.

Suppose that the above two conditions do not hold. Then if there is a
point ¢ in the interval (¢, time(p)) such that (o;),t" =¢, n, then (0;),t =,
nUry. Otherwise (o;),t =5, nUr. O

The above theorem gives us a counter-freeness result for the continuous
case. Given a p € Ry, we call a timed language L, p-counter-free, if there
does not exist timed words p, 7 and v such that time(7) = p and there exist
infinitely many 4’s for which pu7'v € L and infinitely many of them for which
ut'v ¢ L. Below is the result for the continuous semantics.

Theorem 4 Let p € Q.o. Then every timed language of finite words defin-
able by an MTL(p) formula in the continuous semantics is p counter-free. O
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5 Strict containment of MTL?Y in MTL¢

In this section we show the strict containment of MTL?* in MTL® for finite
words. We show that the language Ly, described below is not expressible in
MTLP?. We will first sketch a proof of the same for infinite words. It is a
simplified version of the proof in [3].

L;’Zf is the timed language over the alphabet ¥ = {b} which contains
infinite timed words in which there are at least two b’s in the interval (0,1).
Formally,
Lgb:{aeTE“’|EIi,jEN:O<tZ-<tj<1,a,-:aj=b,a:
(ao, to) (a1, 1) -+ }.

For every p = 1/k, where k € N, we give two models, of and 3 such that
of € L% but g ¢ L' and no MTL(p) formula ¢ can distinguish between
the two models in the pointwise semantics, in the sense that o, 0 =, ¢ iff

BP0 E=pw .

1-p 1 1+p 1+2p 1+3p

1-p 1 1+p 1+2p 1+3p

of = (1_3p/4’ b) (p/2’ b)(p/?, b) (p/2’ b) -+ and pP = (1_p/4’ b)(p/?, b) (p/2’ b) e

Proposition 4 Leti,j € Nandi,j > 0. Let ¢ € MTL. Then
1. oPi =py @ iff 25 = @,
2. BP.i f=pw @ iff B2, ) FEpw @ and
8. Py Epu @ ff BPJ Epu .

Proof All proper suffixes of the two timed words are the same. a

Theorem 5 For any ¢ € MTL(p), o?,0 =, ¢ iff 57,0 E=pw -

Proof Let o = (ag,t)(a1,t1) -+ and P = (ap,ty)(a’t})---. Proof by
induction on the structure of ¢. The atomic case and boolean combinations
are trivially true. So let us consider nUji. We can assume that 0 & I.

a0 Epy MUY = 3 >0t € I,aP,i =py Y and Vj 1 0 < j <
i, 0, Epu 1.

Case i >1: F3i—1>0:1¢_, € I(since t; =t,_,), BP,i — 1 =py ¢ (from
proposition 4) and Vj : 0 < j < i — 1,6P,j F=pw 1 (since o?,1 f=p, 7 and
from proposition 4) = (7,0 =p nU.
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Casei=1: 3 >0:t €l (sincet; € I = (1 —p,1) C 1), BP,i =pw ¢
(from proposition 4) and Vj : 0 < j < 4,87, j F=p 1 (in fact there is no such
.7) = ﬁpjo ):pw 77U1¢-

In the other direction, 87,0 =, YUy = 3 > 0:t, € I, BP,i |=py ¢ and
Vi 0<j<i,0% 5 FEpwn

Case i > 1: Fi+ 12> 0: t;4q € I(since t; = tip1), &P,i FEpy ¥ (from
proposition 4) and Vj : 0 < j < i+ 1,aP,j [=pyw n (since P,1 =, 1 and
from proposition 4) = o?,0 =, nUY.

Casei=1: 3 >0:¢, €l (sincet, € I = (1—p,1) CI), aP,i =py ¢
(from proposition 4) and Vj : 0 < j < i,0?,j [=py 0 (in fact there is no such
j) = o0 Epw nUri.

O

Theorem 6 [3] MTLPY is strictly contained in MTL® over infinite timed
words.

Proof Suppose there existed an MTL formula ¢ which in the pointwise
semantics defined the language L%7. It belongs to MTL(p) where p = 1/k
and k is the least common multiple of the denominators of the interval end
points in ¢ (since the end points are rational). But ¢ can not distinguish
between of and SP. It is either satisfied by both of them or in not satisfied by
both of them. In either case it does not define ngf which is a contradiction.
Hence L2 is not definable in MTLP®.

But the disjunction of the following formulas expresses Lg, in the contin-
uous semantics.

e $,110 A G120 Includes all timed words in which there is a b in the
interval (0,1] and one in the interval (1, 2).

o Ow,11(b A ©o1yb): Includes all timed words in which there are two b’s
in the interval (0, 1] (and some more which are in Lyy).

o O, (On, b A O0,1)d): Includes all timed words in which there are two
b’s in the interval (1,2) (and some more which are in Lgy).

So, MTLP” is strictly contained in MTL® over infinite words. O

Now we extend the above proof for the case of finite words using the notion
of ultimate satisfiability. We show that ng, which consists of finite timed
words which contain at least two b’s in the interval (0, 2), is not expressible
by any MTL?" formula.
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For every p, where p = 1/k and k € N, we define two sequences of finite
timed words, (o7) and (o), as follows:
of =y where py = (1 — 3p/4,b)(p/2,b) and 7, = (p/2,b).
P! = peth where ps = (1 —p/4,b) and 7, = (p/2,b).
It can be seen that (o) is completely contained in L and (?) is completely
outside L. We will now show that a formula ¢ in MTL(p) is ultimately
satisfied at 0 for (o) iff it is ultimately satisfied at 0 for (o). We see that

the propositions which were true for the infinite case continue to hold for
finite case with the notion of ultimate satisfiability.

Proposition 5 Leti,j € N andi,j > 0. Let ¢ € MTL. Then
1. {07}, i Fus @ iff (07).7 Fus @,
2. p})1 Fus @ iff (A7), J Fus ¢ and
3. (0f),i Fus ¢ iff (P}), 7 Fus .

Proof The set of suffixes of (07) at ¢ and that at j, and the set of suffixes
of (pf) at i and that at j, differ by only finite number of suffixes. O

Theorem 7 Given any ¢ € MTL(p), (o7),0 Eus ¢ iff (), 0 Eus -

Proof Proof by induction on the structure of ¢.

=

Case ¢ is atomic: If (0F),0 |=45 ¢, then clearly (p?),0 s ¢.

Case ¢ = —p: If (oF),0 =y ¢, then (07),0 =4, =9, and also (pF),0 Ey
1 (by induction hypothesis) and hence (o), 0 =, —t0. Otherwise, (67),0 =,
1, and hence (o7, 0 [=4s —1, and also (p?), 0 Eup ¥ (by induction hypothesis
and theorem 1) and therefore (p7),0 =,s —1.

Case o =nV i If (07),0 Fus m o1 (07),0 Fys 9, then (07),0 f=us 1V 1,
and also (pf),0 FEus n or (07),0 =45 ¢ (by induction hypothesis) and hence
(A7),0 =us m V 1p. Otherwise (07),0 =y, 1 and (07),0 =y, ¢ (by theorem 1)
and hence (07),0 =y, 'V 9, and also (p7),0 =y, n and (p),0 =un ¢ (by
induction hypothesis and theorem 1) and hence (o), 0 =u, 7V .

Case ¢ = nUry: If (0?),0 |=yus nUry, then there are two cases. Either
there exists j > 0 such that ¢; € I and (o?), j =ys 9 or there is no such j.

Suppose there exists j such that j > 0, ¢; € I and (0?),j Eyus ¥. Let js
be the smallest such j. Then it can not be the case that there exists £ such
that 0 < k < j; and (oF), k |=un 1, since otherwise (0?),0 =y, nUt. Hence
for all k£ such that 0 < k < js, (oF), k |=us 1
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Suppose j, > 1. There exists j, — 1 > 0 such that t;s,l € I (since
thi 1 =tj,), Py, 4s — 1 Eus ¥ (from proposition 5) and for all £ : 0 < k < js,
(o), k Eus m (since (07),1 =4 n and from proposition 5). Hence (o), 0 =y
nUry.

Suppose j; = 1. There exists j, > 0 such that t; € I (since t;, € I =
(1=p,1) CI), (p?), s =us ¥ (from proposition 5) and for all k: 0 < k < j,
(in fact no such k exists), (o)), k =us 7. Hence (of), 0 =us nUY.

If there does not exist a j > 0 such that ¢; € I and (07}), j F=us ¥, then I is
not bounded, since otherwise (67,0 =y, nUrt¢. So I is unbounded. Further,
it can not be the case that v is satisfied at 0 for infinitely many words from
S, where S = b((p/2)b)*. Because if it were then (0?),1 =,s ¥ and hence
(o), k f=us ¢ for every k > 0, which would contradict the non-existence of
a j such that ¢; € I and (0?), j Eus . Hence 9 is satisfied at 0 for finitely
many timed words from S. Let b((p/2)b)' be the largest word which satisfies
@ at 0. Every word in S which is longer than this, should satisfy n at 0, since
otherwise (o), 0 Eu, . Hence (pf),0 =4 .

Note that in the case where v is ultimately satisfied at some point in the
interval, we mimic the proof for the infinite models and in the case where 1)
is not ultimately satisfied at any point in the interval, we follow the proof
of theorem 1. Now the proof for the other direction can be written down
similarly.

O

Theorem 8 MTL?Y is strictly contained in MTL® over finite timed words.

Proof Suppose there exists a formula ¢ which defines Lg;‘ in the pointwise

semantics. Then ¢ € MTL(p) for some p. Since ¢ defines L it is satisfied

by all timed words in (0?). So ¢ is ultimately satisfied at 0 in (0o7) and

hence is ultimately satisfied at 0 in %pf ). This is a contradiction since none
n

of the timed words in (p?) are in Lj;. Therefore no MTL formula defines
L’zg in the pointwise semantics. However we saw that there exists a formula

which expresses Lg;‘ in the continuous semantics. Hence MTL?Y is strictly
contained in MTL® for finite words. O

6 Strict containment of MTL® in MTLg

In this section we show that MTL® is strictly contained in MTLG for finite
timed words, by showing that the language L o, is not expressible by any
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MTL formula in the continuous semantics but is expressible by an MTLg
formula in the continuous semantics. L, , consists of timed words over
{a, b} such that there is a symbol at [2,2] which is preceded by an a. We
will sketch a proof of the above claim for the case of infinite words which
essentially follows the one given in [3] and then show how it can be extended
for finite words.

For every p = 1/q, ¢ € N, ¢ > 0, and n € N, we give two infinite
timed words o™ and SBP™ such that o™ € L, and BP" & Lig .. Let
d=p/(n+4).

0 P 2p
a a
I R B B o o e e o o o o e e B S o o o e S
0 P 2p

aP™ = (c1,d)(c, 2d) - - - where ¢ = a if k%(n+4) = n+ 3, ¢, = b otherwise.
BP™ = (c1,d)(co, 2d) - - - where ¢ = a if k%(n+4) = n+2, ¢, = b otherwise.
We then prove that no MTL(p,n) formula can distinguish between these
models in the continuous semantics, where MTL(p,n) is the set of MTL
formulas with granularity p and with a nesting depth of U, less than or equal
to n.

Let us consider the following infinite model ™. 4?" = (¢1,d)(cg, 2d) - - -
where ¢, = a if k%(n +4) =0, ¢, = b otherwise.

a a

SCE I TR T IO O N D I O D R NN N BN B DN BN N DN I R

0 P 2p

Proposition 6 Let p = 1/q, where ¢ € N and ¢ > 0 and let n € N. Let
¢ € MTL(p,n), ce N and t € Ryo. Then

1Pt e g iff Pt 4 op e o,
2. aP™ t e @ iff Pt + cp E. @ and

3. BP" b =c o iff BT+ op e

Proof The suffixes of the infinite timed words at ¢ and ¢ + cp are the same.
O

Lemma 3 Let p = 1/q, where g € N and ¢ > 0, and let n € N. Let k € N
and 0 < k <n, and let ¢ € MTL(p, k). Leti,j € {1,---,n+ 3 —k} and let
m > 0. Then
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147" (m(n +4) + i)d e ¢ iff Y7, (m(n+4) + 5)d = ¢ and

2. for all t,ty € (0,d), v*™, (m(n+4)+0)d—t1 Ec @ iff ¥7", (m(n+4)+

])d_tZ ):c P-
Proof
X110 X,
7 i 111 e I o M I i | i
2
N Xk,0 Y0 Xk,1 Yi,1 P

We define Xy, = {m(n+4)+1,--- ,mn+4)+(n+3—k)} and Y, ,, =
{m(n+4)+(n+3—k+1),--- ,m(n+4)+(n+4)}. Let n*" = (ag, to) (a1, t1) - - .
We first use induction on £ and then on the structure of ¢. When £ = 0, ¢ is
a boolean combination of atomic formulas and hence the lemma is trivially
true.

Let us assume that it is true for k. We now use induction on the structure
of . The atomic case and boolean combination of formulas are straightfor-
ward. Let ¢ = nUry. We assume I = [cp, cp|, where ¢ € N and ¢ > 0, or
I = (ep, i), where ¢ € N and ri = ¢p or oo, where ¢ € N.

We will use v7", pt(i) =, ¢ to denote vP" id =, ¢ and v7", int(i) =, ¢
to denote P id —t =, o for all ¢t € (0, d).

Case I = [cp,cp|: Let 4,5 € Xpyim. If 47" pt(i) E=. nUryd, then
VP pt(i 4+ c(n + 4)) Ee ¥, and 42" pt(i') E. n for all i <i' < i+ c(n+4)
and " int(i') E.npforalli < i <i+c(n+4). Let r =m(n+4)+n+3—k
(the rightmost point in Xy ,,). Since i < r < i+ c(n + 4), ¥»", pt(r) E.
n and YP" int(r) E. n. By induction hypothesis, v*" pt(j') = n and
¥ int(j') = n for all j° € Xy, and hence for all j' € Xy ,,» (by proposition
6) for all m’ € N. Now ", pt(j +c(n+4)) =, ¢ (by induction hypothesis),
¥ opt(§') Ee m and 4P, int (') = n for all j < j' < r, and for all j' such
that j' € Xy mic and j' < j+ ¢(n +4) (from what we showed above), and
v pt(5') e n and AP int(5') E.npforall j € {r+1,--- m+ec(n+4)}
(because 7' ranged over these points). Hence v*", pt(j) =, nU . Similar,
we can argue for the case when 7" int (i) =, nUr.

Case I = (cp,ri): Let i,j € Xgm. Suppose v7", pt(j) =. nUr. Suppose
P pt(i") Ee ¥ and P pt(i') = n for all i < i’ < 4" and t;» — t; € I.

If " € Yy py for some m’ € N, then ¢;» —t; € I. By an argument similar
to the previous case we can argue that v7", pt(j') =. n for all j < j' < ¢
and 7" int(j') = n for all j < j' < ¢". Hence vP", pt(j) E. nUri.

Suppose " € Xy and ¢ > i+ (m' —m)(n +4). Let r be the rightmost
point in Xy . "™, pt(r) . ¢ by induction hypothesis and t, —t; € I. 7
is true at all the intermediate points by an argument similar to the previous
case. Hence vP" pt(j) E. nUri.
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Suppose " € Xy and " < i+ (m' —m)(n+4). Let | be the leftmost
point in Xy . If j is not the leftmost point in X} ,,, then ¢, —¢; € I and
by induction hypothesis. 7", pt(l) =, ©. Otherwise, let I' = [ — (n + 3).
tr —t; € I and ¥*", pt(l) =, ¢ by induction hypothesis and proposition 6.
And 7 is true at all the intermediate points. Hence y7", pt(j) . nUp.

It we take v to be satisfied at int(i") or assert nUr at int(i) the argument
is similar.

O

Corollary 1 Let p = 1/q, where ¢ € N and ¢ > 0, and let n € N. Let
¢ € MTL(p,n) and let m > 0. Then

1. AP", (mn+4) +1)d = @ iff 777, (m(n+4) +2)d e @ iff 77", (m(n+
4) +3)d =, ¢ and

2. for all ty,te,t3 € (0,d), 7", (m(n+4)+1)d —t1 = ¢ iff 7", (m(n +
4) +2)d — ty = @ iff Y7, (m(n+4) + 3)d — t3 = ¢. O

Theorem 9 For all p = 1/q, where ¢ € N and ¢ > 0, n € N and ¢ €
MTL(p, n), o?™ 0 =, ¢ iff BP",0 =, ¢.

Proof Proof by induction on the structure of ¢. The atomic case and
boolean combinations of formulas are straightforward. Let ¢ = nUj.

= Suppose o?", 0 |=. nUr1) and there exists j such that o™, jd =, ¢, where
t; € I, and for all 0 < ¢t < jd, o™, t =, .

If %(n +4) is 0, then let i = j, if j%(n +4) > 1, then let 1 = 5 — 1 and
if 1% (n +4) =1, then let ¢ = j. It can be seen that t; € I. Now P, i =, ¢
from proposition 6 and corollary 1. Since we have chosen 7 to be less than or
equal to j, n is true at all points between 0 and id in SP" from proposition
6. Hence P 0 =, nUr1.
< Suppose 7", 0 =, nUry and there exists j such that 5P, jd =, ¢, where
t; € I, and for all 0 < ¢ < jd, fP",t =. 1.

If j%(n +4) is 0, then let i = 7, if j%(n +4) < (n+ 3) and j # 1,
then let 4 = j+ 1, if j = 1, then ¢+ = 1 and if j%(n + 4) = (n + 3), then
let i = j — (n+2). It is not difficult to see that ¢; € I. oP™ i =, ¢ from
proposition 6 and corollary 1. 7 is true at all points in (d, id) from proposition
6. If j # 1, then 3,t =, n for all ¢t € (0,d]. Hence from proposition 6 and
corollary 1, o, t =, m for all ¢t € (0,d]. However if j = 1, then «,t =, n for
all t € (0,d) by a similar argument.
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If ¢ is satisfied at some jd+t, where t € (0, d), then we choose id+t as the
point in the other model where 9 is satisfied, and the rest of the argument
is the same. O

Theorem 10 [3] MTL® is strictly contained in MTLS over infinite timed
words. O

We now extend the results for the case of finite words. We replace the
infinite word o™, 5P and ™ by the sequences of finite timed words, (o},
(o) and (kP™). For each i, o?" = 7%, pb"" = pot® and kP" = 791 where
p1 = (b,d)(b,2d) --- (b, (n + 2)d)(a, (n + 3)d), pe = (b,d)(b,2d)--- (b, (n +
1)d)(a, (n+ 2)d) and 7 = (b,d)(b,2d) - - - (b, (n + 3)d)(a, (n + 4)d).

We note that with the replacement of the infinite models by the above
sequences of finite timed words, and . by ¢, the above propositions,
lemmas and theorems continue to hold. The proofs of lemma 3 and theorem 9
follow that of theorem 3 for the atomic and boolean combinations of formulas.
For the case where ¢ = nUry, they mimic the proofs for infinite case, if 1)
is ultimately satisfied at some point in the interval I, otherwise they follow
that of theorem 3 for the same case.

Theorem 11 MTL® is strictly contained in MTLG over finite timed words.
|

7 Continuous strictly more expressive

In this section we show that the language Lg;,s (for “two insertions”) is not
expressible by MTLG” but is expressible by MTL. This leads to the strict
containment of the pointwise versions of the logics in their corresponding
continuous versions, since the inexpressibility of L, by MTLY implies
its inexpressibility by MTL%” and MTLPY, and its expressibility by MTL®
implies it expressibility by MTLg and MTLg, .

We first show the result for finite words and then sketch how it can be
extended for infinite words. L, . is the timed language over ¥ = {a, b} such
that every timed word in the language consists of two consecutive a’s such
that there exist two distinct time points between their times of occurrences,
at distance one in the future from each of which there is an a. Formally,
Lin = {0 € TS |o = (aq, to)(a1,t1) -+ (Gn,tn), Fi, ok € Nt a; = a4y =

a,tj,tx € (6 +1,ti1+1),j # k and a; = ax = a}.
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Let d = p/(2n + 3). For every p = 1/q, where ¢ € N and ¢ > 0, and
n € N, we give two models ¢”" and p”" which are as defined below.

1—p 1 2—p 2
prn
1—-p 1 2—p 2

oP" = (a,1—p+d/2)(a,1 —p+3d/2)---(a,1—p/2 - d)(a,1 - p/2)(a,1—
p/2+d)---(a,1—=d/2)(a,2—p+d)(a,2—p+2d)---(a,2 —d).

PP = (a,1—p+d/2)(a,1—p+3d/2)---(a,1—p/2—d)(a,1—p/24d) - - - (a,1—
d/2)(a,2—p+d)(a,2—p+2d)---(a,2 —d).

It is easy to see that o?™ ¢ Lf* ~and ppm € L7 for all p and n. We use
the following lemmas to show that no MTLg, formula can define Ly, in the

pointwise semantics.

Lemma 4 Let n € N and p = 1/q, where ¢ € N and ¢ > 0. Let k € N
and 0 <k <n. Let X} ={k+1,---,2n+3 —k} and V2 = {2n+ 3 +
(k+1),---,2n+3+ (2n+2 —k)}. Let ¢ € MTLg,(p, k). Then for all
i, € XZ, o™i Epy @ iff 0P, 5 Epw @ and for all 1,5 € Y2, 0P",i Epy ¢
iff oP", 5 Epu -

Proof
X; X3 | Xiy X3
|
‘ B B B ‘. B v. B .‘ B B B ‘
Ll L] L] L] ‘. L] L] L] .‘ L] L] L] ‘
Y, Yy }ch2+1 v
‘ = = = ‘. B v B .‘ B B B ‘
‘- | | -‘ | L] | ‘
L—p 2

Let X} = {1,---,k} and X} = {2n+3 —k +1,---,2n + 3}. Let
Vi={2n+3+1,--2n+3+k}tand V2 ={2n+3+2n+2 -k +
1),---,2n+3+(2n+2)}.

Let oP"™ = (ag,to)(a1,t1) - - - (@anss, tanss). Proof by induction on k and
then on the structure of ¢. If £ = 0 then ¢ is a boolean combination of
atomic formulas and the lemma is trivially true.

Let us assume that the lemma is true for k. We will prove by induction
on the structure of ¢ that the lemma holds for £ + 1. The case when ¢ is
atomic or of the form —) or n V % is straightforward.

Case ¢ = nU;1p: Assume 0 & I. Suppose i,j € X7, . 0", i =py U =
' >0ty —t; € I,0P™ 0 f=p Y, V" i <" <A P =py 1)
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1. 7 e X}

(a) (0,p) CI. ty —t; € (0,p), hence ty —t; € I.

(b) Since i is in X7, and ¢’ is greater than every number in X7, the
rightmost position in X7, r satisfies 7. Hence every position in
X? satisfies n (by induction hypothesis). For all j”, j < 7" < r,
O.p,n’jll ):pw ,'7

(¢) For j", r < j" <, oP™, j" =py 1 (since i < r, r < i’ and for all
"< i <A oPR i = 7).

Therefore 3" : &' > j,ty —t; € I,0P™ 4 =4, ¥, V5" 1§ < j" <
i',oP™ " =pw 1, and hence 0P, j =, @

2. 7' € Y?: The argument is similar to the above except that 1(a) needs
to be replaced by: (1,1+p) C I. ty —t; € (1,1+p), hence t; —t; € I.

3. 7' € Y}l: The argument is similar to 1 except that 1(a) needs to be
replaced by: (1 —p,1) CI. ty —t; € (1 —p,1), hence ty —t; € I.

4. 7' € Y?: Suppose ty —t; € (1 —p,1).
(a) (1—p,1) CI. Let I' be the leftmost point in V2. Since ¢y —t; €
(1 —p,l), tll —t] € I.
(b) 7 € Y2 and o™i’ =,, 9. By induction hypothesis o?™, ' =,,, ¥
since I € Y2
(c) Since 7 is in X7, and ¢ in Y2, the rightmost position in X7, r
satisfies 7. Hence every position in X? satisfies . For all j”,
j < jll S ’f', O.p,n’jll ):pw ,',]
(d) For j", r < j" < U, oP",j" [=pw m (since i < 7, 7 <" and I' < 7,
and for all ¢, i < " < ', oP",i" =44 7).
Therefore 3" : I' > j,tp — t; € I,o?P" ' Ep ¥, V5" 1§ < j" <
U',oP" " l=py 1, and hence 0P, j =,y .
Suppose ty —t; € (1,1 + p).
(a) (1,1+4p) C I. Let ' be the rightmost point in Y}2. Since ¢, —t; €
(1,1+p), ty—t; €1

(b) ¢ € Y}? and 2(71”", ' Epw . By induction hypothesis o™, 1’ =,
since r' € Y}’
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(c) Since 7 is in X7, and ¢’ in Y%, the rightmost position in X7, r
satisfies 7. Hence every position in X? satisfies . For all j”
j < j” <r, O'p’n:j” ):pw n.
(d) For j", r < j" < U, oP™, j" =py m (since ¢ < 7, 7 < {"and I' <7,
and for all ¢, i < " < ', oP",i" =4y 1).
(e) ' <4 since ty —t; € (1,14 p) and hence ty —t; > 1. 0", |=p, 1
sincei <r,r <!"and!' <, and for alli", i < " <, oP" 1" |=p,
n. Hence 7 is satisfied at every position in Y}2. So, for I < j” < 1/,
O.p,n’jll ‘:pw .
Therefore 3" : 7' > j,tp —t; € I,oP", 1" =, Y, Vj" 1 j < j" <
', 0P, j" =4, n, and hence o™, j =, @.

5.1 € X,? (0,])) C I. Since tiv1—t; € (O,p), tiq1—1; € I. Since
oP™ ¢ |=,, 1, every position in X7 satisfies ¢. Since j + 1 is in X2,
P j+ 1 Epw ¥ So, Fj+ 1t —t; € LoP™ i+ 1 =py ¥, V)" 1§ <
J" < j+1 (in fact no such " exists) o™, " =,y 1. Hence o™, j =, ¢.

Suppose i, € Y2, ,. 0P™ i =py qUp = 3i' > ity —t; € 1, 07", 1 =4y
Y, Vi" i < " <A 0P T = -

1. i € Yk3:

(a) (0,p) CI.ty —t; €(0,p), hence ty — t; € I.

(b) Since 7 is in Y2, and ¢’ is greater than every number in Y}, the
rightmost position in Y2, 7’ satisfies 7. Hence every position in
Y2 satisfies ) (by induction hypothesis). For all 57, j < j” < 7/,
O.p,n’jll ):pw ,',]

(c) For j", r' < j" <, oP", j" l=p, n (since i < r', ' < i’ and for all
i< i < i P i =, ).

Therefore 3¢’ : &' > j,ty —t; € I,oP™4 =, Y,Vj" 1 j < j" <
i', 0P j" =pw 1, and hence 0P, j =, @

2.7 € V% (0,p) C I. Since tj;1 —t; € (0,p), tj41 — t; € I. Since
oP™ ' =g, 1, every position in Y2 satisfies ¢. Since j 4+ 1 is in V2,
o7 G+ 1y . S0, Fj A1ty —t; € I,0P j + 1 =y 0,5 ¢
j < j" < j+1 (in fact no such j” exists) o?",j" Epu 1. Hence
o?", j Epw ¢

Case ¢ = nSry: Assume that 0 ¢ I. Suppose i,j € X7,,. 0P",i =py

nSip =30 <i' <i:t;—ty € I, oP" 0 =py Y, Vi" 11 <3 <4, 0P"0" =,
n.
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1. 7 € X}

(a) (0,p) CI.t;—ty €(0,p), hence t; —ty € I.

(b) Since i is in X7, and ¢ in X, the leftmost position in X7,
satisfies . Hence every position in X? satisfies  (by induction
hypothesis). For all j", 1 < j" < j, oP™, j" =, 1.

(¢) For j",i" < j" <1, oP™, 3" f=py m (since ¢ < I, [ < i and for all 3",
i< i< d, 0P = ).

Therefore 3’ : 0 < i’ < j,t; —ty € I,0P™ i =, ¥, V5" 17 < j" <
ja O-p’naj” ):P’UI 77’ a‘nd hence Upm’j ):pw SD

2.7 € X% (0,p) C I. Since t; —t;—1 € (0,p), t; — tj—1 € I. Since
oP™ ¢ =, 1, every position in X7 satisfies ¢). Since j — 1 is in X2,
oPM =1 =y 1. S0, Jj—1 1 tj—t;_1 € 1,07 j—1 Epy ,¥j" : j—1 <
j" < j (in fact no such j” exists) o?", j" k=, 7. Hence 0P, j =py .

3. i =0.

() 1—=p,1)CI.tj—ty€(1—p,1), hence t; —ty € 1.

(b) Sinceiisin X7 ; and ¢’ = 0, the leftmost position in X7, [ satisfies
n. Hence every position in X7 satisfies n (by induction hypothesis).
For all j", 1 < j" < j, oP™, j" =pu 1.

(¢) For j", 0 < j" < I, oP™,j" =py n (since i’ =0, 0 < [, I < i and
for all ¢, i' <i" <4, oP",i" =44 7).

Therefore 3’ : 0 < i’ < j,t; —ty € I,0P™i' =, ¥, V5" 17 < j" <
ja O-p’naj” ):P’UI 77’ a‘nd hence Upm’j ):pw SD

Suppose 7,5 € Y2 . 0P i =y S = 30 < < ity —ty €
I,0P™ " =py Y, Vi" 18" < 4" < 4,0P" 1" =py 1.

1. i e Ykl:

(a) (Oap) g 1. tj _ti' € (O,p), hence t]' — ti’ el.

(b) Since 7 is in Y}, and ¢’ is smaller than every number in Y}, the
leftmost position in Y2, I’ satisfies . Hence every position in Y2
satisfies n (by induction hypothesis). For all j” ' < j" < j,
O.p,n’jll }:pw 77

(c) For j", &' < j" <, oP™, j" =py 1 (since ¢/ < I', I" < i and for all
i< " < g, Py 7).
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Therefore 3" : 0 < @' < j,t; —ty € I,0P™, i =p, ¥, V5" ¢ < j" <
g, 0P §" =, m, and hence 0P, j =, @.

2. 7' € X}: The argument is similar to the above except that 1(a) needs
to be replaced by: (1,1+p) CI. t;—ty € (1,1+p), hence t; —ty € I.

3. 7' € X}?: The argument is similar to 1 except that 1(a) needs to be
replaced by: (1 —p,1) CI. t; —ty € (1 —p,1), hence t; —ty € I.

4. 7' € X?: Suppose t; —ty € (1 —p,1).

(a) (1—p,1) CI. Let r be the rightmost point in X7. Since t; —t, €
(1—p,1),tj—tr el.

(b) i € X7 and oP", 4’ |=,,, . By induction hypothesis o?",r =, ¥
since r € X7.

(c) Since ¢ is in Y2, and ¢ in X7, the leftmost position in Y2, I'
satisfies 7. Hence every position in Y}? satisfies . For all j”
I'<j"<j, 0", 5" Epw n-

(d) For j", r < 3" < U, oP™, j" =py n (since ¢/ < r, r <!, ' <iand
for all i, i < i < i, oP™, i =0 7).

Therefore Ir : 0 < r < j,t; —t, € I,0P™,r =5, ¥, Vj" 1 1 < j" <
4, 07", 3" =py 1, and hence 0P, j l=p, .

Suppose t; — ty € (1,1 + p).

(a) (1,1+p) C I. Let I be the leftmost point in X?. Since t; —t; €
(1,1+p), tj -t € 1.

(b) 7 € X? and oP",4' =5, . By induction hypothesis o?", [ =, ¥
since [ € X?.

(c) Since ¢ is in Y2, and ¢ in X7, the leftmost position in Y2, I/
satisfies 7. Hence every position in Y}? satisfies . For all j”,
I <j" < g, o?, 5" Epuw 0

(d) For j", r < j" < U, oP™ j" EEpy n (since ¢ <7, r <l"and ' <3
and for all i, 7' < i" < i, oP",i" =y 1)

e) i <rsince t;—ty € (1,1+p) and hence t; —t; > 1. 0P r Epy 1

P

since ¢ < r,r <!"and I’ < iand for all i, 7' <i" < i, P, 7" |=p,
n. Hence 7 is satisfied at every position in X2. So, for [ < j” <r,
O.p,n’jll ):pw ,,7

Therefore 31 : 0 < | < j,t; —t; € I,oP", 1 =5, Y, V" 1 1 < j" <
ja o.p,n’jll ):pw n, and hence O.p,n’j }:pw @.
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5.7 € V% (0,p) C I. Since t; —t;—y € (0,p), t; —tj_1 € I. Since
oP™ i |=,, 1, every position in Y}? satisfies ¢). Since j — 1 is in V2,
O-p’n:j -1 ):p’w 1/1 SO, 3.7 —1: t] _tjfl € I,O.p,n,j -1 ’:pw wavj” :
0 <j—1<j" < j(in fact no such j” exists) 0", j" =p, 1. Hence

Up’”:j ):pw ©-
6. i =0.

(a) (2—p,2) C I t; — 1ty € (2—p,2),hence tj —ty el.

(b) Since i isin Y2, and 7' = 0 the leftmost position in Y}?, I' satisfies
n. Hence every position in Y} satisfies n (by induction hypothesis).
For all j7, I' < j" < j, 0™, j" Epu 1.

(c) For 5", &' < 3" <U', oP™, j" [=py m (since i' < ', I' < i and for all
i< < g, P = 7).

Therefore 3’ : 0 < i’ < j,t; —ty € I,0P™,i' =,, ¥,V5" ¢ < j" <
j, o.p,n’jll ):pw n, and hence Up’naj ‘:pw ®-

O

Given an n € N, we define a partial function A, : N — N which is defined
for all 4 € N except for n+ 2. h,(i) = iif i <n+2 and h,(3) =i —1if
i >mn-+2. hy(i) is the position in pP" corresponding to the position i in o?"

in the sense that the time of the h,(7)-th action in pP" is the same as that
of the i-th action in o™ (hence it is not defined for n + 2).

Lemma 5 Let n € N and p = 1/q, where ¢ € N and ¢ > 0. Let k €
N, 0 < k < n and let ¢ € MTLg,(p, k). For all i,j € X? — {n + 2},

PP, ha (1) FEpw @ iff PP, b (J) Fpw @ and for all i, j € YkQ: PP h(8) Fpuw ¢
iff PP ha(7) Epw @

Proof Proof is similar to that of the previous lemma. O

Corollary 2 Let ¢ € MTLg,(p,n). Then
1. 0P n+1 = @ iff P n+2 =, @ iff oP",n+ 3 =y @ and

2 0P ha(n+1) Epu @ i 7, ha(n+3) Epu 0. 0
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Theorem 12 For any ¢ € MTLg,(p,n) and i € N, where i # n + 2,
oP" i g ¢ Wff P77 ha(8) Epw -

Proof Let o™ = (ag,t9)(a1,t1) - - - (Qanis, tanys) and pP™ = (ag, ty)(alf, t]) - - -
(@445 thnya)- Proof is by induction on the structure of ¢. If ¢ is atomic or
of the form — or n V 9, then it is straight forward. Let us look at the case
when ¢ = nUry (assume 0 & I).

o™ g g U E 35 > i ity =t € I,oP™j FEpy ¥,V 11 < §' <
G, 0P 5 oy .

Suppose j # n + 2. h,(j) > hy(i) (definition of h,, 4,7 # n + 2 and
j > ). Forall j": hy(i) < j" < hn(j), PP j" Epw 1 (since j" = h(j")
for some ¢ < j' < j and from induction hypothesis). p*", h,(j) Fpw ¥ (by
induction hypothesis). t;ln(j)—tjln(i) € I since t;Ln(j) =t; and t'hn(i) =t;. Hence
Fhn(§) 2 ha(5) = ha(2), 5y = thoy) € L PP Bn(G) Epw ¥, V5" 1 ha (i) < J" <
ha(5); P75 53" Epw M- PP ha(i) Fpw -

Suppose j =n+2and 0 <7 <n+2. Then 0 < t;—¢; <pand (0,p) C I.
tiv1 —ti € (0,p) and hence ¢, —t; € I. oP™,j+ 1 =p, ¥ (by corollary
2) Elt?zn(j-q-l) : t;zn(j—l—l) - t;zn(z') € Iv pp’nahn(j + 1) ):pw ¢avjl : hn(l) < jl <
hn(J +1), 07", 5" =pw 0 (since every j' is hy,(j") for some ¢ < j” < j). Hence
PP, hin(3) Epw -

If j =n+2and ¢ = 0, then the argument is the same as above except
that now t; — ¢, € (1 —p,1).

In the other di.rection, pp’",h,fl(i) ).:pw 77UI.¢ iff Elh,.l(j) > ha(2) 0 8, ) —
thoy € L PP, B(5) Epw ¥, YR (3) < 5 < Ba(5) 1 0", 5" Epw 1.

Suppose j # n+ 3. Then Vi < j” < j,0P", j' =, 1 since either n + 2 ¢
{i+1,---,j—1}orn+3 € {i+1,---,j—1} (in which case 6?", n+3 Ep, 1
and hence by corollary 2 oP™ n + 2 k=,, ). Hence 35 > i : t; — ¢, €
I, 07" j Epw ¥, Vi < j" < §"0P™, §" =pw . Hence o™i =4 0.

Ifj=n+3and 0 <i<n+2, thent, . 3—t; € (0,p)and (0,p) C I. t,10—
t; € (0,p) and hence t,10—t; € I. So, In+2 1 tyo—t; € [,oP" n+2 =py ¥
(by corollary 2), Vi < j" < n+ 2,0, j" =5, 1 (by induction hypothesis).
Hence o?",i =,y ¢.

If j =n+3 and 7 = 0, then the argument is similar except that ¢,,3—1; €
(1-p,1).

Let us now look at ¢ =Syt (where 0 ¢ I). In one direction if 0", i =,
nSrt, then there is some j < i such that t; —¢; € I and all j': j < 7' <4
satisfy 7.

If j # n+ 2, then there exists h,(j) such that p”", h,(j) FEpw ¢ and for
all j" : hy(j) < 3" < ho(2) pP", 3" F=pw m. Hence pP™ i =, ¢.

Suppose j = n + 2. I is not singular since there is no i > j such
that t; — t; = cp where ¢ € N. Hence either ;' = n 4+ 1 or n + 3 satisfies
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ti—ty € 1. S0, 3hn(5') 2 ), ) = th iy € Lo PP ha(§") Fpw ¥, V5" 1 51 < §" <
iy PP, 1 (57) = . Hence pP%, o (i) Ep .

In the other direction, pP™ h,(i) Epw 0S¢ iff 3h,(j) 1 j < i,t;ln(i) —
t;—,,n(J) € Ia pp,n’hn(‘]) ):pw wavjl : hn(]) < jl < hn(i),pp,n’jl ):pw 77

Suppose j # n+ 1. Then eithern +2 ¢ {j+1,---,i—1}orn+1¢€
{7 +1,---,i—1} (in which case o»",n + 2 |=,, 1 and hence by corollary
20" n+1Epn). Jj:j<iti—t; €l,0P™j =p ¥,V 1 j < j" <
i,0P" j" =, n. Hence oP")i =5, .

Suppose j =n+1land i #n+3. Thenn+2,n+3¢€{j+1,---,i—1}.
oP" n+3 E=p, 0. Hence by corollary 2, oP™ n+2 =, n. 3j: 5 <i,ti—t; €
I,07" j Epw ¥,Y5" 1§ < j" <i,0”", j" =, 1. Hence 0" i =, .

Suppose j =n+1and i =n+3. t;, —t; € (0,p) and hence (0,p) C I.
dj+1:t;—tj1 € 1,07, j+ 1 [=py ¥ (by corollary 2), V5" : j+1 < j" <
(in fact there exists no such j”), o?", j" =, n. Hence o™, i =, ¢.

O

Corollary 3 For any ¢ € MTLg, (p,n), oP™,0 =, ¢ iff pP",0 Epw @. O

Theorem 13 MTLPY is strictly contained in MTL®, MTLE" is strictly con-
tained in MTLG and MTLE? is strictly contained in MTLG  over finite timed
words.
Proof Suppose there exists an MTLg, formula ¢ which defines LA in the
pointwise semantics. ¢ € MTLg, (p, n) for some p and n. Hence it would not
distinguish between oP" and pP", whereas exactly one of them is in Lg;,,,
which is a contradiction.

But the following MTL formula in the continuous semantics defines L ;.
<>(0, A _'QoactU(_'QOact A <>[1,1]a' A _'(PactU(O,OO) (_'goact A <>[1,1]a A _'QoactUa)))- g

The above result can be extended for infinite timed words by replacing the
finite models above, by infinite models which are similar to their counterparts
in the interval [0, 2] but contain a b at every integer time greater than 2.
a?" = (a,1 —p+d/2)(a,1 —p+3d/2)---(a,1 —p/2 —d)(a,1—p/2)(a,1—
p/2+d)---(a,1-d/2)(a,2—p+d)(a,2—p+2d)---(a,2—d)(b,3)(b,4) ---.
pr" = (a,1—p+d/2)(a,1—p+3d/2)-- - (a,1—p/2—d)(a, 1—p/2+d) - - - (a,1—
d/2)(a’72_p+d)(aa2_p+2d) "'(0’72 _d)(ba3)(ba4)

In the proof of lemma 4 we need to consider some extra cases correspond-
ing to the satisfaction of i) at one of these newly introduced points. The
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argument for the case where ¢ = 7nSry is similar because no new action
points are introduced in the interval [0,2]. In the case of ¢ = nUsy and
1€ X,gH, if 7' is such that ¢t = m, m > 2 and m € N (at some position
corresponding to a b), then the argument is similar to 1 except that we need
to replace 1(a) by: (m—1—p,m—1)C I, ty —t; € (m—1—p,m—1),
hence ty — t; € 1.

In the case when ¢ = nUry and i € Y2, |, if 7' is such that ty = m, m > 2
and m € N), then the argument is similar to 1, except that 1(a) needs to be
replaced by: (m —2—-p,m—2) C I, ty —t; € (m —2—p,m — 2), hence
ty — t el

For theorem 12, the same proof goes through. Hence L
expressed by any MTLSI formula in the pointwise semantics.

2ins Can not be

Theorem 14 MTLPY is strictly contained in MTL®, MTLY" is strictly con-
tained in MTLG and MTLYE is strictly contained in MTLS,  over infinite
timed words. a

8 Strict containment of MTLL’ in MTL@?”

In this section we show that MTLG” is strictly contained in MTLY by show-
ing that the language L., (for “exact match”), which consists of timed words
in which for every b in the interval (0,1), there is a b in the future which is
at time distance 1 from it and for every b in the interval (1,2), there is a b
in the past which is at time distance 1 from it, is not expressible by MTL%”
but is expressible by MTLY.

For every p = 1/q, where ¢ € N and ¢ > 0, and n € N, we give two
models o”™ and p”" such that ¢P" is in L., and p”" is not in L,,. Further
we prove that no MTLg(p, n) formula can distinguish between o™ and pP"
in the pointwise semantics.

n+1 n+2 n+3 2n+2 2n+38

1-p p 1 2-p 2

Let z=1—-p,y=2—pand d=p/(2n+4).

oP" = (byx + d)(b,x + 2d)--- (b, + (n + 1)d)(b,z + (n + 2)d)(b,z + (n +
3)d)---(b,z+ (2n+2)d)(b,z + (2n + 3)d)(b,y + d)(b,y + 2d) - - - (b, y + (n +
1)d)(b,y + (n+ 2)d)(b,y + (n + 3)d) - - - (b,y + (2n + 2)d) (b, y + (2n + 3)d).
P = (b,x+d)(bx+2d)- - (b,x+ (n+1)d)(b,z+ (n+3)d) - (b,z+ (2n+
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2)d) (b, z+ (2n+3)d) (b, y+d) (b, y+2d) - - - (b, y+ (n+1)d) (b, y+ (n+2)d) (b, y+
(n+3)d)---(b,y + (2n + 2)d)(b,y + (2n + 3)d).

We now sketch the proof of the inexpressibility of L., by MTLg,. The
details are similar to that of the proofs of the previous section.

X X3 Xt X3

Yy Y Y Y

Lemma 6 Let p = 1/q, where ¢ € N and ¢ > 0, and n € N. Let k € N,
0 <k <nandlet p € MTLg(p,k). Let X} = {k+1,---,2n+3 — k}
and V2 = {(2n+3)+k+1,---,(2n+ 3) +2n + 3 — k}. Then for all
i,j € XF, oP™ i Epy @ iff 0P, Epw @ and for all i,j € Y2, oP™ i =py ¢
iff 07", J Epw #- O

Let h,, be the function defined in the last section.

Lemma 7 Let p = 1/q, where ¢ € N and ¢ > 0, and n € N. Let k € N,
0 <k < nandlet p € MTLg(p,k). Then for all 3,5 € X} — {n + 2},

pp’nahn(i) ):pw 2 iﬁpp’nahn(j) ):;Dw @ and for all 1,7 € Y}f} pp’n’hn(i) )::Dw ¥
iﬁpp’nahn(j) ):pw ©- O

Corollary 4 Let ¢ € MTLg(p,n). Then o?™,n+1 =py @ iff 0P, n+2 =y,
@ iff oP™ n+3 Epy p. Similarly, pP", hy,(n41) Epw @ iff o9 ho(n+3) Epw
®- O

Theorem 15 For any ¢ € MTLg(p,n) and i € N, where i # n + 2,
oP" 0 Epw @ iff PP, ha(1) Fpuw ¢ O

Theorem 16 MTLY" is strictly contained in MTLY over finite timed words.

Proof From the above corollary it follows that L., is not expressible by
MTng However the MTLSI formula, D(O,l) (b = 0[1,1}17) /\D(l’g) (b = %1,1]b),
in the pointwise semantics expresses L.,y,. O

The result can be extended for the case of infinite words in a manner
similar to that done in the previous section.
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Theorem 17 MTLY" is strictly contained in MTLEY over infinite timed
words. O

9 Expressiveness of MTL with past operators

We conclude by giving a Venn diagram depicting the sets MTL?", MTLZ",
MTLG’, MTL®, MTLg and MTLg,. In the diagram below, L, is the timed
language over {a,b,c} whose timed words contain at least one a. L’  is the
timed language over {c} which contains timed words in which for every ¢ in
the interval (0, 1) there is a ¢ in future at time distance one from it and for
every c in the interval (1,2) there is a ¢ in the past at time distance one from
it. L), is the timed language over {c} such that every timed word in the
language consists of two consecutive ¢’s such that there exist two time points
between their times of occurrences, at distance one in the future from each

of which there is a c.

Timed languages over ¥ = {a, b, c}

We do not know if the regions with 7 are empty.
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