Accelerating Multi-core Simulators

Aparna Mandke Keshavan Varadarajan Amrutur Bhardwaj
Y. N. Srikant

IISc-CSA-TR-2009-10
http://archive.csa.iisc.ernet.in/TR/2009/10/

Computer Science and Automation
Indian Institute of Science, India

October 2009

Accelerating Multi-core Simulators

Aparna Mandke Keshavan Varadarajan
Amrutur Bharadwaj Y. N. Srikant
Abstract

Simulation is an important means of evaluating new microarchitec-
tures. With the invention of multi-core (CMP) platforms, simulators
are becoming larger and more complex. However, with the availabil-
ity of CMPs (i.e. host/hardware processor) with larger caches and
higher operating frequency, the wall clock time required for simulat-
ing an application has become comparatively shorter. Reducing this
simulation time further is a great challenge, especially in the case of
multi-threaded workload due to indeterminacy introduced due to si-
multaneously executing various threads. In this paper, we propose a
technique for speeding multi-core simulation. The model of the pro-
cessor core and cache are replaced with functional models, to achieve
speedup. A pre-constructed timed Petri net helps to estimate the exe-
cution time of the processor and the memory access latencies are esti-
mated using hit/miss information obtained from the functional model
of the cache. This model can be used to predict performance of data
parallel applications or multiprogramming environment on CMP plat-
form with various cache hierarchies and shared bus interconnect. The
error in estimation of the execution time of an application is within
6%. The speedup achieved ranges between an average of 2x-4x over
the cycle accurate simulator.

1 Introduction

Microarchitects develop and use simulators to evaluate their ideas. Devel-
oping a simulator requires careful trade-off between speed and accuracy.
Making these simulators faster has always been a topic of interest among
researchers. Lot of research has been done to make simulation of single
processor platform faster. Performance prediction of an application can be
obtained quickly by creating analytical or statistical models of the processor

[11], [20]. However, these models are not flexible. These models fall into
different category than simulation based models.

Simulators can be classified into two basic types, namely: Compiled Sim-
ulators and Instruction Set Interpreter based simulators (ISS).

1.1 Simulation Speedup in Compiled Simulators

Miles et al. [4] proposed static compiled simulator, where application binary
is translated into C code that is then compiled with the simulator to achieve
speedup over ISS. Lei Gao et al. [9] used this technique to get faster simu-
lator for the multiprocessor platform. They use hybrid simulation technique
in which they simulate target independent part of the application code on
the native simulation host and target dependent part of the code on ISS.
They have done this for Multiprocessor System-On-Chip (MPSoC) environ-
ment with up-to 8 DSPs. Their accuracy is within 3% and average speedup
achieved is between 3x-bx over the detailed simulator. The same technique
improves single processor simulation speed by 10-50x. This demonstrates
that improving speedup and at the same time retaining good accuracy is not
an easy task in case of a multiprocessor. The presence of synchronization
variables in multi-threaded applications makes it more complex to strike a
balance between speedup and accuracy.

1.2 Simulation Speedup in ISS Simulators

Traditional simulators like SESC [18], Opal [14] etc. fall under the cate-
gory of ISS simulators. Sherwood et al. [19] achieve simulation speedup for
uniprocessors by fast-forwarding simulation based on the phase behaviour of
an application. These simulators (SimPoint) simulate a single interval from
each phase and fast-forward the rest of the intervals in the same phase. Ap-
plying the same technique is not very straight forward for multi-threaded
applications. In [17], Erez et al. have explored phases in parallel programs
for executions with 2 and 4 threads. They have implemented SimPoint tech-
nique for parallel programs. Their results show that the clock cycles per
instruction (CPI) error is 15% or less, with an average error of 3% for ex-
ecutions with 2 threads and lesser error for 4 threads execution. Accuracy
and speedup gains are not known when the same technique is applied to
execution with 8 or more number of threads.

Small CMPs can be analyzed using cycle-accurate simulators like SESC[18].
However, the running time of such simulator becomes large, for bigger CMP
designs. Hence an alternative speedier approach is required for design space
exploration. Further, with the proliferation of multi-cores, multi-threaded

applications are becoming the norm. In this paper, we propose a technique
to make simulations faster through the use of functional components i.e. in-
dependent of time. The execution time is estimated, unlike ISS simulators
where this time is computed through the execution of instructions in a step-
by-step manner. Some research has already been done which allows user
to explore memory hierarchy for multi-cores. The authors in [20, 7] have
proposed analytical models of overall system for shared memory multipro-
cessors/CMPs. However, one analytical model cannot cover all the diverse
options for the memory subsystem. A lot more can yet be done to achieve
higher speedup and accuracy.

We estimate the execution time required for the multi-threaded appli-
cation on varying the number of threads. The results are presented for
different applications from the SPLASH suite[21] for different number of
threads (1 to 32 in power of 2). As per our knowledge, ours is the first pa-
per which attempts to estimate the performance up-to 32 threads of multi-
threaded application. Rest of the papers, either deal with multi-programming
applications[3] or have dealt with up-to 4[1] or 8 threads[9].

We have made the following assumptions in this work.

e Core has in-order execution.
e Each thread executes on a separate core.

Mobile PCs, mobile Internet appliances and other embedded platforms
have low power requirements. These platforms and newer larger CMPs with
many cores prefer processors with in-order execution, e.g., Intel Atom, VLIW
processors like Trimedia TM32. In [8], Erik Tol et al. map H.264 decoding
on four VLIW multiprocessors with shared memory architecture. Hence our
first assumption does not limit the usability of our framework. Our second
assumption is in-line with other recent work done on CMP simulation[16],[1].

The rest of the paper is organized as follows. Section 2 describes the
abstract implementation of the core. Section 3 describes implementation of
our framework. The experimental setup and results are described in section
4. The error analysis is presented in section 5. Related work and the
direction of our future work are discussed in sections 6 and 7 respectively.

2 Abstract Implementation of the Multi-Core
Platform

To estimate the time required for the complete execution of an application,
we need to find the time spent by an instruction in every pipeline stage

and also in the memory subsystem if it is load or store. In case of parallel
programs, we have to estimate stalls due to synchronization variables as well.
To find out the time spent in pipeline stages, we model the program executed
by the thread on a core as a Timed Petri-net. Following subsection explains
this in greater details.

2.1 Abstract model of a core

g Abstract Memory
Subsystem Model

I \

\ Abstract Core
Implementation

\. (/|W\\
-\

40201c: move sl, 0x80 |

+402020: 1w v0,7824(s8)
402024: slt v0,sl,v0
|4ozozs: beqz v0,402054
.40202¢: lui s0,0x40

Abstract >

Memory i
Subsystem N T2
Model ~

Figure 1: Figure shows the abstract implementation of the core and the memory subsys-
tem. Core executes Timed Petri net model of the program representation.

A program can be viewed as a collection of instructions executed within
a core [internal events(IE)] and references done to the memory subsystem,
which are visible out of the core[ezternal references(ER)]. These ERs are ei-
ther data region accesses due to load/store instructions or instruction fetches
done by the core. Hence a core can be visualized as an entity which emits out
ERs to the memory subsystem at specific time instants. This can be cap-
tured appropriately in Timed (place/transition) Petri Net Model [15]. Timed
Petri nets assign firing times to the transitions or places of a net. Tokens
are removed from the input places at the beginning of the firing period, and
they are deposited to the output places at the end of this period. We model
a program execution as a timed Petri net and assign the firing time to the
transition. Figure 1 shows a piece of assembly code. The load instruction is
an example of KR which is fed to the memory subsystem. Firing time of the
transition 7} will be decided by the memory subsystem. It depends upon the
state of the cache and resource contention of the shared interconnect. It is

shown with dashed lines in the figure whereas, other places and transitions
in the timed Petri net, dependent on the core and program dependencies, are
shown with the solid lines. Firing time and Firing period of these transi-
tions are decided by the nature of the core and program dependencies. In our
implementation, the core calculates the time at which instruction enters ex-
ecution stage and completes execution. It neither performs actual execution
of the instruction nor it models the complex pipeline stages or various queues
or registers. It just takes their effect into an account while calculating the
time when an instruction starts and completes execution. To get the above
IE and ER events, we use compiled instruction interpreter as the front-end
and pass these events for timing estimation to our abstract core model. Each
abstract core executes timed Petri net model on these events.

2.2 Data Dependency Analysis

Instructions can be marked executed only after its source instruction com-
pletes execution. As an example, consider an [E-ER trace in Figure 2. Type
(IE/ER) of each node will be decided by the instruction type. (Here nodes
for instruction fetches are not shown separately.) Instructions in the same
row are issued in the same cycle by the core if there is no data dependency
(Assuming the core has an issue-width of 4). Data dependency between in-
structions I1; and I5; is denoted by a directed edge. The instructions 111, I12,
I3 and I;4 go into the execution stage simultaneously at ¢;. However, the
instruction I goes into execution stage only after I1; completes execution.
Since we consider in-order execution, Iy, has to wait along with I5;. Both
these instructions go into execution stage simultaneously after I1; completes
execution at t5. This delay is caused due to instruction dependency. If Iy
is a load instruction and if it is a cache hit then I5; waits for an additional
time of cache hit latency. On the other hand, if I1; incurs a cache miss, then
I5; experiences a longer delay in scheduling. Thus, we need to distinguish
between such instruction dependency and cache related dependency.

This data dependency information (edges in IE-ER trace) can be de-
termined statically using assembly code and reaching definitions [2]. Each
assembly instruction can be considered as a program statement and a reg-
ister as an input/output variable. With the reaching definition algorithm,
we can determine all instructions defining a source register in an instruction.
However, this yields an approximate and conservative information. A reg-
ister may be set by some instruction in some other procedure. Doing such
inter-procedural analysis|[2] is very complex and the call graph of functions

()

£

Figure 2: IE-ER Graph. Dependency between different nodes are marked with directed
edges. [21 can go into execution stage after I1; completes execution.

cannot be constructed accurately except at run-time. We overcome these
problems by doing dependency analysis at run-time using simulation. We
collect dependency information during the simulation with ideal cache and
interconnect configurations. This gives us data dependencies between in-
structions (dependencies between [Es or IE-ER pair). However, since we
set cache latencies to zero in the ideal memory trace, all dependencies on
load instructions (between ER-ER pair or between ER-IE pair) may not be
captured. To capture these dependencies, we set L1 data cache hit and miss
latencies to some large value (approximately equal to the latency of memory)
and then perform a one-time simulation of an application with two threads.
Dependency information obtained during this simulation can be used for an
execution with any number of threads and with any memory configuration.
Paths traversed during the execution with two threads include all the paths
traversed by all the threads if the same application-input pair is executed
with a different number of threads. This dependency is more accurate for a
given input of the application than statically calculated information.
Thus to summarize,

e The data dependency on the load instructions is computed only once
on a cycle-accurate simulator by executing the application with two
threads, for a given input of the program and with very large hit/miss
delay values of L1 data cache and once with ideal cache and inter-
connect configuration. It is reused for all the other executions with
different number of threads.

e Front-end instruction emulator gives /F/ER events and abstract core
model calculates timing information for these events.

—»(Front End Emulator }—
L

Replay
Core 0

T

Abstract Memory
Subsystem

pla

play
1 re

el el
ore or

on
z&

Figure 3: Front-end emulator executes application binary and generates traces for respec-
tive replay cores. Replay cores issue instruction and data references to the abstract cache
simulator.

3 Framework Implementation

The block diagram of our framework is shown in Figure 3. Following section
describes each component in details.

3.1 Instruction Emulator

Instruction emulator is the front end of our framework. It executes compiled
instructions on the native host and generates traces for these instructions.
This trace is passed through the buffer to our abstract core model. Core
estimates time when all these instructions will go into the execution stage.
It then releases this buffer back to the emulator. This method slows down
the front-end and we do not have to make provision for large buffers between
front-end and the replay core as done in[16]. The number of such buffers
maintained is equal to the sum of maximum number of instruction bundles
issued for fetch and the pipeline length of the abstracted core. The number
of instructions contained in every buffer are either equal to the fetch width
of the processor or lesser if branch predictor predicts branch mispredictions
in the current fetch bundle.

In case of branch misprediction, front-end emulator generates separate
event and the replay core stops releasing buffers back to the front-end emu-
lator till the marked branch instruction completes execution.

Functional emulator ensures synchronization variable semantics in the
application is honoured. Front-end spins to acquire the lock, till lock is
available and all these instruction traces generated during spinning are passed
to the replay core for timing simulation. The difference between the number
of instructions executed by the reference simulator and by our framework is

less than 3% for applications using synchronization variables.

3.2 Replay Core

Replay Core replays its own [E-ER trace. It feeds instruction or data ad-
dresses to the cache model at the estimated time. It uses dependency anno-
tations in the trace to calculate the time at which each instruction goes into
the execution stage and completes its execution. Each data reference in the
trace is either a data read or data write. Every instruction belongs to a class
depending on its execution stage latency. Table 1 gives different instruction
classes and latency of each class. In SESC simulator, each instruction waits
for nine clock cycles which includes the delay required for instruction decod-

ing and register renaming. We add this delay to every instruction after it is
fetched.

Table 1: Execution Unit Latency. These are used to calculate firing period for IE transi-
tions.

Class Type Latency
Integer operations 8
Branch 8
Float addition,subtraction 8
Float multiplication 9
Float division 17

These latencies are specific to the SESC simulator, and will vary de-
pending on the processor being used. In addition to the above latencies,
instruction does not go into the execution stage, if its data dependencies are
not satisfied.

3.3 Abstract Model of Memory Subsystem

We have implemented fast cache model which takes memory references and
returns hit/miss information. It also returns latency incurred for each mem-
ory access. We have been able to avoid traditional cycle-accurate implemen-
tation of the memory subsystem due to following reasons:

e Cache configuration on the multi-core platform is not “strictly” inclu-
sive. Hence cache evictions do not take place in upper levels of cache
(e.g. L1 cache) due to conflict misses in lower levels of the shared cache.
Cache line will get evicted in L1 cache only in case of a coherence miss.

e Most of the accesses are hits in L1 cache. Hence timing information
returned by our abstract cache model is accurate enough to estimate
the total time taken by the application to complete its execution.

Core 0 —_— — - Core N

Y Y

Private Private
Cache - — - Cache
Hierarchy Hierarchy

< Shared Bus, Interconnect >

Shared Cache

Figure 4: Current framework simulates caches with different sizes and levels of hierarchies.
Our framework considers shared bus interconnect.

Our implementation can be considered as extension of Dinero|6] type of trace-
driven cache model. Dinero gives cache hit/miss information for uniprocessor
environment. However we have attempted to estimate the same for multiple
threads and multi-core environment. In addition to that, our model also
returns latency associated with each memory access.

We do not model miss status handling registers(MSHR)[12]. We also do
not model cache coherency protocol, since most of the data parallel appli-
cations divide data equally among the threads and these threads work on
their portion of the data. Synchronization variables are the only frequently
accessed shared variables among these threads. The number of accesses to
these variables is negligible compared to the total memory references. This
enables us to avoid cycle-accurate simulation of cache coherence messages.

Our framework can simulate caches with different hierarchies and sizes
as shown in the Figure 4. We have assumed shared bus interconnect in
this work. For other types of interconnects, separate abstract model should
be created to estimate the contention and delay incurred at different links.
Our framework can estimate performance of data parallel applications which
divide data among threads. This includes applications which distribute loop
iterations among different threads. It can be used to predict the performance
of multiple programs as well.

4 Experimental Setup and Results

We compare our results against the results obtained on the SESC cycle-
accurate simulator. Table 2 describes applications used for simulation. MP-
GEnc and MPGDec are from Alpbench[13] and do not employ any syn-
chronization constructs. The remaining applications are from Splash-2 [21]
benchmark suite and use synchronization constructs. FFT and RADIX are
cpu bound applications. Only 25% of the instructions in FFT and Radix

are memory access operations, whereas in the case of LU close to 50% of the
instructions are load/store instructions. Ocean uses 5 mutexes and 13 syn-
chronization barriers. It makes approximately 52,000 synchronization calls
with 32 threads. For all these applications, we skip initialization and then
simulate them to completion. Table 3 gives the processor specification. Our

Table 2: Application Specification

Application Description

LU Continuous 256x256 Matrix, B=16
LU Non-Continuous 256x256 Matrix, B=16
MPGEnc 128x128, 3 Frames

MPGDec 128x128, 3 Frames

FFT 64K Complex Data points
OCEAN Continuous 256x256 grid
RADIX 256K keys

Table 3: Processor Specification

Processor
Execution In-order
Frequency 3GHz
Branch Penalty 8 cycles
Branch Unit Alpha style Hybrid
Fetch/Issue/retire 4/4/5
Issue Queue Size 8
INT registers 96
FP registers 80
ROB Size 176
LdSt/Int/FP units 2/2/3

framework has been evaluated for four different cache configurations as shown
in Table 4. 121048 is the base configuration and rest of the configurations
show variations applied to this base configuration. We have performed our
experiments on a PC with 2GHz dual core Intel Xeon processor with 6MB
cache. We have taken readings for issue-width of 4 and varied the number of
threads from 1 to 32 in power of 2.

4.1 Evaluation of Simulation Speedup

The results of our experiments are presented in Figures 6-11. The results
show the percentage error recorded with respect to the reference simulator.
The speedup achieved for the various configurations is also presented. LU
(Continuous and Noncontinuous) show higher average speedup within the
range of 3x-4x. The speedup achieved can be accounted to the memory
bound nature of these applications. Also these applications have a longer
simulation time compared to the other applications. The average speedup
for the other applications is in the range of 2x-3x. Clearly, our approach gives

10

Table 4: Cache/Interconnect Test Configurations
BASE Configuration - L2.1048

IL1

32KB,2-way,2 ports

Hit/Miss lat 1/1
ITLB entries 64
DL1 32KB, 4-way,2 ports, WB
Hit/miss lat 2/2
DTLB entries 64
Coherence protocol MESI protocol
Unified, shared L2 1024KB

8-way, WB, 2ports
Hit/Miss latency 9/11

Interconnect shared bus interconnect
L1L2DBus 1 port, 1 cy. port occupancy
Memory Hit/Miss latency 469/469
L3
DL1 Private, 32KB, 4-way,2 ports, WT
Hit/miss lat 2/2
L2 Private,512KB,8way
WB, 2ports
Hit/Miss latency 7/9
Coherence protocol MESTI protocol
L3 shared,1024KB,8way
WB, 2ports
Hit/Miss latency 9/11
122048
Unified, shared L2 2MB,8way
Hit/Miss latency 10/12
L1
DL1 64KB, 8way
Hit/miss lat 2/2

better speedup for long running applications. This speedup is dependent on
memory configuration used. We see lesser speedup for the configuration with
shared L3 cache. This is because, due to larger private caches, most of the
cache accesses are cache hits which reduces simulation time in the reference
simulator as well.

4.2 Evaluation of Execution Time of Application

Error in estimation of execution time of applications like MPGEnc, MPGDec
and LU is independent of the number of threads. In case of Radix, this error
increases on increasing the number of threads. The execution time of Radix
decreases nearly linearly with an increase in the number of threads. The
execution time drops nearly 25x when the number of threads is increased from
1 to 32. The percentage error that is seen with single threaded execution is
amplified with increase in the number of threads due to decreased execution
time of the application with 32 threads. Despite of this, the percentage error
is below 5%.

In case of FFT, a drop in percentage error is seen with an increase in

11

w

LU (Continuous) - Execution Time

-
"

2 2096

25

E

£

8§27

g 2 1048
251 E L1
£

- -3
o

5

%

wn
"

«ié=E_Avg
01
1 2 4nThreadss 16 32
LU (Continuous) - Simulation
Speedup
5
o
3 4
] —Sp |2 1048
2 3 -
v
.5 2 4 Sp_L1
§ 14 - Sp_ 13
.E 0 N Sp_12_2096
1 2 4 8 16 32 = Sp_Avg
nThreads

Figure 5: First graph shows % error in estimation of Execution Time of LU (Continu-
ous). Next graph shows simulation speedup obtained over the reference simulator by our
framework.

LU (NonContinuous) - Execution Time

5
E 25
=
g 27 - 2 1048
2 15 A E_L1
Pl 1
£ — 3
§ 051 -2 2096
I
) —H=E_Avg
1 2 4 8 16 32

nThreads

LU (NonContinuous) - Simulation
Speedup

. 5

3 4

§ 34 — Sp (21048

<, Sp_LL

L‘E I —p 13

E o - Sp_L2_2096
1 2 4 8 16 32 = Sp_Avg

nThreads

Figure 0: First graph shows % error in estimation of Execution Time of LU (NonContin-
uous). Next graph shows simulation speedup obtained over the reference simulator by our
framework.

12

MPGEnNc - Execution Time

6
g
Es
c
g4 - 12 1048
g 3 E_L1
f: |
£ ? — 3
51 m—C (2 2096
g0
x =e=E_Avg

1 2 4 8 16 32
nThreads
MPGENc - Simulation Speedup
25

o

-ﬂé‘ 2

&5 B Sp_ 121048

5, Sp_L1

5 - Sp_ (3

E 05

@» —Sp_12_2096

0 =he=Sp_Avg
1 2 4 8 16 32
nThreads

Figure 7. First graph shows % error in estimation of Execution Time of MPGEnc. Next
graph shows simulation speedup obtained over the reference simulator by our framework.

MPGDec - Execution Time

5
E 25
<
§ 2 - (2 1048
g 15 E_L1
g
s EmNE |3
& 05 m—C (2 2096

0

=He=E_Avg
1 2 4 8 16 32
nThreads

MPGDec - Simulation Speedup

25
S 24 i |
3 23
& 2‘2 B Sp_ (21048
2 2
£ 21 Se_L1
E 2 4 —Sp (3
@ 19 = Sp_L2_2096
18
=e=Sp_Avg
1 2 4 8 16 32
nThreads

Figure 8: First graph shows % error in estimation of Execution Time of MPGDec. Next
graph shows simulation speedup obtained over the reference simulator by our framework.

FFT - Execution Time

7
©
E 6
5 i - 2 1048
g, E L1
&
£ 2 |3
g1 mE_|2 2096
Lo
x wl=E_Avg
1 2 4 8 16 32
nThreads
FFT - Simulation Speedup

®

2 25 - - Sp_[2_1048

5 27 Sp_L1

% 15

RS —Sp_13

@ 05 —5p 122096

- =He=Sp_Avg
1 2 4 8 16 32
nThreads

Figure 9: First graph shows % error in estimation of Execution Time of FFT. Next graph
shows simulation speedup obtained over the reference simulator by our framework.

Ocean - Execution Time

@
£
e
s EENE 121048
2
3 [N}
£
E g |3
§ m—E_L2_2096
&
® E_Avg

5 T % 3 16

nThreads

Ocean - Simulation Speedup

5
a
g i
g, m—Sp_ (21048
&
é 2 d Sp_L1
3 —p 13
£ 19
@ —Sp (22096

0

== Sp_Avg
1 2 4 8 16 32
nThreads

Figure 10: First graph shows % error in estimation of Execution Time of Ocean. Next
graph shows simulation speedup obtained over the reference simulator by our framework.

14

Radix - Execution Time

EEE_ (2 1048

E_L1

% Error in Execution Time
Ao R N WA OO

i mE_(3
4 BN E L2 2096
. =e=E_Avg
1 2 4. 8 16 32
nThreads
Radix - Simulation Speedup
35
g 3
3 25 4
:,,_ > L I Sp_L2_1048
'E- 15 Sp_L1
s 1 4 [Sp_L3
E 0.5 A mSp_|2_2096
0 «He=Sp_Avg
1 2 4 8 16 32
nThreads

Figure 11: First graph shows % error in estimation of Execution Time of Radix. Next
graph shows simulation speedup obtained over the reference simulator by our framework.

the number of threads, which seems quite counter intuitive. For a single
threaded execution, error in estimation of execution time is an average of 6%
and goes down to 2% for 32 number of threads. This is because, FFT with
a single threaded execution has 2.74% of data miss rate. So for every data
miss, it accesses shared interconnect. Contentions at the shared interconnect
are not modelled in our framework. We assume contention to be negligible
compared to cache latencies. The number of shared interconnect accesses
remain the same, even on increasing the number of threads but this delay
gets overlapped with other memory accesses. So we ignore contention and
do not add it to the shared cache latency.

Above mentioned factor accounts for the large percentage in error seen in
Ocean. Error in estimation of execution time is very large in case of Ocean
which is an average of 22% for 32 threads. Ocean makes approximately 52000
concurrent synchronization variable calls which triggers lot of cache coherence
messages. This causes contentions at the shared interconnect. When readings
are taken for the reference simulator with an ideal interconnect, this error
drops to an average of less than 4% for 32 threads.

15

5 Error Analysis of the Framework

Simulation of an multi-threaded application is inherently non-deterministic
on varying memory subsystem configuration. We have attempted to predict
the execution time of such non-deterministic applications. In our framework,
error can be introduced due to various reasons such as,

e Abstraction of the core

e Abstraction of the memory subsystem

5.1 Discussion

The time at which an instruction enters the execution stage depends upon
contention generated at various core components like unavailability of ROBs,
instruction queue buffers etc. By not modelling core components like load /store
queue sizes, the number of ports of load/store queue, size of ROBs, size of
the instruction queue etc, introduces error in calculating the time at which
an instruction goes into the execution stage and time at which external refer-
ences are made to the memory subsystem. Our reference simulator does not
execute instructions from mis-speculated path. It only adds misprediction
penalty to the cycle count.

Another source of inaccuracy in our framework is due to abstraction of
the memory subsystem. We have not implemented MSHR in our cache model
but reference simulator has MSHR at all cache levels. All references waiting
in MSHR in the reference simulator will add this waiting period in addition
to hit latency. But in our model it returns only hit latency. This introduces
error in the estimation of execution time. We do not model cache coherency.
Therefore estimation of miss latency will not be very accurate. But overall
error is still within 6% of an average.

6 Related Work

In [20], Daniel Sorin et al. have carried out analytical modeling for shared
memory multiprocessors. This model supports homogeneous applications,
i.e. application memory requests are equally distributed across the relevant
memory modules. However, if the cache size is changed, the simulator needs
to be re-run to estimate some of the application parameters used in the
analytical model. In [10][7], Engin et al. have used artificial neural networks
to develop the analytical model for exploring CMP design space.

16

HySim[9] alternates between native execution of the application and de-
tailed simulation on ISS to achieve speedup over the detailed simulation. In
[17], Erez et al. detect phases in parallel application on the shared memory
architecture and use it to guide simulation at those points. In [3], authors use
co-phase matrix to find individual program phases and guide simultaneous
multi-threading simulation in case of multi-program environment. In [16],
Matteo et al. has built framework to simulate splash-2 programs on 1024
in-order cores CMP platform. Their focus of study is on the characterization
of splash-2 programs so they do not model delays caused by the memory
subsystem and use ideal memory and single cycle processor functional unit
latencies in their experiments.

In[5], Penry et al. show automated parallelization of CMP simulators
and achieve speedup of 7.6x for a 16-processor CMP model on conventional
4-processor shared memory multiprocessor.

7 Our Contributions and Future Work

e We have implemented abstract models of the core and memory subsys-
tem. Our experiments show that for most of the data parallel applica-
tions user need not capture the exact time at which memory reference
arrives at the shared caches since most of the data accesses are first level
cache hits. Approximate estimation of cache hit or miss and hence la-
tency of the memory accesses can be used to estimate the execution
time of the application.

o We differentiate instructions executed by the core as external references
and internal events. Petri-net modelling of a thread execution allows us
to avoid modelling of pipeline stages, load-store queues and ROBs. Our
framework achieves average percentage error below 6% and an average
simulation speedup ranging from 2x-4x.

e We find out data dependencies between the instructions at runtime. So
we can estimate more accurate program dependencies than usual static
time analysis methods[2].

In the future, we plan to explore various cache configurations simultane-
ously in a single simulation. We also need to improve the accuracy of the
interconnect model to account for contentions. Our experiments show that
even on abstracting both core and memory model, we could achieve maxi-
mum speedup of up to 5x over the cycle-accurate simulator. Greater speedup
can be achieved by making simulator multi-threaded. We plan to explore this
possibility in future.

17

References

1]

2]

3]

8]

[9]

[10]

[11]

R.S. C. Aamer Jaleel. Cmpsim: A pin-based on-the-fly multi-core cache
simulator. Workshop on Modeling, Benchmarking and Simulation, 2008.

R. S. Alfred Aho and J. Ullman. Compilers: Principles, techniques and
tools.

M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix
to guide simultaneous multithreading simulation. In ISPASS ’0j: Pro-
ceedings of the 2004 IFEE International Symposium on Performance
Analysis of Systems and Software, pages 45-56, Washington, DC, USA,
2004. IEEE Computer Society.

M. Chrystopher, A. Stanley, and F. jim. Compiled instruction set sim-
ulation. Software, Practice and Experience, 21(8), 1999.

P. David, F. Daniel, H. David, W. Ryan, S. Graham, A. David, and
C. Dan. Exploiting parallelism and structure to accelerate the simulation

of chip multi-processors. High-Performance Computing Architecture,
2006.

J. Edler and M. Hill. Dinero trace-driven uniprocessor cache simulator.

S. A. M. Engin Ipek, Bronis R. An approach to performance prediction
for parallel applications. International Furo-Par Conference, 2005.

R. G. Erik B. van der Tol, Egbert Jaspers. Mapping of h.264 decoding
on a multiprocessor architecture.

L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr.
Multiprocessor performance estimation using hybrid simulation. In DAC

08: Proceedings of the 45th annual conference on Design automation,
pages 325-330, New York, NY, USA, 2008. ACM.

E. Tpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz.
Efficiently exploring architectural design spaces via predictive modeling.
SIGOPS Oper. Syst. Rev., 40(5):195-206, 2006.

T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. SIGARCH Comput. Archit. News, 32(2):338, 2004.

18

[12]

[18]

[19]

[20]

[21]

D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ISCA ’81: Proceedings of the 8th annual symposium on Computer Ar-
chitecture, pages 81-87, Los Alamitos, CA, USA, 1981. IEEE Computer
Society Press.

M.-L. Li, R. Sasanka, S. A.-K. Chen, and E. Debes. The alpbench bench-
mark suite for complex multimedia applications. In IEFE International
Symposium on Workload Characterization, 2005.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-
facet’s general execution-driven multiprocessor simulator (gems) toolset.
SIGARCH Comput. Archit. News, 33(4):92-99, 2005.

P. Marwedel. Embedded system design. Springer International Edition.

M. Monchiero, Ahn, J. Ho, Falconi, Ayose, Ortega, Daniel, Faraboschi,
and Paolo. How to simulate 1000 cores. dasCMP Workshop, 2008.

E. Perelman, M. Polito, J. yves Bouguet, J. Sampson, B. Calder, and
C. Dulong. Detecting phases in parallel applications on shared memory
architectures. In In International Parallel and Distributed Processing
Symposium, 2006.

J. Renau, B. Fraguela, J. Tuck, W. Lui, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Struss, and P. Montesinos. Simulator for cmp
architecture.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X: Proceed-
ings of the 10th international conference on Architectural support for

programming languages and operating systems, pages 4557, New York,
NY, USA, 2002. ACM.

D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood.
Analytic evaluation of shared-memory systems with ilp processors. In
ISCA °98: Proceedings of the 25th annual international symposium on
Computer architecture, pages 380-391, Washington, DC, USA, 1998.
IEEE Computer Society.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: characterization and methodological considerations. In ISCA

"95: Proceedings of the 22nd annual international symposium on Com-
puter architecture, pages 24-36, New York, NY, USA, 1995. ACM.

19

