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Abstract

Chip Multiprocessors (CMP’s) have made their way into servers,
desktop systems and even embedded systems. While power dissipa-
tion limits performance of CMP’s and affects system reliability, en-
ergy efficiency is becoming increasingly important for bringing down
the significant contribution of energy in organizations’ budgets and
the environment, besides enhancing battery life. Dynamic Voltage
and Frequency Scaling (DVFS) is a very effective tool for designing
tradeoffs involving power, energy, temperature and performance.

It is important that the potential benefits DVFS offers are realized.
To that end, in this report, we present a novel software based DVFS
method, which uses a formal Petri net based program performance
model to find energy efficient voltage-frequency settings. We evaluate
this, and a state-of-the-art hardware based DVFS method with two
important classes of parallel applications: data parallel (SPMD style)
applications, and stream multithreaded applications.

From our evaluation, we find that the Petri net performance model
based software method for DVFS achieves significant Energy/Throughput2

(ET−2) improvements for both classes of multithreaded applications.
The hardware based method achieves high ET−2 improvements for
SPMD applications, but performs poorly in the case of stream appli-
cations. For stream applications, a simple linear interpolation based
DVFS method achieves all the benefits of the Petri net based method.
We also observe that support for independent voltage and frequency
control for each core is essential for obtaining high ET−2 improvement
for stream applications.

1 Introduction

Chip Multiprocessors (CMPs) continue the legacy of the potential for in-
creasing performance for newer processor generations. While multithreaded
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programs directly benefit from CMPs, single threaded programs can bene-
fit by utilizing the larger caches. CMPs have also been used for improving
system throughput. Moore’s law and increasing performance demands have
helped them make their way into servers, desktop machines and even embed-
ded systems.

The advent of CMPs has renewed the interest in parallel programming,
and encouraged the design of new programming languages and paradigms
as well. Several scientific applications have been the targets for conventional
parallel computing systems, as they exhibit SPMD (Single Program Multiple
Data) parallelism (also called as data parallelism) in which the same set of
operations are performed on different data elements. OpenMP [1] compiler
directives can be used to parallelize sequential programs without much diffi-
culty, for applications exhibiting SPMD parallelism. Many modern emerging
applications exhibit task and pipeline parallelism as well. Stream Program-
ming offers a convenient way to express parallelism for such applications [5].

In this work, we consider these two important classes of applications.
Most of the implementations of data parallel applications we consider in this
work, which include SPECOMP [3] and NAS parallel benchmarks [2], use
OpenMP directives for parallelization. For stream applications, we consider
implementations in the streamit language [5].

1.1 OpenMP Parallel Directives

OpenMP is a set of compiler directives and libraries used for writing explicitly
parallel programs [1]. The directives are defined for C, C++ and fortran, and
many modern compilers support them.

1.1.1 Programming Model:

OpenMP uses the fork-join parallel programming model, where a master
thread creates a set of threads when needed. It encourages the evolution of
parallel programs from sequential programs. For creating threads, it supports
constructs that can be classified as

• SPMD based: The ’parallel’ and ’for’ constructs essentially allow the
execution of the same code by different threads. The ’for’ construct
relieves the programmer from distributing the iterations of the loop
among different threads.

• OpenMP Section based: This construct allows different threads to
execute different code segments.
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1.1.2 Data Sharing:

OpenMP is based on shared memory programming model, where threads
communicate among themselves using data shared among them. By default,
global and static file scope variables are shared. Automatic variables, and
stack variables of functions called from parallel regions are private.

This default categorization can be overridden by explicit specification us-
ing the shared, private, firstprivate, lastprivate, threadprivate clauses. While
the firstprivate specification for a variable allows initialization of the variable
from the value of the corresponding variable of the master thread, lastprivate

updates the value of a global variable with the value from the last iteration
of the for loop associated with the specification. The threadprivate clause
makes a global variable private to each thread. OpenMP supports special
clauses for reduction operations.

1.1.3 Synchronization:

In addition to the implicit barriers at the end of ’parallel for’ blocks, OpenMP
provides the following synchronization constructs:

• critical section: Only one thread can execute the code enclosed between
critical and end critical constructs

• atomic: Similar to critical section, but for a single statement

• barrier: Construct for explicit barrier synchronization

• flush: All memory operations before the flush must finish before any
new memory operation after flush begins; Variables in registers must
be updated in the memory

• master: Only the master executes the block. There is no implied barrier
after this construct.

• single: Only a single thread executes the specified block. A barrier and
flush are implied at the end of the block.

• ordered: It ensures that the program block within the construct is
executed in sequential order

1.1.4 Library Functions:

OpenMP also supports different library routines for managing locks, control-
ling the degree of parallelism, and to determine the number of processors in
the system.
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The following is a simple c program computing dot product of a vector
and itself. It demonstrates reduction and for clauses. There are implicit
barriers after the parallel for loops. For the reduction operation, a local copy
of dSum is created for each thread, and initialized to 0, since the operator is
+.

#include <omp.h>

#include <stdio.h>

#define ARRAY_SIZE 400000000

double d[ARRAY_SIZE];

int main() {

double dSum = 0.0, dProd;

int i;

#pragma omp parallel for

for (i = 0; i < ARRAY_SIZE; i++) {

d[i] = i;

}

#pragma omp parallel for

reduction(+:dSum) private(dProd)

for (i = 0; i < ARRAY_SIZE; i++) {

dProd = d[i] * d[i];

dSum += dProd;

}

printf("%g\n", dSum);

}

1.2 Stream Programming using Streamit

Stream Programming helps express more general forms of parallelism such as
task and pipeline parallelism [5]. Many applications in the audio, video, and
digital signal processing, encryption and decryption, and networking domains
can be conveniently programmed explicitly parallel, using this model. Infact,
these applications, to a large extent, have motivated the design of the Stream
Programming paradigm. These applications exhibit task, data and pipeline
parallelism, and Stream Programming languages such as Streamit provide
language constructs that help programmers express parallelism easily.

In Streamit, a program consists of a set of autonomous actors, called
filters, executing some action, termed work repeatedly. These filters commu-
nicate explicitly through communication channels, and the entire program
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can be viewed as a stream graph. The amount of data a filter produces or
consumes for performing its work is fixed, and is specified when the filter is
defined.

For exposing task level parallelism, the SplitJoin construct can be used. In
this construct, independent parallel streams originate from a common splitter
filter, and merge into a common joiner filter. Actors can also be connected
together in a sequence, and this exposes pipeline parallelism. A filter exhibits
data parallelism, if there is no dependence between the execution of one
instance of its work and any other instance, and this can be easily detected
by a compiler.

While workload partitioning, load balancing and communication schedul-
ing are hard challenges for the compiler, they can be more effectively solved
than the problem of extracting parallelism from sequential programs - Infact,
previous work [4] has shown that a sophisticated compiler has the potential
to fetch impressive speedup benefits for Streamit programs.

1.3 Challenges for Performance in CMPs:

While CMPs carry a huge potential for achieving high performance for several
classes of applications, they also present some challenges in realizing the
potential.

Power dissipation has become a first class constraint in the design of
modern processors. Temperature, along with power, limits performance of
CMP’s, and affects system reliability. For servers and data centers, they
determine the cooling cost; for mobile systems, they check the continuous
usage of these systems. Energy efficiency is critical for increasing battery life
for embedded systems. It is becoming increasingly relevant for servers and
workstations as well, for bringing down the significant contribution of energy
in organizations’ budgets, and for the environment.

1.4 Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS) is a very effective tool for
designing tradeoffs involving power, temperature, energy and performance
[8–10,14]. Several state-of-the-art CMPs available in the market [11,12] sup-
port DVFS, but most of them require that all cores operate at the same volt-
age. DVFS has been used at the hardware, operating system and application
level to achieve different goals such as optimizing system ET−2, power con-
strained throughput optimization and temperature constrained power con-
trol.
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In this report, we present a novel software based DVFS method, which
uses a formal Petri net based program performance model to find energy
efficient voltage-frequency settings. We evaluate this method with SPMD
applications which exhibit data parallelism, and stream applications, which
exhibit task and pipeline parallelism as well. We also share our experiences
with DVFS when the number of threads is more than the number of cores.
We choose to compare the DVFS techniques using the ET−2 metric (as in [6]),
since it is a voltage invariant power-performance metric [45].

Our main contributions are

• We build a formal Petri net based program performance model for a
CMP system, parameterized by architectural settings, resource config-
urations, and a memory system that services requests from multiple
threads

• We use this model to find energy efficient DVFS settings for different
classes of multithreaded applications

• Our evaluation finds several interesting results:

– the Petri net based method achieves significant ET−2 improve-
ments for both SPMD parallel and stream applications

– the best performing hardware based DVFS controller in a recent
evaluation [6] performs well for SPMD parallel applications, but
achieves little ET−2 improvements for stream applications

– a simple linear interpolation based scheme applicable for the stream
applications achieves all the benefits of the Petri net based method

– for stream applications, per-core voltage/frequency control is very
important for achieving high ET−2 improvements for little perfor-
mance degradation for applications exhibiting different forms of
parallelism

• We have significantly advanced the state-of-the-art of m5sim, a popular
multicore full system simulator [15], integrating power models, support
for DVS, and software thread-specific path profiling of binaries. To
this end, we have also designed and implemented an intermediate rep-
resentation for binaries, that aids in the analysis of binaries at different
levels: instruction, basic block, and control flow graphs. This inter-
mediate representation is used by our software based voltage-frequency
selection module for finding energy efficient voltage-frequency settings.
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We have used the m5sim simulator [15] in full system mode for our ex-
periments.

The rest of the report is organized as follows. We characterize program
execution in a processor, and introduce Petri net based performance modeling
in Section 2. We explain how Petri net based performance modeling can
be used for finding energy efficient voltage/frequency settings, in Section 3.
Section 3 also briefly explains the state-of-the-art hardware based controller
for DVFS, which was originally proposed in [7] and found to be the most
effective DVFS method in a recent evaluation of different DVFS controllers
[6]. We describe our experimental setup, including our enhancements to the
m5sim simulator [15], in Section 4. In Sections 5 and 6, we discuss our
experimental results for SPMD and Stream programs, respectively. Section
7 provides information about the related work, and we conclude in Section
8, with pointers for future directions.

2 Petri net based Performance Modeling

Petri nets are natural abstractions for modeling and evaluating performance
of programs. Using their expressiveness, we can capture both the properties
of a program and the properties of the system in which the program executes.
They have been used for finding energy efficient frequency (voltage) settings
in [13] in the context of sequential programs running on a single core MCD
processor, besides finding kernels in software pipelining [17].

We first define Petri nets, how they are constructed, explaining the intu-
ition behind using Petri nets.

2.1 Petri nets: A Short Introduction

Formally, a Petri net is a three tuple (P,T,A), where P is the set {p1, p2, . . . pn}
of places, T is the set {t1, t2, . . . tm} of transitions. Both P and T are non-
empty, and disjoint. A is the multiset (bag) of arcs that connect places and
transitions.

Places can hold tokens. A marking is a function M : P− > I, where I

is the set of non-negative integers, indicating the number of tokens, a place
has. A transition can fire if all places incident into it have a non-zero token
count.

When a transition fires, the token count of each place incident into it is
decremented by one, and the token count of each place incident out of it is
incremented by one. A timed Petri net is a tuple (PN, Ω) where PN is a
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Petri net and Ω : T− > ℜ+ assigns the time required by each transition ti in
PN to fire (ℜ+ is the set of positive reals).

We construct the timed Petri net model from a detailed precedence graph
that captures the precedence constraints characterizing program execution,
and the system resource specification.

The precedence graph is based on [16], but it models the constraints in
our simulated system. Nodes of the graph represent pipeline stages, and
edges represent precedence relation among them. Edges have labels that
correspond to pipeline stage latencies.

From the precedence graph and the resource specification, the Petri net
can be constructed [17] by

• creating a transition ti for each node i of the graph

• creating a place pi,j for edge (node i, node j) of the graph; the place
has ti as an input transition and tj as an output transition

• creating a place for each resource type; a transition using that resource
is both an input and output transition for that place; the token count
is initialized to the number of instances of that resource

Our construction of Petri nets from precedence and resource constraints
is based on [17]. In the Petri nets that we construct, transition firing times
are determined by functional unit or pipeline stage latencies. For transitions
corresponding to memory access stage of memory access instructions, firing
times are determined by latencies of caches and memory, and whether a
particular access hits or misses in the cache, and can therefore be theoretically
modeled as a random variable (and only in this case - for memory access
transitions - the mapping Ω is from a transition to a random variable, instead
of a fixed real [48]). Also when multiple transitions can fire at the same time,
the transition that corresponds to the earlier dynamic instruction in program
order gets priority.

For a Petri net model constructed like this for a program loop and sim-
ulated, the rate of firing of transitions of the Petri net corresponds to the
initiation interval (II) [17] of the loop.

In the rest of this section, we will illustrate the use of Petri nets in esti-
mating the average execution time of serial and parallel versions of a loop,
and conclude how this, in turn, can be used to find energy efficient frequency
(voltage) settings. In this process, we also highlight how CMP’s increase the
pressure on memory system.
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2.2 Performance Estimation using Petri Nets

We consider the small program loop in Figure 1 to illustrate performance
estimation using Petri nets. The program computes the sum of square roots
of doubles in an array.

1

432

f,0

12f,1

m,0

m,1

f,1

f,0

m,0

Data Dependence Edges

l: load f2, BASE(R1−=8)
f4 = f4 + sqrt(f2)
bnez R1, l

Pipeline Stage Order Edges

Inorder Fetch Edges

ROB Size Induced Edges

f: Time Period of CPU

Time Period of Memorym:

m, 2

f,2f,0
12f,2

Figure 1: A Loop and its Precedence Graph

T1

T2
T3

T4

P1,1

P1,2

P2,1
P2,3

P1,3

P3,1

P3,3

P4,1
P1,4

P2,2 P2,4Pmem

Figure 2: Petri net with Initial Marking for the Graph in Figure 1

The load instruction loads the double in the address Base + R1 to F2,
and post decrements R1 by 8. There is a single instruction, that computes
the square root of the source operand (F2) and adds it to F4. The loop
continues to execute till R1 becomes 0.

We make several simplifying assumptions to make manual simulation of
the Petri net easy. We assume that the target processor can fetch 3 instruc-
tions per cycle, has a 6 entry reorder buffer (ROB), and predicts the branch
perfectly. The latency of the square-root-add operation is 12 cycles. There
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is no data cache, and the memory system takes 6 cycles, on an average, to
respond. The post decremented value is visible when the load finishes. The
number of physical registers is large, and does not limit the throughput of
the loop.

The nodes of the graph in Figure 1 represent the two pipeline stages (fetch
and execute) in the processor. We show only one common fetch stage (Node
1) for all the 3 instructions. Nodes 2, 3 and 4 show the execute stages for the
load, square-root-add, and the branch instructions respectively. The graph
shows four different types of precedence edges: data dependence, pipeline
stage flow, in order fetch and ROB size induced edges.

A label of edge (m, n) is an (l, d) tuple: It means that the (i + d)th

iteration of n can begin, l units of time after the ith iteration of m has been
initiated. For instance, the edge from node 3 to node 1 has the label (12f, 2).
It means, for instance, that the third iteration of node 1 can be initiated
only after 12∗f units of time have elapsed following the initiation of the first
iteration of node 3. In Figure 1, f denotes the time period of the CPU, and
m, the time period of memory.

Figure 2 shows the Petri net for Figure 1, following the rules for deriving
the Petri net based on precedence graph and resource specification, in Section
2.1. The dashed circle around the place Pmem signifies that it is a place
corresponding to the resource constraint. We assume that there are sufficient
instances of other resources, that they can be ignored while modeling.

Table 1 shows the firing of transitions when the loop is run on a single
core system.

In Table 1, we can observe the repeating sequence of firing of transitions
starting from cycle 19. The bottleneck operation is the sqrt-add operation
(Transition T3), and the loop takes 12 cycles on an average, for 1 iteration
(12 cycles is the latency of T3).

Table 2 shows the firing of transitions in a core, when the loop is run on
a 4-core CMP system. For simplicity, we assume that the memory system is
available only for 25% of the time for a core, because of the requests from the
other 3 cores, for this example. In practice, the availability of the memory
system depends on the distribution of accesses to different banks, and the
architecture of the memory system. The details of modeling requests to
different banks are explained in Section 3.

We can observe the repeating sequence of firing of transitions starting
from cycle 19. Here, the bottleneck becomes the memory system, and one
iteration of the loop takes 24 cycles on an average - this is because, the
cores can generate one request every 12 cycle (determined by the sqrt-add
operation), but the memory system can service only one request of a core
every 24 cycles.
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Table 3 shows the firing of transitions in a core, when the loop is run on
a 4 core CMP system, with the cores operating at half the frequency, when
compared to the ones corresponding to Table 2. In this case, the rate at which
each core generates a request (1 request in 24 (unscaled) cycles) naturally
matches the rate at which the memory system can service the request of a
core (1 in 24 (unscaled) cycles). The loop completes 1 iteration every 24
(unscaled) cycles, even with reduced frequency.

Time Fired Comments
0 T1
1 T1,T2 T2 @ 7
7 T2, T3, T4 T2 @ 13, T3 @ 19
13 T4
19 T1, T3 T3 @ 31
20 T2 T2 @ 26
26 T4
31 T1, T3 T3 @ 43
32 T2 T2 @ 38
38 T4

Table 1: Firing of Petri net in Figure 2 in a Single Processor System

Time Fired Comments
0 T1
1 T1, T2 T2 @ 7; Mem @ 25
7 T3, T4 T3 @ 19
19 T1
25 T2 T2 @ 31; Mem @ 49
31 T3, T4 T3 @ 43
43 T1
49 T2 T2 @ 55; Mem @ 73
55 T3, T4 T3 @ 67

Table 2: Firing of Petri net in Figure 2 in a 4-core CMP System

Time Fired Comments
0 T1
2 T1, T2 T2 @ 8; Mem @ 26
8 T3, T4 T3 @ 32
26 T2 T2 @ 32 Mem @ 50
32 T1, T3, T4 T3 @ 56
50 T2 T2 @ 56; Mem @ 74
56 T1, T3, T4 T3 @ 80

Table 3: Firing of Petri net in Figure 2 in a 4-core CMP System : All Cores
run at Half of Max. Frequency

This example demonstrates how multiple cores increase the pressure on
the memory system, and how Petri nets can be used for modeling perfor-
mance.
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We capture the increased pressure on the memory sub-system due to the
activities of concurrent threads in our Petri net model. This is very impor-
tant, because ignoring the memory sub-system can result in highly conserva-
tive voltage (frequency) settings, particularly when it is the bottleneck [13].
Our voltage (frequency) selection procedure (a binary search over available
frequencies) uses the Petri net model to evaluate the performance impact
of different frequency settings and chooses the least frequency setting that
satisfies the performance constraints.

We elaborate on the Petri net model and the frequency (voltage) selection
procedure used in Section 3.

3 Frequency Selection Methods

In this section, we will have a detailed look at the Petri net performance
model based software scheme, and the Greedy Controller, the best performing
hardware DVFS controller in [6].

3.1 Petri net Performance model based Method:

In this method, we first identify program segments (called regions) for which
DVFS can be applied. We then find energy efficient voltage (frequency)
settings for the identified regions, and then insert voltage (frequency) recon-
figuration instructions at the boundaries of the chosen program segments.

We analyze application binaries for identifying program regions, and for
choosing frequency settings. The output of our method is a file that lists the
reconfiguration points (Program Counters) and the corresponding voltage
(frequency) settings. The m5sim simulator is enhanced to interpret this and
implement the reconfigurations.

We identify DVFS-applicable regions for a program based on its structure
[10, 13, 18, 19]. For every region identified, different frequency settings are
evaluated, and the best setting meeting the performance constraint is chosen.
The evaluation favours lower frequency settings, because they can potentially
result in more energy savings. The performance constraint ensures that the
energy savings is not at the cost of an unacceptable performance loss (A
huge loss in performance can also cost us in energy due to leakage energy
consumption).

To evaluate the impact of a frequency setting on program performance,
the Petri net based program performance model is used. With the perfor-
mance model, we find the lowest frequency setting that meets the perfor-
mance constraint using binary search for each identified region, and choose
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it as the voltage-frequency setting for it.
Figure 3 gives a high level view of the voltage-frequency selection proce-

dure.

Region Identification

Next Freq. Setting for Bin Search

More Frequency Setting to Explore?

Frequency Binding

Path Profile for
Main Thread

Cache Miss 
info for all 

Petrinet Based Performance Estimation

threads

Precedence Graph Construction

Yes

No

Figure 3: Overview of Frequency/Voltage Selection

Region Identification: A region corresponds to a well defined structure
of a program. It is either a natural loop [20] or an acyclic graph whose
nodes are regions or basic blocks [10,18]. Boundaries of regions are potential
reconfiguration points. Because there is a finite cost in terms of energy and
time to effect a reconfiguration, a region is chosen for voltage (frequency)
reconfiguration only if it runs long enough to offset the cost.

As in [13, 18], if at least 10000 instructions are executed on an average
in a region each time it is entered, then the region will be chosen for recon-
figuration (In our experimental setting (Section 4), it takes about .8 µs to
transition from the highest frequency setting to the least setting, in which
a CPU core can execute atmost 12800 instructions when operating at full
speed.)

Regions can be nested, and in such cases, an outer region is chosen either
if

1. no inner region is a reconfiguration point, and the average number of
instructions executed in it and its descendants, for each entry into the
region is atleast 10000
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2. the average number of instructions executed in the basic blocks exclu-
sive to it, and in the descendants that are not chosen for reconfiguration
is atleast 10000

These rules help minimizing ineffective reconfigurations (a setting which is
overridden by another, before the former takes effect) [13].
Thread-Specific Path Profiling: We use hierarchical Ball Laurus Path
Profiling [21,22] to get information about the frequency of execution of each
path in a region, for every function. A path is a sequence of nodes, which
can be basic blocks or loops (regions). Regions that are parts of nodes in a
path are expanded recursively during Petri net simulation.

From the Hierarchical Path Profile (HPP), we first arrange paths in the
descending order of their execution frequencies, and generate instruction
traces for these paths, for constructing precedence graphs. To simulate the
execution of different paths for outermost regions of a function (whose av-
erage trip count is always 1), paths in a region are chosen in a round-robin
fashion, whenever the region is simulated. The number of times a path is
simulated is determined by the execution frequency of the path, and the
average trip count for the region.

Because the HPP subsumes basic block and edge profile, it is also used
for identifying long running regions.

The HPP is recorded for each software thread of the application non-
intrusively, by making changes to the simulator. Details of this are present
in Section 4.1.
Thread-Specific Cache Hit/Miss Profiling:

Misses to memory provide excellent opportunities for scaling down fre-
quencies without sacrificing performance too much. It is critical to get an
accurate estimation of misses, because a lower estimate of misses adversely
affects competence whereas a higher estimate could inflict severe performance
loss.

Currently PDVFS concentrates on misses which occur at regular inter-
vals. Each memory access instruction is associated with a single period of
occurence of miss, for each thread. With this information, the Petri net
model delays the completion of the firing of the MemAccess transitions of
frequently missing memory access instructions, periodically, driven by the
Cache Miss profile.

In general, during the program execution, the period of occurence of
misses for a memory access instruction could vary. For the Petri net simu-
lation, PDVFS considers only the members of the smallest set S of periods
which totally contribute to atleast 80% of the miss periods. We need to clas-
sify a memory access instruction as a frequent hit or a frequent miss, and
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the period of occurence of miss, for frequently missing accesses. For each
miss period p ∈ S, we account for p − 1 partial hits, and we treat all partial
hits as misses. We classify an access as a frequent miss, if the number of
misses computed this way is atleast 70% of the total number of accesses. We
conservatively set the period of occurence of miss as the largest member in
S.

For instance, let {M, H, H, H, H, H, H, H}10 be the outcome of cache ac-
cesses for a load instruction for a particular thread, where M denotes a miss
and H denotes a hit. Here, there are 10 misses, 70 hits and the miss period
8 occurs nine times. Therefore this this heuristic will decide that there are
(8−1)∗9 = 63 overlapped hits. So there are 73 misses (including overlapped
hits), which is more than 56 (70% of 80) and PDVFS classifies this load in-
struction as a miss, with period 8 (This means that every eighth instance of
the transition corresponding to the memory access stage of the load instruc-
tion will have a firing time equal to the sum of memory access and cache
access latencies). We found that this heuristic identifies frequently missing
instructions with regular strides and miss periods reasonably well.

We record the per thread miss profile for each memory access instruction.
We will shortly see how this information is used in Petri net simulation.
Precedence Graph Construction:

The precedence graph captures precedence constraints characterizing in-
struction execution in a processor. It is based on [16], but it reflects the
constraints in the m5sim simulator (simulating Alpha ISA). Nodes in the
graph correspond to pipeline stages and edges, the precedence relation among
them. Tables 4 and 5 specify the graph. Edges encode the latency of the
pipeline stages (nodes) they connect. In Table 5, edges connecting consecu-
tive pipeline stages are not specified. An important difference between our
graph and [16] is that certain resource constraints that can not be captured
by a graph (eg. finite number of adders) are modeled separately in the Petri
net simulation [13].

Node Microarchitectual Event
Dispatch (D) Register Renamed and routed to the corresponding issue queues;

IQ, ROB, and Reg. Rename Table entries are consumed
Ready (R) Wait in the queue, for the operands to be available
Execute (E) A functional unit (FU) is reserved and the instruction gets executed

in the corresponding FU
Commit (C) Free up ROB entry
FreeQEntries (F) Load, Issue Queue and Rename Table entries are freed
FreeSQEntry (S) Store Queue Entry is freed, and Cache access is made for Stores

Table 4: Description of Precedence Graph Nodes

Construction of precedence graph is guided by the path profile. From the
path profile, we generate instruction traces, resolving conditional branches
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Edge Name Constraint Modeled Edge Comments
ID In Order Dispatch Di−1 → Di

DBW Dispatch Bandwidth Di−dbw → Di dbw = maximum num.
of insts. that can be
dispatched per cycle;
lat = 1 cycle

IC In-order Commit Ci−1 → Ci;
Fi−1 → Fi

CBW Commit Bandwidth Ci−cbw → Ci cbw = Commit BW;
lat. = 1 cycle

ROB Finite ROB Size Ci−w → Di w = #ROB entries
DD Data Dependences Ej → Ri Added if inst. j

produces source for
inst. i; lat. depends
on source instruction

RR Finite Rename Fi → Dj there is rrnum number
Registers of new results from

inst. i to the inst. j;
rrnum = # extra
rename regs

BL Branch Resolution Ei → Di+1 For all but loop
Latency closing branches to

fetch targets
lat. depends on source

IQS IQ Slot Avail. Fi−NIQE → Di NIQE = Num. Issue Q
Entries; Edge from
dyn. instrs.
i − NIQE to i

LQS LQ Slot Avail. Fi−NLQE → Di NLQE = Num. Load Q
Entries; Edge from
NLQEth dyn. load
instr. before i to i

SQS SQ Slot Avail. Si−NSQE → Di NSQE = Num. Store Q
Entries; Edge from
the NSQEth dyn.
store instr. before
i to i

Table 5: Description of Precedence Graph Edges
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based on the distribution of frequencies of different paths. We examined
the path profile of each thread for all the benchmarks, and found that it is
almost similar for all threads, for data parallel benchmarks - this is because,
for those benchmarks, different threads execute the same code, but operate
on different data. The only significant difference among the path profiles
of different threads is that the main thread uniquely tracks the paths in
the sequential regions. In all data parallel programs, the main thread is also
involved in computation. For this reason, the precedence graph is constructed
only for the main thread for those benchmarks, because it covers almost all
paths traversed by the other threads. For stream applications, we consider
the path profile of each thread separately.
Petri net Simulation: From the precedence graph and resource availability,
the Petri net model is constructed (Section 2, [17]). Petri net simulation is
done for the frequency chosen by the binary search, to estimate the execution
time of the region. For simulating the Petri net, cache hit/miss profile is used.

An important difference between the Petri net simulation in [13] and in
this method is that we model the increased pressure the memory system is
subjected to, due to the activities of concurrent threads.

We believe that for SPMD (data parallel) programs, a single voltage
(frequency) setting for all threads (cores) would fetch most of the benefits
of a per-thread (or per-core) DVFS scheme. Moreover, in their evaluation of
commercial and scientific workloads, [6] point out that per core DVFS does
not give huge benefits that could offset the design complexity. Therefore,
for SPMD applications, we use a common frequency/voltage setting for all
the cores, and always operate L2 cache and the memory system at a fixed
speed. However, for general parallel programs where different threads execute
different code segments, this may not be the most effective method, and our
method considers different frequency setting for different threads.

Whenever a memory access instruction is encountered in the Petri net
simulation, based on the cache hit/miss statistic for each thread, memory
accesses are generated for all the threads - One access is a ’real’ access (by
the CPU simulated by the Petri net) and the rest are ’shadow’ accesses (by
the other CPUs which would have generated the accesses if they were also
simulated). The simulated CPU waits only for the accesses it generated; the
only purpose of the shadow accesses is to load the memory system modeled.

Because we do not know the memory bank to which a memory access
goes, in our Petri net simulation, we assign a random memory bank (bank 0
to bank 7) for the first memory access corresponding to a frequently missing
instruction. Subsequent accesses of the instruction will go to the successive
banks in a round robin fashion. This is a conservative simplification that we
have made, assuming that for frequently missing memory access instructions,
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Acronym Meaning
MD Move Down
AL Always at Least Frequency
SHU Start Holding Up
HU Hold Up
MU Move Up
AH Always at Highest Frequency
SHD Start Holding Down
HD Hold Down
S Start State

Table 6: Description of States in Figure 4

accesses are array based, sequential, and therefore sweep successive memory
banks. We repeat the Petri net simulation for 10 times, and choose the least
frequency setting. All these take atmost 1 hour per benchmark.

Finally the frequency setting for each voltage/frequency reconfiguration
point is written to a file. We have enhanced the simulator to interpret the
file and effect the reconfigurations.

3.2 The Greedy Hardware Controller:

This controller was originally proposed for single core systems, in [7]. Later,
it was adapted for multicore systems in [6], which evaluates two other DVFS
techniques too. This simple controller performs the best among two other
competing hardware controllers [6].

There is a separate controller for each core. The controller observes the
ET−2 metric over a time interval, compares it with the previous interval,
and then adjusts the voltage and frequency of the core based on the result
of comparison, as specified by the state transition diagram in Figure 4.

As in [6], we assume that the CPU core provides counters that estimate
the energy consumed by the core, and the core has performance counters
for finding the application throughput (number of application instructions
committed per cycle).

The controller initially starts at the highest voltage (frequency) level and
then unconditionally reduces the voltage by one step after one interval. For
every interval, the controller compares the ET−2 value over the current in-
terval and the previous interval. If it is less, the controller remains in the
same state and continues to move in the same direction as the previous. If it
increases, the controller flips the direction, ’holds’ the new state for a speci-
fied number of intervals (number of intervals to ’hold’), and then again moves
one step in the flipped direction. The unambiguous state transition diagram
is in Figure 4, and Table 6 explains the states of the controller.

In addition to this, we have evaluated this per-core controller in a different
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configuration, where there is only one system-wide controller that chooses the
same DVFS settings for all cores, based on the overall system ET−2 metric.
We call this configuration Global Greedy.

4 Experimental Setup

Our implementation of the Petri net based DVFS method is very similar
to compiler passes; Infact the only reason we chose to not use any existing
compiler framework was to expedite the implementation. Figure 6 gives a
high level view of the flow of our analysis framework.

We implemented parsers for converting the disassembled binary into the
IR we designed. gcc 4.2 (linux-alpha) is used to generate binaries from source
and the disassembled files.

We have used m5sim simulator for executing the benchmarks [15]. The
m5sim simulator is a powerful tool capable of simulating CPU cores, the
memory, I/O and network subsystems. It can be used in full-system sim-
ulation mode where in addition to the application code, OS code can also
be executed. It supports the simulation of alpha binaries with linux oper-
ating system, and alpha’s Privileged Architecture Library (PALcode). The
simulator can be used in functional mode, timing mode and detailed mode.

For path profiling, we have used the simulator in the functional mode,
since we are interested only in the paths tracked by an application. For cache
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profiling, we have used the timing mode which allows us to simulate cache
hierarchies. For the actual timing and energy evaluation of the proposed
DVFS scheme, we use the simulator in detailed mode, which allows cycle
accurate simulation of out-of-order CPUs, along with the memory hierarchy.
We always use the simulator for full system simulation, with the operating
system.

The simulator allows fast forwarding of the specified number of instruc-
tions initially before switching to timing or detailed mode. In fast forward
(FF) mode, only functional simulation is done. This helps us skip initializa-
tion phases of applications and simulate only those phases which characterize
the properties of application.

4.1 Simulator Enhancements

We have made a number of enhancements to the m5sim simulator, and ad-
vanced the state-of-the-art of it significantly:

1. integrated Cacti 5.3 [23] with m5sim for modeling energy consump-
tion by storage structures (caches, TLB’s, register files, queues, branch
predictors, BTBs); this version of cacti incorporates non-linear scaling
models for process and device parameters based on the International
Technology Roadmap for Semiconductors (ITRS)

2. integrated wattch [24] based power model for other structures (ALUs,
buses, clock, wakeup/selection)

3. implemented voltage and frequency scaling; added a new module (Spe-
cial PC Manager - SPM) that initiates voltage (frequency) scaling
whenever voltage (frequency) reconfiguration points are encountered

4. enhanced it to support thread-specific hierarchical path profiling [21]
and cache hit/miss profiling.

We have also used DRAMSim [25], a simulator for accurately modeling
DRAMs, with the simulator.

4.1.1 Power Models:

Based on the underlying power models (wattch or cacti), we estimate the en-
ergy consumed by each hardware component during initialization, and when-
ever there is a change in the operating voltage and frequency. Each compo-
nent updates the energy consumed by itself and its constituent components
every cycle, and provides an interface for accessing energy consumption. The
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information about energy consumption is propogated up hierarchically when
the component at the topmost level (CPU) queries its subcomponents.

For implementing this, we changed the default implementation of the
respective components (like branch predictors, caches, fetch, issue-execute-
writeback units, etc.) in the simulator. The modifications, are similar to the
ones in sim-wattch [44], and almost all of the components the out-of-order
(O3) CPU are changed.

4.1.2 Dynamic Voltage and Frequency Scaling:

This is implemented by changing the value of the clock attribute of the CPU
class of the simulator, and by changing the value of the operating voltage.
Every time this is done, power is recomputed. When the greedy hardware
controller is enabled, DVFS transitions are initiated by the controller’s state
machine. Otherwise, they are initiated by a new module we have added,
called the Special PC Manager (SPM).

The SPM module accepts as inputs, a PC range and instruction count,
and a list of tuples of PC, thread id, voltage/frequency setting and instruc-
tion count. The PC range and instruction count is used to terminate the
simulation if the specified count of instructions in the specified PC range
have been executed. A tuple of PC, voltage/frequency setting, thread id and
instruction count specifies the voltage/frequency setting, the CPU should
transition to, after committing the instruction at the specified PC on behalf
of the specified thread id. Simulation is terminated, if the instruction at the
PC is committed for the specified number (count) of times, when executed
on behalf of the thread. The inputs to the SPM is specified in a DVFS
configuration file.

Each CPU gets a handle of the unique instance of the SPM module,
through the m5sim configuration file. After committing an instruction, a
CPU uses this handle to inform the SPM, the details about the instruc-
tion it just committed. The SPM uses this information to decide if volt-
age/frequency transition must be made, or simulation has to be terminated.

4.1.3 Support for Path Profiling:

To support path profling, we have designed a low level intermediate repre-
sentation (IR) for the binaries of the benchmarks. The IR is constructed
from the disassembled binaries, and provides a rich set of interfaces that aid
in the analysis of binaries at different levels: function, loop, basic block and
instruction; however, it does not have any mechanism to modify the contents
of the disassembled binary or the binary itself.
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We have designed a new Path Profiler module for the simulator. For
implementing HPP, we generate instrumentation code, which would be com-
piled as a part of the path profiler. This is done by writing the the instru-
mentation points (PC’s) and the corresponding instrumentation information
(path sum initialization, path sum read) to a file, which will be embedded in
the path profiler code.

We have modified the CPU module of the simulator to send the PC and
the software TID of the currently running thread to the path profiler mod-
ule once an instruction completes execution, when path profiling is enabled.
Given the PC and thread id, the path profiler takes the appropriate action
which is determined by the instrumentation hints for the path profiler.

In addition to the Ball Larus instrumentation instructions [22], on func-
tion entries and exits, path sum and region information are pushed to/popped
from a separate stack by the path profiler, so that path sum and region in-
formation is maintained for each function separately.

For keeping track of thread id, the simulator mimics the action performed
when the function pthread self is called (two memory reads - one in the
physical address space and the other in the virtual address space of the
thread), whenever the Internal Processor Register that stores the unique
identifier for the current thread is written [28].

Clearly, the path profiler (and hence the simulator) needs to be recompiled
if it must support path profiling for a different benchmark, but the advantage
is that binary instrumentation is avoided, and yet hierarchical path profile is
available.

4.1.4 DRAMSim Integration:

We have modified the default physical memory module in the m5sim to in-
terface the simulator with the DRAMSim memory simulator [25]. Whenever
there is a memory access, the physical memory module calls the DRAM-
Sim interface for completing the access, specifying the callback function
DRAMSim should call once the access is complete. Because both m5sim
and DRAMSim are event driven, and m5sim provides asynchronous access
functions for caches and memory, integrating DRAMSim with m5sim is rea-
sonably straight-forward.

Figure 5 shows a high level view of the enhanced simulation infrastructure.
Elliptical components are added by us; The profiler can be a path or cache
hit (miss) profiler, and it is a separate thread different from the simulator
thread. The SPM module takes Voltage Frequency reconfiguration points
and values as input.

Table 7 lists the configuration of the simulated CMP system.
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Figure 5: Simulation Framework

Since we have used Cacti 5.3 for accounting for energy consumed by
storage elements and scaled the old wattch model for accounting for energy
consumed by non-storage elements, we report the metrics for the two classes
of components separately.

5 Data Parallel Workload: Experimental Re-

sults

In this section, we discuss the results for SPMD based data parallel work-
loads.

We use subsets of SPEC OMP 2001 [3], NAS Parallel Benchmarks [2]
and splash 2 [26] benchmarks for evaluating our method. For the SPEC
benchmarks, we use the train inputs for profiling, and ref inputs for reporting
the results. For mg and art, we use two intervals to cover the sequential
regions in which a significant fraction of time is spent and report the weighted
average of the results for the sequential and parallel regions.

For all benchmarks, we simulated atleast 2 billion application instruc-
tions (library instructions are excluded for counting), after fast forwarding a
few billion instructions.

Figure 7 shows the performance degradation, energy savings, and ET−2
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Parameter Value
Volt/Freq & Tech
Technology 45 nm
Frequency Range 3GHz - 4GHz
Domain Voltage Range 0.8V - 1.0V
Number of Steps 5; .2 µs per step
Branch Predictor
Branch Predictor Tournament
Local Predictor Size 2048 entries, 2b ctrs
Local History Table Size 2048 entries, 11 bit hist.
Global Predictor Size 8192 entries, 2b ctr, 13b hist.
Choice Predictor 8192 entries, 2 bit ctr
BTB Size 4096 entries, 16 bit tag
Memory System
L1 DCache 32K 4W SA 64B blk 4 cycle lat
L1 ICache 32K 4W SA 64B blk 4 cycle lat
L2 UCache 4M 4W SA 64B blk 40 cycle lat
Memory Access latency 50 ns
Other Resources
Decode/Issue/Retire Width 4/4/4
Integer ALUs 3 + 2 multiplier
FP ALUs 2 + 2 FPMult/Div
Issue Queue Size 64 IQ Entries, 32 loads, 32 stores
ROB Size 128
Extra Rename Registers 128 Int, 128 FP

Table 7: Simulator Configuration

improvement as percentages, over the baseline where all CPUs execute at the
highest frequency. We define throughput as number of application (ex-
cluding libraries) instructions committed per cycle, similar to [6]. There-
fore the number of library or OS instructions committed does not increase
the throughput.

The performance degradation threshold constraint is set to 5%.
We see that on an average, all three methods achieve significant ET−2

improvements - 14.98%, 14.24% and 14.49% in the storage structures for
the Petri net based, greedy and global greedy controller, respectively, and
37.32%, 37.37% and 37.35% in the non-storage structures - for a very small
(2.25%, 2.16% and 2.58% for the Petri net based, greedy and global greedy
controller, respectively).

Ocean has a very high L1 miss rate (20%), but it also has one of the least
L2 miss rates (52%), which indicates that the effectiveness of L2 cache. In
this case, DVFS degrades performance slightly, and because of this, ET−2

improvements are slightly lower, even though there is a significant savings in
energy.

In all other benchmarks, the performance degradation is well within the
threshold, and all schemes achieve significant ET−2 improvements.

Load is fairly well balanced across all cores in the parallel regions - the
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Benchmark Input Simulation Interval
SPEC OMP 2001
art ref FF 1G; 4G Simulation

FF 6G; 2G Simulation
swim ref FF 5G; 4G Simulation
applu ref FF 15G; 4G Simulation
NPB
mg size A FF 3G; 2G Simulation

FF 4G; 4G Simulation
Splash2
ocean 1026 x 1026 grid; FF 3G; 2.5G Simulation

9600 s relaxations
20K res., err. tol. 1e-7

Table 8: Workload Details

most lightly loaded core spends just 3.7% of the time in idle mode, which
indicates that there is not much potential for a system with an independent
voltage/frequency control for different cores. This is not unexpected, since
all these programs are SPMD style, where all threads execute the same code,
but operate on different data.

Our findings for data parallel programs agree with the findings of [6],
where they report high ET−2 improvements for the greedy controller, and
conclude that independent voltage/frequency control for different cores does
not offer huge benefits.

5.1 Comparison with Optimal Frequency Setting

We have also compared the energy savings of the Petri net based method
with the energy savings obtained by an optimal setting. Finding an optimal
setting for a program with n regions would require 5n simulations (There
are 5 frequency settings). To make the study feasible, we chose the longest
running region in the procedure in which most of the time is spent. We
enable DVS only in that region, and report the IPC degradation and energy
savings only for that region. Table 9 shows the results. The performance
degradation is chosen not to exceed 5%.

Benchmark IPC Ratio St.ET−2Ratio NonSt.ET−2Ratio

art 1 1 1
swim 1 1 1
mg 1 1 1
ocean 0.95 1.01 1
applu 1.02 1 1
Mean 0.99 1.00 1.00

Table 9: Comparison with an Optimal DVS Setting (% wrt. baseline)

We can see that the Petri net based method achieves ET−2 improvements
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Figure 7: Performance Degradation and ET−2 Improvements for Data Par-
allel Workloads
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very close to that of the optimal setting, deviating from it, by less than 1%
of the optimal ET−2 metric in both the storage and non-storage structures
respectively.

6 Stream Workload: Experimental Results

We discuss our results for stream programs, in this section. We use the
streamit language infrastructure [29]. The infrastructure has a cluster library
which can be used for building binaries for CMPs.

The streamit compiler generates c++ source code from streamit pro-
grams. We instruct the compiler to generate code for a 4-core machine.
Since threads are created using pthreads, we could bind a thread to a core,
using the sched setaffinity system call, in the c++ code generated by the
streamit compiler. (For OpenMP programs, we could not do this, because
the compiler directly does not provide an intermediate representation that
we could manipulate). In the rest of the section, we use threads and cores
interchangeably.

In addition to data parallelism, stream programs exhibit task and pipeline
parallelism as well. The streamit compiler takes as input, the number of
threads to generate, and tries to partition the work across the different
threads. In general, the tasks performed by the different threads are different,
and therefore stream programs are more general than SPMD programs.

Such general parallel programs offer more opportunities for DVFS, be-
cause any residual imbalance in load can be used for performing DVFS.
Performance is usually limited by the most heavily loaded core, and the rest
of the cores could operate at speed that matches the rate of completion of
the work assigned to the heavily loaded core.

We evaluate three different DVFS schemes for stream programs - the Petri
net based method, the greedy controller (both explained in Section 3) and a
simple linear interpolation model based method. We also use two different
configurations - one in which the cores can run at independent voltage and
frequencies, and the one in which cores can operate only at a common voltage
and frequency. Most of the state-of-the-art CMPs [11, 12] do not support
per-core DVFS, and evaluating these helps us estimate any benefits per-core
DVFS schemes could provide over the support for a common DVFS setting
for all cores.

Before discussing the experimental results, we briefly describe the linear
interpolation based method, and mention a few words on how the Petri net
performance model has been used for performing DVFS for stream programs.
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6.0.1 Linear Scaling (LS):

In this scheme, we first run all cores at the highest speed and profile the time
spent by each core for the thread it is assigned to. This excludes the time
spent when the CPU is idle.

We find this by intercepting the writes to the Internal Processor Register
of the alpha CPU that stores the unique identifier for the thread that is
currently running on the core [28]. In the simulator, we keep track of the
time that is spent between two writes. Along with this information and
the actual values written during every write, we can get a good estimate of
the amount of time a core spends, for a thread (In real linux systems, this
estimate can be obtained from the proc filesystem’s stat files for each thread).

At the end of the profile run, we aggregate the time spent for each thread.
We normalize this time, using the highest time taken of all threads, and scale
the frequency based on the normalized time. We assume that the time taken
by a core to complete its workload is inversely proportional to the frequency
at which the core operates.

With this assumption, we can easily derive the ideal frequency (fideal)
with which a core should run, so that its rate of completion matches the
slowest rate. It is given in Equation 1.

fideal = norm time ∗ fmax (1)

In Equation 1, norm time is the normalized execution time, and fmax is
the maximum operating frequency of the core.

From Equation 1, we get the actual frequency with which a core will be
run, by rounding fideal up to the smallest frequency supported by the core,
that is at least fideal.

This is one of the simplest performance models used in DVFS and schedul-
ing algorithms (eg. [27]) and works well when there are few cache misses.

6.0.2 Petri net Performance Model based DVFS (PDVFS):

For this scheme, we first estimate the execution time of each thread with the
Petri net based performance model. We then evaluate different frequency
settings for each thread, and choose the least frequency that does not in-
crease the execution time of the thread beyond the execution time of the
performance limiting thread. For evaluating a frequency setting, we use the
Petri net based performance model. The Petri net model is the same that is
described in Section 3.

This method needs the application code (in our implementation, this is
in an intermediate form obtained from disassembling binaries) to estimate
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performance. Because of this reason, we could not analyze threads which
perform I/O, and which involves the OS. For such threads (and for code that
performs inter-thread communication), we profile to estimate execution time.

We first estimate the execution time of all threads using Petri net sim-
ulation (or profiling, for I/O threads), and find the longest execution time
among all threads. We then keep scaling down frequency of each thread and
estimating the new execution time as long as it is below the longest execution
time, and choose the least frequency that keeps the estimated execution time,
just below the longest execution time, as the frequency setting for a thread.
For I/O threads and for code that implements inter-thread communication,
we conservatively scale the execution time inversely with frequency, whereas
for the other threads, we estimate execution times for each frequency setting
we evaluate, using Petri net simulation.

6.1 Results: LS, PDVFS, Greedy and Global Greedy

Controllers vs Baseline

We discuss the results of simulation in this section. We simulate 4G ap-
plication instructions (which does not include OS or libraries), after fast
forwarding 200M instructions.

We define throughput as the number of application instructions commit-
ted per cycle, and this excludes OS and library code.

Figure 8 shows the performance (Instructions per clock - IPC) degrada-
tion and ET−2 improvements for the LS, PDVFS (both with per core DVFS
support), the Greedy Controller, and the Global Greedy Controller over the
baseline with no DVFS, which always runs at the highest frequency. In the
following discussions, unless explicitly stated, we always refer to the per-core
DVFS configurations for the software based schemes, when we mention them.

As we can see, the Linear Scaling method achieves significant ET−2 im-
provements - 9.67% and 24.73%, on an average, in the storage and non-
storage structures, over the baseline, with much less performance degradation
of .21%.

The Petri net based DVFS method follows Linear Scaling closely, making
8.38% and 23.47% ET−2 improvements, for storage and non-storage struc-
tures, for a slightly higher performance degradation (0.68%).

The hardware based Greedy Controller degrades performance significantly
(12.97%) on an average. Due to this high degradation, it degrades the base
ET−2 by 6.78% and 2.1% in the storage structures and non-storage struc-
tures respectively. The global greedy configuration degrades performance
even worse (15.86%), for ET−2 comparable to the Greedy Controller.
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Figure 8: Results: Performance Degradation and ET−2 Improvement over
Base
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We do not show the results for the software based schemes for a system
supporting a common DVFS setting for all cores in Figure 8 because both
schemes choose the highest DVFS setting for all cores (which means that
there is no performance degradation and ET−2 improvement) for all bench-
marks. This is because choosing a common lower frequency for all cores
would result in significant performance degradation, since there is invariably
at least one thread that is the performance bottleneck, and reducing its CPU
speed has a severe adverse impact on performance.

One important observation we could make for the hardware based con-
troller (both versions) is that, for all benchmarks, the controllers in the cores
hosting the performance limiting threads spend at least 70% of their time in
the HoldUp and HoldDown states, with the time in these two states shared
almost equally. This means that for at least 35% of the time, the performance
limiting thread spends its time in a low frequency state, which explains the
huge performance degradation for the hardware controllers.

For vocoder, fm and filterbank, the load distribution is heavily skewed
and this gives more opportunity for DVFS. However, for the same reason,
power consumption in storage structures is heavily dominated by the busy
cores; Even though the idle cores operate at the lowest frequency, it does not
make much difference for the ET−2 product of storage structures. There is
a modest improvement for non-storage structures.

We must note that both the software based schemes try to keep the per-
formance degradation to a minimum, and they succeed in their goals (0.21%
and 0.68% performance degradation for LS and PDVFS, respectively). This
also translates to very high ET−2 savings in most cases. In mpegdecoder,
degrading performance a bit more fetches more ET−2 benefits.

While the Linear Scaling method is extremely simple, the Petri net per-
formance based DVS method is much more complex, and it performs slightly
worse than the Linear Scaling method (though it matches the Linear Scaling
closely). The Petri net performance based DVS method was found to be
very useful in the context of DVFS for Multiple Clock Domain (MCD) pro-
cessors [13] where different parts of the CPU (Floating point units, Integer
Units, Caches etc.) execute at different speed. In MCD processors, per-
formance is a complex non-linear function of domain frequencies, and when
frequencies of domains change, different schedules of instruction execution
are possible [13]. The Petri net model can capture that, and performed bet-
ter than a profile based approach that uses a very detailed execution trace.
We also saw in Section 5 that the method performs very well in the case of
data parallel programs with high memory misses too. For such programs, the
simple linear scaling is not applicable, because even the most lightly loaded
core spends just about 3.7% percentage of the time in idle mode. Perfor-
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mance in the presence of frequent memory accesses is not a simple function
of CPU frequency, as it involves an independent frequency domain (memory),
which is shared by all cores.

However, for single clock domain cores, when there are few cache misses,
performance is more or less a linear function of frequency. The Petri net
model does not provide much advantage over the Linear Scaling model in
this case.

Table 10 shows the normalized execution time of differnet threads af-
ter profiling for the linear scaling method, and the work estimated by the
streamit compiler for different threads. The streamit compiler analyzes the
input stream program, estimates work in each filter, and uses this informa-
tion to balance load among different tasks while performing task partitioning.
Although in some cases, the workload estimated by the compiler and the ac-
tual workload of threads match, in 5 benchmarks (mpegdecoder, dct, des,
vocoder, bitonic), there is at least one thread for which the estimates vary
significantly.

In most benchmarks, the frequency of cores hosting I/O threads have
been scaled down by the software based methods, since the threads perform-
ing the actual computation limit the performance. However, bitonic and
mpegdecoder are interesting in that the I/O threads are the performance
bottlenecks, and at least one of the cores hosting the compute threads has
been scaled down.

Table 10 also explains why per-core DVFS schemes achieve superior ET−2

results over common DVFS schemes. We can see that there is load imbalance
in the applications. Both the software based per-core DVFS schemes are
able to exploit the opportunities provided by the load imbalance well, by
scaling down the frequencies of cores that are lightly loaded, while running
the heavily loaded cores at high frequencies. If there is no support for per-
core DVFS in the hardware, these opportunities can not be used effectively
for achieving ET−2 improvements, and the software based schemes choose
the highest frequency setting for all cores, offering no ET−2 benefits.

Our findings in this section are contrary to the results of [6] where they re-
port that per-core DVFS does not offer significant benefits for multithreaded
applications. We believe that this is because of the workloads being chosen.
Some of the applications in [6] are data parallel (all threads exhibit simi-
lar behaviour), have high miss rates and their memory system is very slow.
(There is no information about load balance in [6]).

When threads exhibit similar behaviour or all threads have high miss
rates, then per-core DVFS may not offer huge benefits. The first case is
obvious, whereas in the second case, we can possibly run all cores slower,
because the common bottleneck is the memory subsystem. In our case, all
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Benchmark Estimate Core 0 Core 1 Core 2 Core 3
filterbank profile 0.01 1 1 0.01

compiler 0 0.82 1 0
serpent profile 0.2 0.88 1 0.16

compiler 0 0.93 1 0
mpegdecoder profile 0.92 0.75 0.93 1

compiler 0.02 1.00 0.80 0.02
dct profile 0.3 0.41 1 0.3

compiler 0 0.72 1 0
des profile 0.87 0.91 1 0.72

compiler 0.01 0.94 1 0.01
vocoder profile 0.06 0.04 1 0

compiler 0.92 1.00 0.52 0
bitonic profile 1 0.64 0.63 0.8

compiler 0.03 0.86 1.00 0.03
fm profile 0.01 0.07 1 0

compiler 0.00 0.09 1 0

Table 10: Normalized Execution Time vs Compiler Estimated Work for dif-
ferent threads

our applications are pipeline parallel, suffer few L1 misses (less than 5%),
and the load across cores is not uniform.

From Table 10 we can also see that there is a potential for better load
balancing, and in most cases, a part of the computation can be alloted to the
I/O threads too. At the same time, in some benchmarks, the work done by
I/O threads becomes the bottleneck. It is not clear at the moment, if other
constraints related to partitioning pose difficulties in realizing this potential.
Moreover estimating the I/O workload at a high level is difficult.

6.2 Comparing the Software Schemes with the Opti-

mal Setting

We have also conducted experiments to find the optimal DVFS setting that
minimizes the system ET−2, and compared the optimal ET−2 with that
obtained by Linear Scaling and the Petri net based method. We choose the
system configuration with two frequency settings (4 GHz and 3.5 GHz) for
each core. For n settings, we need n4 simulations to find the optimal setting.
Even for this configuration, we need 16 (24, 2 for each core) simulations to
determine the optimal setting. We simulate 2 billion application instructions.

For this system configuration, both the software based schemes choose
the same voltage/frequency setting for all benchmarks. Table 11 shows the
IPC and ET−2 (for storage - SET−2 - and non-storage structures - NSET−2

) of the software based schemes, normalized to the corresponding metrics
of the optimal ET−2 setting. As we can see from Table 11, the software

34



Benchmark IPC SET−2 NSET−2

filterbank 1.0 1.0 1.0
mpegdecoder 1.0074 1.0903 1.1588
des 0.9988 1.0661 1.0964
vocoder 1.0 1.0 1.0
bitonic 1.0 1.0 1.0
fm 1.0 1.0 1.0
serpent 1.0453 1.08715 1.1020
dct 1.0 1.0 1.0
geomean 1.0063 1.0297 1.043

Table 11: Ratio of metrics of LS and Optimal

based schemes match the optimal setting in 5 of the 8 benchmarks, with the
average ET−2 metric falling within 2.97% for storage structures and 4.3%
for non storage structures.

6.3 ILP Based Partitioning and DVFS

We have also conducted experiments to see how DVFS could be done when
the number of threads is more than the number of cores. In this case, the
problem becomes more complex as we have to decide which threads run on
which cores. If the number of threads is less than the number of cores, then
the cores which are idle can be put in low power mode.

Operating systems like linux balance load dynamically. The load balancer
of linux finds the runqueue of the core with the highest number of processes
(it should be at least 25% more than that of the core on which the load
balancer runs), and chooses the highest priority task that is not running,
not bound to the core, and has not run for a relatively long time (not cache
hot), and pulls that task to the current core. This happens as long as the
runqueues are unbalanced [30]. This is done at process granularity.

To see if load balancing at a finer granularity could help better, we first
profile the execution time of work unit of each thread, scaling it by the
number of iterations, the work function is called during steady state. We
then assigned threads to different cores, by an Integer Linear Programming
based partitioning. We then applied DVFS to scale down the frequency of
cores to exploit any residual load imbalance.

For the sake of completeness, we specify the program that minimizes the
execution time of the most heavily loaded core, from Equations 2 to 6. T is
the maximum of the sum of execution time of all threads on any core. aij is
an indicator variable, which is 1, if and only if thread i is bound to core j.
Equation 4 ensures that each thread is bound to exactly one core.
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Min. T (2)

T >=
15∑

i=1

aij .ti ∀j (3)

4∑

j=1

aij = 1 ∀i (4)

aij >= 0 ∀i, j (5)

aij <= 1 ∀i, j (6)

To implement thread binding, we modified the streamit compiler to gen-
erate command line switches that help bind a thread to a core. After running
the ILP based partitioning algorithm, we use these switches to bind threads
to the cores. We use IBM’s ilog [31] package for solving the ILP. In our ex-
periments, we instructed the streamit compiler to generate 15 threads, and
we ran our experiments with the same 4 core CMP configuration as in Table
7.

Figure 6.3 shows the performance degradation and ET−2 improvements,
after ILP based partitioning, and DVS, relative to the default linux based dy-
namic load balancing. The static ILP based partitioning achieves a modest
1.83% performance improvement, with corresponding ET−2 improvements
of 4.37% and 6.39% in the storage and non-storage structures respectively.
DVFS marginally improves the ET−2 ratio, with 4.9% and 12.96% improve-
ments in the storage and non-storage structures, respectively.

We see that DVS does not offer much benefits in this case. This is because
of the fact that with more threads, load is fairly well balanced by the ILP
based partitioning, leaving very few opportunities for DVFS.

7 Related Work

Dynamic Voltage and Frequency Scaling is an effective technique for design-
ing energy/performance tradeoffs, and it has been researched well: [10,13,18,
32, 33, 35, 37] are a few of them.

[10, 35, 37] are for traditional single core, single clock domain systems.
Hsu et al [10] and Krishnaswamy et al [37] formulate the voltage-frequency
selection problem as a linear program and solve it. While [10] uses program
structures to identify voltage/frequency reconfiguration points, [37] uses pro-
gram phases. The latter method requires whole program simulation multiple
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Figure 9: Results: Performance Degradation and ET−2 Improvement over
Base for Partitioning and DVS
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times, once for every voltage setting. Wu et al [35] use a dynamic com-
piler based method which uses a simple model to find energy efficient volt-
age/frequency settings.

Multiple Clock Domain Architectures (eg. [36] by Semeraro et al) have
been proposed to combat the increasingly challenging clock distribution prob-
lem. MCD architectures allow chip partitioning into different clock domains,
and use local clocks in each domain. Each domain can be operated at an inde-
pendent voltage and frequency, and therefore, they are particularly amenable
for obtaining impressive energy/performance tradeoffs: Only performance
critical domains have to be run at the highest speed, and others can be run
at lower speeds, without affecting the performance much.

[32, 33] are hardware based techniques for voltage (frequency) selection
for multiple clock domain, uniprocessor systems; The DVFS controller of
Wu et al [32] is based on control theory, and the controller of Semeraro et
al. [33] is based on a set of simple heuristics, but both of them rely on queue
occupancy for their decisions.

Our technique is an extension of [13], a compiler based VF selection
for single core, multiple clock domain processors (for sequential programs).
Like [13], we use a Petri net based program performance model to find en-
ergy efficient voltage/frequency settings. The concurrent threads in multi-
threaded applications increase the pressure on the memory system. We make
an important value addition to [13] by modeling contention for memory.

Magklis et al [18] use a software technique for DVS control for sequential
programs running on multiple clock domain processors. Their work analyzes
trace files generated during a detailed simulation for guiding their choice of
voltage/frequency.

DVFS has also been attempted for CMP processors. We can broadly clas-
sify the existing works based on whether they are targetting multithreaded
workloads [6,19,34] or multiprogrammed workloads [8,9,14]. Our work falls
in the category of methods for multithreaded workloads.

Herbert et al [6] evaluate different DVFS schemes for both commercial
and scientific multithreaded applications, which do not show strong interac-
tion. All schemes they evaluate use local information to choose voltage and
frequency setting for each domain, and are interval based. Our Petri net
based method captures the inherent properties of both the application and
the system; the application characteristics determine reconfiguration points,
while the actual frequency/voltage settings are based on the properties of
both the application and the system. They report that per-core VF setting
do not offer huge benefits that could amortize the design complexity. We use
the best performing greedy controller in their evaluation, for our experiments,
for comparison. We also find that for general multi-threaded programs, per-
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core VFS control is very essential for achieving high ET−2 improvements for
negligible performance degradation.

Juang et al [34] propose per core DVFS based on queue occupancy in
all cores in a CMP, and point out that local information is insufficient for
the choice of energy efficient voltage/frequency settings across multiple cores.
Their method is based on control theoretic principles, their interval is fixed
and require pair-wise communication for every DVFS interval. Moreover,
their method requires the tuning of stability constants. Their method also
requires setting up of per thread load factor for each thread. As we saw
in Section 6, exact workload estimation at a high level itself is non-trivial.
Their evaluation was done on an ARM like CMP with no L2 cache and a fast
memory system, without OS. In contrast, the method we propose does not
require complex controllers or extra all-to-all communication among CMPs;
Our evaluation is on a full system CMP simulator, and is stronger, both in
terms of number of benchmarks, and in terms of quantifying the opportunities
that exist for DVFS, and how much of it is exploited by our method.

The work of Li et al [19] optimizes power consumption in a CMP sys-
tem running multithreaded programs, while meeting the performance target.
They use a single voltage/frequency setting for all cores, and find both the
number of cores taking part in computation, and a voltage frequency assign-
ment for them. They use a binary search to find the number of processors
taking part in computation, and a highly simplified performance model to
find voltage/frequency settings. Theirs is a run-time scheme, where trials
for different processor counts and frequency settings are done online for each
parallel region. They report that their method converges to a stable setting
after about 3 trials in most cases.

Isci et al [14] propose and evaluate different global power management
policies based on DVFS on a CMP. Their aim is to maximize system through-
put, while meeting a given power budget. They use a hierarchical power man-
agement method where a DVFS based global power manager senses per core
power-performance statistics periodically and ensures that chip-level power
budgets are met using DVFS. Local monitors provide local statistics to the
global manager, and employ baseline dynamic power management policies
like clock gating and fetch throttling. They conclude that per-core DVFS
achieves superior results over chip-wide DVFS for multiprogrammed work-
loads.

Teodorescu et al. [8] propose process variation aware scheduling and power
management algorithms for maximizing system throughput for a given power
budget. Due to process variation, each core on a many-core CMP poten-
tially differs from others in both static power consumed, and the maximum
frequency supported by it. Their scheduling algorithms map cores to ap-
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plications based on IPC/power characteristics of the application, and the
frequency and power characteristics of cores.

Wang et al. [9] use DVFS to control the total power of a CMP to a desired
set point, while maintaining the temperature of each core below a specified
limit. Their technique is based on formal optimal control theory, and their
evaluation is on a multiprogrammed workload.

There have been several software based DVFS algorithms for stream pro-
grams in the Embedded and Real Time Systems community [27, 38–40]. In
addition to DVFS, they also consider scheduling. For DVFS, they either use
a linear performance model which we have evaluated in this paper, or assume
that program execution time is known for all frequencies. These works do
not specify the implementation of the algorithms (eg. the level - application
or OS - at which these algorithms can be implemented, implementation of
the scheduling of communication among threads), and deal with the problem
at more abstract levels. For evaluations, they use processor models without
an operating system. Our evaluation is based on actual implementation of
DVFS schemes in a detailed full system out-of-order CMP simulator capable
of running the binaries of applications, along with an operating system.

Simon et al. [43] propose an adaptive DVFS scheduling scheme which
chooses between optimistic and pessimistic frequency levels to optimize sys-
tem energy consumption, while also ensuring timing guarantees. Their sched-
uler chooses frequency settings dynamically, till the chosen speed is below a
threshold, and once the threshold is exceeded, the scheduler chooses a con-
stant, pessimistic frequency to ensure that deadline is met. Tasks are mod-
eled as events, are associated with deadlines, and the number of task arrivals
in an interval of time is bound. With these assumptions, their method uses
timed model checking to determine whether their DVFS scheduler should
operate in the optimistic or pessimistic mode.

For multi-threaded applications whose task dependence can be repre-
sented as a Directed Acyclic Graph (DAG), Kimura et al. [41] propose an
algorithm using DVFS for energy savings. Their algorithm computes the
slack for a task as the difference between the latest finish time and the ear-
liest start time for the task based on the task dependence DAG and the
estimated execution times for the tasks, and uses this slack to reduce volt-
age/frequency settings, without increasing the execution time. They evaluate
their algorithm on a real cluster, and report significant energy savings for a
small performance degradation. Some important class of applications in-
cluding stream applications can not always be represented as DAGs, since
filters (work units in stream programs) are generally executed repeatedly.
Moreover, some filters can be stateful (data dependence spanning different
executions), necessitating a different approach for DVFS.
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Thies et al. [5] introduce the Streamit language, characterize special prop-
erties of stream programs and explain the constructs in Streamit language.
Gordon et al. [42] detail one of the earliest compilers for the Streamit lan-
guage, and list the challenges in building a compiler for it. Gordon et al. [4]
make significant improvements to [42] including the support for software
pipelining.

Petri nets are powerful mathematical abstractions that have a wide range
of applicability in modeling systems like pipelined and multi-function arith-
metic units in CPUs, parallel and distributed software systems, chemical
systems, and legal systems [46]. Peterson’s book [46] has a good introduc-
tion to Petri net modeling, their properties and applications. Initially, Peti
nets did not have the notion of time associated with them; Ramchandani
augmented the basic Petri net definition by associating each transition with
a firing time [48]. Gao et al. [47] used such Timed Petri nets to find software
pipelined schedules for special kinds of loops, where the dependence distance
is either 1 or 0.

Rajagopalan et al. [17] use Petri nets for generating software pipelined
schedules for more general loops. Based on the data dependence graph for
a loop and the processor resource specification, they describe a mechanical
way to construct a Petri net. They fire the transitions in the Petri net,
identify a repeated sequence of transition firings, and use this sequence to
generate software pipelined schedules for loops. We have used their Petri
net construction method for our performance estimation step in our DVFS
method.

8 Conclusions and Future Work

In this work, we presented a novel Petri net performance model based DVFS
technique for multithreaded applications. We showed the experimental re-
sults for SPMD and Stream applications. We also compared this with a
state-of-the-art hardware based DVFS controller.

We found that the Petri net based method achieves significant ET−2 im-
provements for both classes of applications. The hardware based controller
performs well for SPMD applications, but performs very poorly for stream
applications. Also, for stream applications, a very simple linear interpolation
based method achieves all the benefits of the Petri net based method. An
important conclusion that we draw from this work is that, for general mul-
tithreaded applications, independent voltage/frequency control for each core
is essential for achieving significant ET−2 improvements with small perfor-
mance degradation.
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In future, we would like to enhance the Petri net with power and tem-
perature models, and also validate it. This would help us consider useful
tradeoffs involving power, temperature and performance. Also we would like
to include contention from DMA in the Petri net model. This would be very
useful for architectures like IBM Cell.
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