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Abstract

We propose a novel technique for reducing the power consumed
by the on-chip cache on SNUCA chip multicore platform. This is
achieved by what we call a “remap table”, which maps accesses to the
cache banks that are as close as possible to the cores, on which the
processes are scheduled. With this technique, instead of using all the
available cache, we use a portion of the cache and allocate lesser cache
to the application. We formulate the problem as an energy-delay(ED)
minimization problem and solve it offline using a scalable genetic al-
gorithm approach. Our experiments show up to 40% of savings in the
memory sub-system power consumption and 47% savings in energy-
delay product (ED).

1 Introduction

The rise of cell phones as the most preferred mobile computing device has
necessitated the need for more general purpose solutions on embedded sys-
tems - a trend reflected in the introduction of multi-core ARM Cortex Series
processors with configurable cache sizes, which lets the designer choose an
appropriate cache size based on the use case. The number of cores in embed-
ded processors are increasing due to the increasing number of applications
on the mobile platform, making larger caches necessary on these platforms.
One of the major challenges in designing efficient cache hierarchy is to have
low cache access latency and low cache miss rate, which are often conflicting
demands. To strike a balance between them, the huge cache is partitioned
into multiple banks and these banks are connected using switched network
or crossbar network[8].

Similarly, to make a CMP platform scalable, cores and shared caches are
arranged in identical building blocks called tiles (Fig. 1). Tiles are replicated
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Figure 1: Fig. shows the tiled architecture used in experiments.

and connected through an on-chip switched-network (NoC). Each tile has a
core, a private L1 instruction and data cache, L2 cache and a router. L2
cache is distributed in all tiles and is shared by all the cores. To maintain
cache coherence between the private L1 caches, a directory is present in each
tile. These tiles are connected to one another via 2D-mesh switched network
and per-tile router.

Tag Index(Set ID) Tile ID Offset

Memory Address

Figure 2: In SNUCA caches, “Tile ID” bits from the address deter-
mine the “home” L2 slice where data is cached.

Memory address determines the location of L2 bank where data will be
cached, which we call a “home location” of that address (Fig. 2). Data can
reside only in its “home” L2 bank. Hence, the architecture is referred as
Static Non-Uniform Cache Access (SNUCA) architecture.

When an application is executed on such a tiled architecture with dis-
tributed but shared L2 cache, accesses get dispersed to L2 slices1 in all tiles.
The use of different L2 slices is not uniform. This can be observed in Fig.
3(a). The graph plots the number of accesses made by 8 threads in MPG
Decoder[9] application to different L2 slices present on a sixteen tile CMP
platform. The memory accesses done by the cores get dispersed to all L2
slices. Some L2 slices like 11, 12, 15 etc. are underutilized, whose accesses
can be merged in nearer L2 slices, thereby saving transit time and leakage
power consumed by these L2 slices. We observed not only power savings of
44% but also 2.6% improvement in the execution time when the same appli-
cation is executed with just two L2 slices, which service accesses made to the
rest of the fourteen L2 slices, besides their own. Graph in Fig. 3(b) shows
the change in the traffic pattern, when 2nd and 3rd L2 slices service all the
L1 misses.

1L2 slice means all L2 cache banks in a tile.
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(a) All sixteen L2 slices have been used.

(b) Only 2nd and 3rd L2 slices have been

used using the remap table.

Figure 3: The remap table offers the choice of not only size but also
location of the allocated L2 cache.

We use a novel technique, which we call as a “Remap Table” to merge the
accesses made to the under-utilized distant L2 slices to nearer L2 slices. The
unused L2 slices can be switched off thereby saving power. In multi-tasking
environment, every application will reduce its energy footprint by utilizing
lesser L2 cache. Unrelated conflict misses at the shared L2 cache can be
avoided by partitioning the cache among all the applications.

For embedded applications like video applications, the remap table can
be configured using an offline method by determining parameters which in-
fluence the application cache requirement. Cache requirement is independent
of input data value if these influential parameters are kept same.

We varied the number of allocated L2 slices in steps of 2, for a sixteen tile
CMP platform. For each configuration, we exhaustively searched all remap
table configurations and evaluated them using simulation. The remap table
giving the highest ED savings over the reference, which allocates all the
sixteen L2 slices, is desired. Table 1 shows % savings in ED as the number
of allocated L2 slices is varied.

On allocating fewer than the required number of L2 slices (2 in this ex-
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Table 1: Table shows % savings in energy-delay when the number
of allocated L2 slices is varied with respect to the reference, which
allocates all 16 L2 slices. R 2 denotes that two L2 slices are al-
located and rest of the fourteen slices are mapped to these two
selected slices. %Pf and %ED give % savings in the execution time
and energy-delay product of the application, with respect to the
reference.

Config
R 2 R 4 R 6 R 8 R 10 R 12

%Pf %ED %Pf %ED %Pf %ED %Pf %ED %Pf %ED %Pf %ED

MPGDec-8 -0.52 31 4 32.8 4 28.4 4.1 24 3.36 18 2.67 12.5

ample), the number of offchip DRAM accesses increases. It degrades the
execution time of the application when compared to the reference. When
more than the required number of L2 slices (4 onwards in this example) are
allocated, it causes dispersion of the accesses, increasing time spent in tran-
sit. Hence, one needs to allocate the optimum number of L2 slices to the
application.

In our problem, not just the number of L2 slices allocated to the applica-
tion is important but their location is also important. Clearly, as the number
of tiles and hence, the number of L2 slices present on the CMP platform is
increased, exhaustive search method will not scale. Hence, we solve this prob-
lem using more scalable “Genetic Algorithms”.

Following are our contributions:

• We propose to reduce the footprint of applications with smaller cache
requirements than the available cache, using a remap table, which al-
lows the choice of size as well as the position of chosen L2 slices.

• We model the penalty incurred by all L1 misses and the energy con-
sumption of the memory sub-system components, in the presence of a
remap table using a trace based approach (Section 3).

• We apply genetic algorithm (GA) to determine the optimum remap ta-
ble configuration (Section 3.5). We observe that our remap table strat-
egy gives power and energy-delay savings up to 40% and 47% without
compromising much of the performance. Such an offline determination
of the remap table is applicable for embedded platforms.

• The simulation framework models power consumption of all memory
sub-system components like offchip DRAM, interconnect and cache,
unlike previous research. (Section 4).
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Our experimental results, related work and conclusions are described in sec-
tions 5, 6 and 7, respectively.

2 Architectural Changes

Core

Pipeline
L1C

TLB

Remap

Table

VA

VA Tag

Data

Router

L2C

Remote

L2C

Data

Data

Core

L1C - L1 Cache Controller, L2C - L2 Cache Controller

TLB - Translation Lookaside Buffer, VA - Virtual Address

Figure 4: Block diagram explaining working of the remap table
strategy. The remap table is configured in the L1 Cache Controller.

We propose to remap certain subset of L2 slices onto the remaining ones.
When one L2 slice is mapped to another slice, everything else remains the
same including the core on which threads are executing and hence location
of their L1 caches. Only the accesses made to the L2 slice in one tile are
remapped to L2 slice in another tile.

The remap table can be implemented as part of an L1 controller and is
basically a hardware register file. On an L1 miss, L1 controller will set a des-
tination L2 slice to the remapped L2 slice, before sending a memory request
over the network, as shown in Fig. 4. The remap strategy is independent of
whether L1 is physically tagged or virtually tagged. This is also independent
of the position of tile id bits in the memory address. This is because, virtual
to physical address translation (TLB Lookup) happens before sending the
request to the L2 over the network. Hence, the destination L2 slice bits are
always available during the remap table lookup. If bits next to the cache line
offset are used as L2 slice id bits,as shown in Fig. 2, then the L1 controller
can perform remap lookup at the same time, when L1 cache is checked for a
hit. In case of an L1 miss, L1 controller can always lookup the remap table
simultaneously while creating the outgoing memory request. This ensures
that the remap strategy does not add any additional latency on L1 miss.
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2.1 Obtaining Remap Table

Typically on embedded platforms the applications are known apriori and are
well characterized. Hence, we derive the remap table based on offline profiling
of these applications. This approach is well established for these class of
systems. The working set and hence memory requirement for applications
like FFT does not change if the number of points on which FFT operation
is performed, remains the same. Memory requirement is independent of the
actual data. The application can be parameterized and the remap table can
be specified for each set of input parameters. For example, a different remap
table can be used for different FFT window sizes. But for the same window
size, the remap table works well for any data input. Applications can provide
a callback function which will be invoked by the process scheduler to select
the right remap table depending upon the input parameter values. The remap
table is part of the process context and can be accessed after process/thread
switch. When a new application gets scheduled, its predetermined remap
table will be loaded.

3 Problem Formulation

It can be observed from the Table 1 that, on allocating fewer than the re-
quired number of L2 slices, leads to power savings at the cost of execution
time of the application. Allocation of more than the required number of
L2 slices, causes dispersion of L2 accesses. This increases the time spent
in transit, leading to increased execution time of the application. This also
increases power consumption due to increase in cache leakage power. Thus,
there exists an optimum number of L2 slices for which application gives the
least energy-delay product. Eq. 1 gives the objective function which we want
to minimize.

EDP = (Ecache + Einterconnect + EDRAM ) ∗ T ime (1)

The meaning of the various terms is explained in Table 2. In this study,
we have considered multi-threaded workloads. We assume that there is a
one-to-one mapping between threads and cores. This assumption is in line
with other work done for CMP platforms.

3.1 Estimation of Energy Consumption

• E cache : Leakage power is directly proportional to the number of
allocated L2 slices. Leakage power per L2 slice is obtained using CACTI
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Table 2: Table gives the meaning of the various terms, used in ge-
netic algorithm based problem formulation. The last column de-
scribes how these terms are obtained.

Parameter Description Method of Deter-
mination

EDP Energy-Delay Product Eq. 1

E cache Energy consumption of the cache CACTI[13]

E interconnect Energy consumption of interconnect -

E DRAM Energy consumption of off-chip DRAM
Statistical model
of data ob-
tained using
DRAMSim[15]

T ime Time taken by the application to complete its
execution

Eq. 3

Ctotal Total time spent in servicing all L1 misses Eq. 8

Cremap Total time spent in servicing all L1 misses for a
given remap table

Eq. 9

K # of threads used by the application for execu-
tion

Specification

N # of tiles/L2 slices on the CMP platform Specification

S # of L2 slices allocated to the application GA (Section 3.5)

ηij # of accesses between L1 cache in tile i and L2
slice in tile j

Profiled informa-
tion

Lij Network access latency between L1 cache in tile
i and L2 slice in tile j

Floorplanning,
Intacte[12]

αij
# of cache misses incurred by L2 slice in tile j

due to traffic generated by thread executing on a
core in tile i

Dinero (Section 3.5)

pj

Penalty to service a single cache miss in L2 slice
in tile j. This penalty includes the latency of the
memory access and the network latency between
L2 cache in tile j and the memory controller.

Intacte, an av-
erage of variable
DRAM latencies
obtained using
DRAMSim

δ
remap function, δ(j) = i refers to L2 slice in the
tile j is mapped to L2 slice in the tile i. δ(i) = i

refers to L2 slice from tile i is mapped to itself.

GA (Section 3.5)

Kc Constant decides priority given to the cache miss
penalty

Empirically

Kt Constant decides priority given to the transit
time penalty

Empirically
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[13]. The total dynamic energy dissipated in L2 slices remains nearly
the same for all remap table configurations. Hence, we ignore dynamic
energy consumption in the objective function.

• E interconnect: Interconnect power does not vary by large amount if
the application performance is comparable to the reference. Hence, we
ignore this factor as well in the objective function.

• E DRAM : Off-chip DRAM power consumption depends upon the
number of memory accesses, row management policy and address cor-
relation between the sequence of accesses. We performed simulation on
various applications by varying L2 slice allocation and obtained off-chip
DRAM power consumption. We empirically observed that the memory
power consumption remains almost same if the number of DRAM ac-
cesses are comparable to the reference. This is because DRAM operates
at much lower frequency (667 MHz) than the cache/core frequency (3
GHz). As we use closed row management policy, we can ignore correla-
tion between the consecutive addresses in the memory request stream.
We use an approximate conservative memory power consumption model
based on linear interpolation of the experimental data. Such a model,
can be obtained for every application based on its DRAM power con-
sumption.

If some remap configuration estimates considerably more number of
memory accesses than the reference then the memory model will discard
that solution. If the number of memory accesses are low due to over-
allocation of L2 slices then the leakage power of the cache will discard
that solution. This ensures that our model allocates right amount of the
L2 slices. Hence, the approximate DRAM power consumption model
suffices in our case. EDP can be simplified as in Eq. 2.

EDP ≈ ((LeakagePwrPerL2Slice ∗ #OfL2SlicesAllocated

+ memPwr) ∗ T ime) ∗ T ime
(2)

3.2 Estimation of Time

To calculate T ime component of Eq. 2, we need to estimate the time taken
by the application to complete its execution. Time is expressed in terms of
the processor clock cycles. Execution time is proportional to the time spent
in servicing L1 cache misses. Lesser the number of cache misses, lesser will be
execution time of the application, and hence the EDP product. Thus T ime
in Eq. (2) is,
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T ime ∝ Cremap ∗ 1/ProcessorFrequency (3)

3.3 Estimation of Transit Time Penalty

Total time spent by thread i in transit is equal to the traffic generated by
the thread i between L1 cache in tile i and all L2 slices. Formally,

τi =
∑

0≤j<N

ηijLij (4)

Hence, the total time spent in transit by all the threads is,

τ=

∑

0≤i<K

τi =
∑

0≤i<K

∑

0≤j<N

ηijLij =
∑

0≤j<N

∑

0≤i<K

ηijLij (5)

All the threads execute concurrently. Hence transit time spent by these
threads overlaps with one another. Summation of their timings just denotes
maximum time the application might spent in transit. We have also ignored
transit time latency due to the coherence traffic. We consider data paral-
lel applications, hence coherence traffic is negligible compared to the other
traffic.

3.4 Estimation of Cache Miss Penalty

Execution time of the application is greatly affected by the cache miss rate,
especially in the lowest level cache(LLC) in the cache hierarchy. So the remap
table entries should be chosen such that the total number of L2 cache misses
should not increase tremendously. Cache miss cost cj of L2 slice j is,

cj =
∑

0≤i<K

pj.αij (6)

Total cache miss penalty, CMiss incurred by all L2 slices is,

CMiss =
∑

0≤j<N

cj =
∑

0≤j<N

∑

0≤i<K

pi.αij (7)

Hence, the total cost incurred by misses in all L1 caches is the sum of costs
given by Equation (5) and Equation (7).

Ctotal =
∑

0≤j<N

∑

0≤i<K

ηijLij +
∑

0≤j<N

∑

0≤i<K

pj.αij (8)

We choose the remap table configuration such that Ctotal is minimized,
as the application execution time is proportional to the time spent in L1

9



misses. Of course, it also depends on how many compute operations can be
overlapped with these L1 misses.

We give more weight to the cache miss penalty since the latency of one
miss in LLC is much higher than its transit time penalty. We empirically
found that Kt = 1 and Kc = 8, remap unallocated L2 slices more uniformly
to the allocated L2 slices. We use these values of Kc and Kt in all our
experiments. Hence, for a given remap table, the cost will be,

Cremap = Kt

∑

0≤j<N

∑

0≤i<K

ηijLiδ(j) + Kc

∑

0≤j<S

∑

0≤i<K

αijpj (9)

3.5 Genetic Algorithm Formulation(GA)

Figure 5: The remap table configuration is encoded as a chromo-
some. Fig. shows the crossover operation.

Genetic algorithms are a class of randomized search algorithms useful in
function optimization. A possible solution of the problem is encoded as a
binary fixed size array, called chromosome. We use a chromosome to repre-
sent one remap table configuration. As shown in Fig. 5, the remap table is
represented as 2 strings. 1st binary string gives the L2 slices allocated to the
application and 2nd gives the mapping of unallocated slices. E.g. a chromo-
some “(1,0,0,1)(0,3,0,3)” denotes that 0th and 3rd L2 slices are allocated. 1st

and 2nd L2 slices are mapped to the 3rd and 0th slices, respectively. Following
are the details of application of the genetic algorithm approach:

• The fitness value of the chromosome is given by EDP in Eq. 2.

• The population size of 100 chromosomes
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Figure 6: The flow chart explaining our problem formulation using
genetic algorithm approach.

• randomly selected single point crossover between two chromosomes
with probability of 0.65. It is done only on first binary string which
represents the allocated L2 slices. Unallocated L2 slices are randomly
mapped to the allocated L2 slices. Each remapped slice is mutated to
another allocated L2 slice with mutation probability of 0.015. We have
chosen mutation and crossover probability values within the standard
range.

• Generally, in the case of genetic algorithms, higher the fitness value
of the chromosome, better is the solution. But in our problem, lower
the EDP value, better is the remap configuration. To convert our
minimization problem into a maximization problem, we find out the
largest fitness value of the population and deduct fitness values of all the
other chromosomes from it. We use Roulette Wheel selection method.

• We terminate our search algorithm after 50 generations and use the
fittest solution for further evaluation. For all applications, GA stabi-
lizes after 20-30 generations.
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The flow chart in Fig. 6 gives the steps to be followed to determine the
near optimal remap table configuration. Now we describe, how we calculate
all the terms, required to obtain the fitness value given by Eq. 2. To deter-
mine the number of cache misses in L2 cache for a given remap table, we use a
modified trace-driven Dinero cache simulator[6]. We simulate an application
with all L2 slices and then capture the traffic generated between all L1 and
L2 caches in a trace. The modified Dinero simulator takes this trace and an
instance of a remap table as input. It gives the number of cache misses per
L2 slice. On CMPS, shared caches are noninclusive. So conflict misses in L2
do not cause evictions in L1 cache. Most of the accesses are L1 hits. Due to
these reasons, this approximate method gives quite reasonable estimation of
L2 cache misses. The same trace is used to determine the transit time cost.

3.6 Accuracy of Time Estimation Function

To check the accuracy of our cost modelling method, we modified GA algo-
rithm to obtain the remap table configuration which allocates 2, 4, 6, 8, 10,
and 12 L2 slices. The remap table configuration obtained using this method,
is simulated. Cremap value is obtained using simulation and by the cost mod-
elling method described in previous subsection. The statistical correlation
between these two costs is above 80% for all the applications.

4 Experimental Evaluation

4.1 Applications used in experiments

We evaluate multi-threaded workloads with one-to-one mapping between the
threads and cores (Table 3). This assumption is in line with other work done
for CMP platforms. The technique described in this paper is also appli-
cable to multitasking workloads, where all single threaded applications run
on different cores. We have taken readings for various number of threads
since application may not create sixteen threads due to limited data or task
parallelism.

4.2 Experimental Setup And Methodology

We use a framework, called as “Sapphire” which models all the system com-
ponents accurately[1]. Sapphire uses SESC[14] to simulate a core, Ruby
component from GEMS [11] to simulate the cache hierarchy and intercon-
nects. DRAMSim[15] is used to model the offchip DRAM and also estimates
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its power consumption. Intacte [12] is used to estimate the low level param-
eters of the interconnect such as the number of repeaters, wire width, wire
length, degree of pipelining and also the power consumed by the intercon-
nect. Power consumed by the cache components is estimated using CACTI
[13].

In order to estimate the latency (in cycles) of a certain wire, we need to
create the floorplan of the tile and estimate the wire length. The floorplan
determination requires estimating area of all components in the tile:

• core : This is estimated based on the area of a core of Intel Nehalem
(since we could not obtain an estimate of a MIPS core). The core area
of Intel Nehalem can be considered as a pessimistic estimate of the
MIPS core.

• cache : The area occupied by the L2 cache is obtained using an ap-
proximate estimate of 7.5mm2 per MB of cache, which is the density
achieved on the AMD Shanghai processor. The L1 cache is of size
32KB whose area is very small and is included in the processor area
and hence is not depicted in the Fig. 7.

• router : The area of the router is quite negligible at 32nm.

The floorplan of a typical tile is shown in Fig 7. The wire lengths are de-
termined for the floorplans at a frequency of 3GHz and 32nm technology.

Table 3: Applications used for experimentation
Application # of Threads Description

Alpbench Benchmark

MPGEnc 8,16
Encodes 15 Frames
of size 640x336

MPGDec 8,16
Decodes 15 Frames
of size 640x336

Parsec Benchmark

H.264 Encoder 8
Uses pipeline parallelism,
1B instructions with ref i/p

Splash2 Benchmark
FFT 8,16 FFT on 64K points
LU (Non-

8,16
256x256 Matrix

Continuous) Factorization,B=16
Cholesky 8 Cholesky Factorization

13



Table 4: System configuration used in experiments

Core
out-of-order execution, 3GHz frequency,
issue/fetch/retire width of 4

L1 Cache

32KB, 2 way, 64 bytes cache line size,
access latency of 2 cycles (estimated
using CACTI[13]), private, cache
coherence using MOESI

L2 Cache

1MB/tile, 8 way, 64 bytes cache line size,
access time of 4 cycles (estimated using
CACTI), shared and distributed
across all tiles

Interconnect
16 bits flit size, 4x4 2D MESH,
deterministic routing, 4 virtual channels
per port, credit based flow control

Off chip DRAM

4GB in size, DDR2, 667MHz freq, 2
channels, 8 bytes channel width, 8 banks,
16K rows, 1K columns,
close page row management policy

These are given in the table shown in Fig. 7. The latency of a link in clock
cycles is equal to the number of its pipeline stages. Some of these latencies
are quite high and hence cannot be ignored during architectural simulations.
To obtain the power consumption of interconnect, we compute the link activ-
ity and coupling factors of all links, caused due to the request and response
messages sent over the network.

Processor,

L1 Cache

4 x 4

512KB L2

1.94x1.94
R

6.1mm

4mm

Link Type  Length   PipeLineStgs   Pwr

L1-R            1.26            2             1.083

L2-R              4               8             3.409

R-R H            4               8             3.409

R-R V            6.1            9               5.28

M-R              0.2             1             0.255

Tile Link Latency and Power estimations using Intacte

R: Router, L1: L1 cache L2: L2 tile cache, 

R-R H: Router-Router Horizontal Link, 

R-R V: Router-Router Vertical Link

Power is in mW and all lengths are in mm 

Figure 7: The floorplan of a tile with L2 slice of 512KB in size.

Table 4 gives the system configuration used in our experiments.
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Figure 8: The steps to be followed to perform the detailed power-
performance analysis on Sapphire.

4.3 Simulation Procedure

The flow chart in Fig. 8 shows the experimental procedure. It includes
computing the area of tile components, computing link lengths and low level
link parameters using Intacte and then performing simulation on Sapphire.
Sapphire estimates the activity and coupling factors of all the links. Intacte
determines the power dissipated in the interconnects using these activity
factors. The power consumed by the off-chip DRAM and the on-chip cache
is estimated using DRAMSim and CACTI power model, respectively.

5 Results

Some decisions like code generation or allocation of variables to scratch pad
are usually taken based on the profiled information at compile time for em-
bedded platforms. We have also solved this problem using a similar approach.
The remap table can be determined using few frequently occurring represen-
tative inputs. Most conservative remap table, i.e. one which allocates more
number of L2 slices should be used. The remap table could be specified for
a specific input range. If the input parameters are out of all the calibrated
ranges then the default remap table which maps every L2 slice to itself (i.e.
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Table 5: Table shows the % savings in the execution time, power and
energy-delay product of the application over the reference. FFT-8
indicates FFT application is executed with 8 threads.
App-nThrds I/P # of L2 slices %Pf %Pw %ED

64K points FFT - Value of points is varied

FFT-8
I1*

9
3.55 20 27.26

I2 3.56 20.1 25
I3 3.6 20 25

FFT-16
I1*

10
6.6 15.58 28.13

I2 2.31 16.4 19.6
I3 2.4 16.5 19.8

256x256 Matrix Factorization - Value of points is varied

LUCN-8
I1*

5
6.4 22.5 32.9

I2 1.7 23.4 24.9

LUCN-16
I1*

5
3 16.9 22.5

I2 -0.8 18.5 16

128x128 Matrix - Change in Matrix Dimensions

LUCN-8
I1

5
-0.5 25.5 23.6

I2 0.09 25.3 24.5

LUCN-16
I1

5
-0.9 19.6 17.1

I2 -1.1 19.7 16.8

Cholesky-8

d570*

9

3.39 7.454 13
tk23 2.46 1 5.79
tk29 -0.2 7.8 6.8
lshp 3.7 8.82 14.9
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Table 6: Table shows the % savings in the execution time, power
and energy-delay product of the application over the reference.

Config Input
# of L2

% Pf %Pw % EDslices

Change in frame resolution and input image

Dec-8

I1* - 15 Frames

4

4.2 26.6 33
of res. 640x336
I2 - 3 Frames

4.6 31 36
of res. 128x218
I3 - 20 Frames

2.7 21.8 24.7
of res. 704x480
I4 - 20 Frames

2.9 21 24.3
of res. 706x576

Dec-16

I1* - 15 Frames

3

3 22.6 27.9
of res. 640x336
I2 - 3 Frames

6.2 34 38
of res. 128x218
I3 - 20 Frames

-1.2 16 12
of res. 704x480
I4 - 20 Frames

-0.6 14.6 12.15
of res. 706x576

Enc-8

I1* - 15 Frames

7

3.2 19.3 25.6
of res. 640x336
I2 - 3 Frames

4.9 23.6 30
of res. 128x218
I3 - 10 Frames

-1.6 16 12
of res. 704x480

Enc-16

I1* - 15 Frames

10

6.8 8.7 22
of res. 640x336
I2 - 3 Frames

5.6 16 21
of res. 128x218
I3 - 10 Frames

1 7.2 8,4
of res. 704x480

X264-6

I1* - Frames res.

3

7 40.6 49.3
640x360, 1B. inst.
I2 - Frame res.

4.16 37.9 41.6
384x288, 2B insts
I1 - GOP changed

6.95 40.27 46.99from IBBBP
to IBBBBBP
I3 - Frame res.

0.8 39.6 39
352x240 2B insts.
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remapping disabled) should be used.
For applications like FFT, memory requirement depends on the number

of points on which FFT is performed and not on the actual values of these
points (Table 5)2. We varied values of these points and performed simulation
using the same remap table, obtained with the reference input. % savings in
execution time, power and energy-delay do not change even on changing the
input data set.

In case of LU, which performs matrix factorization, the remap table can be
specified for the range of matrix dimensions. Power and energy-delay savings
obtained are primarily dependent on dimensions of the matrix. They are not
influenced greatly by the actual values of the matrix elements. Similarly,
Cholesky factorization is performed on sparse matrices which are symmetric
and positive-definite. For input of tk29, this benchmark shows degraded
execution time primarily, on account of 39% increase in memory accesses.
However, this is compensated by 16% reduction in the transit time, leading
to a marginal performance loss of 0.2% while achieving power savings of 7.8%
over its reference. Even though, marginal degradation in execution time is
observed, power savings are more important on the embedded systems.

For video applications like MPEG decoder, encoder and H.264, one can
vary most influential parameters like frame resolution, bit rate etc and con-
figure remap table for various frame resolutions. For such applications, work-
ing set does not change drastically even on changing the number of frames.
For example, we determined the remap table using input image with frame
resolution of 704x480 for MPG Decoder and Encoder application and took
readings for images with different frame resolutions. The same remap table
continues to give power savings as shown in Table 5. In case of H.264 En-
coder, we varied the number of B frames between I and P from 3 (IBBBP)
to 5 (IBBBBBP). H.264 encoder uses pipeline parallelism. The mentioned
change increases the number of concurrent threads of execution; even then
the same remap table achieves improvement in execution time of 6.95% with
power and energy-savings of 40% and 47% respectively, over its reference.
These experiments indicate that one can certainly determine the important
performance determining parameters of media applications and configure the
remap table using an offline method.

6 Related Work

Lot of research has been done in the past, to reduce the L2 bank access
latency in the context of large NUCA caches [7]. In [8] and [3], authors

2In table 5 and 5, * indicates that the remap table is evaluated using this input.
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propose to migrate the cache lines near to the core within the same set
whose ways are spanned across different banks (DNUCA architecture - Dy-
namic Non-Uniform Cache Access). None of these explicitly optimize the
power consumption of caches. In [2], Bardine et. al optimize dynamic power
consumption of DNUCA cache by avoiding unnecessary cache line promo-
tion/demotion. However, they mainly study a single core scenario. In [10],
Javier et. al propose a replacement policy for DNUCA architecture which
gives performance improvement of 8% and energy savings of 4%. In [5], au-
thors conclude that the DNUCA cache is not justified for CMPs due their
energy consuming bank accesses, complex lookup and replacement logic, also
cache lines may ping-pong in different directions due to concurrently execut-
ing threads. Hence, we target power optimization in SNUCA caches.

In [4], Diaz Josefa and et. al have used genetic algorithms for the first
time, for the cache resizing problem. They evaluate the fitness of the solution
using architectural simulation, which is very slow. Hence, they can use only
30 chromosomes in the population. We overcome this drawback by modelling
the fitness function by a faster method.

7 Conclusions and Future Work

In this paper, we propose and implement a technique for reducing the power
consumption of an on-chip cache on a SNUCA chip multicore platform. We
use a remap table to achieve this. To arrive at appropriate table sizes and
entries, we formulate the problem as an energy-delay minimization problem
and solve the problem offline using a scalable genetic algorithm. Our tech-
nique results in impressive power savings up to 40% and energy-delay savings
up to 47%. While the current technique targets embedded systems, it can
be extended to configure the remap table dynamically for use in multicore
desktop systems as well. We propose this as a direction for future work. Re-
sults obtained using the genetic algorithm approach, will help us to analyze
the effectiveness of the dynamic approach as well.
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