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Abstract
Critical weather applications like cyclone tracking and earthquake

modeling require high-performance simulations and online visualiza-
tion simultaneously performed with the simulations for timely collab-
orative analysis by geographically distributed climate science commu-
nity. A computational steering framework for controlling the high-
performance simulations of critical weather events needs to take into
account both the steering inputs of the scientists and the criticality
needs of the application including minimum progress rate of simula-
tions and continuous visualization of significant events. In this work,
we have developed an integrated user-driven and automated steering
framework for simulations, online remote visualization, and analysis
for critical weather applications. Our framework provides the user
control over various application parameters including region of inter-
est, resolution of simulations, and frequency of data for visualization.
However, the framework considers the criticality of the application,
namely, the minimum progress rate needed for the application, and
various resource constraints including storage space, network band-
width, and number of processors, to decide on the final parameter
values for simulations and visualization. Thus our framework tries
to find the best possible parameter values based on both the user
input and resource constraints. We have demonstrated our frame-
work using a cross-continent steering of a cyclone tracking application
involving a maximum of 128 processors. Experimental results show
that our framework provides high rate of simulations, continuous vi-
sualizations, and also performs reconciliation between algorithm and
user-driven computational steering.

1 Introduction

Scientific applications such as weather modeling require high-fidelity simula-
tions with complex numerical models that involve large-scale computations
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generating large amount of data. Visualization is vital for subsequent data
analysis and to help scientists comprehend the large volume of data output.
Large-scale simulations for critical weather applications like cyclone tracking
and earthquake modeling require online/“on-the-fly” visualization simulta-
neously performed with the simulations. Online visualization enables the
scientists to provide real-time feedback in order to steer the simulations for
better and more appropriate output suited to the scientific needs. Remote vi-
sualization, where the visualization is performed at a location different from
the site of simulations, can enable geographically distributed climate scien-
tists to share vital information, perform collaborative analysis, and provide
joint guidance on critical weather events. Remote visualization and feedback
control using computational steering can thus assist a large climate science
community in analyzing large-scale scientific simulations.

High-performance simulations and simultaneous remote visualization in-
volve the use of large stable storage for storing the weather data and networks
for shipment of the data from the stable storage to the remote visualization
site. However, constraints on the size and capacity of the stable storage and
the network can limit the effectiveness of such online and simultaneous remote
visualization of critical weather events. Contemporary climate simulations
have demonstrated very high scalability on large number of modern-day pro-
cessors [1]. Simulations running on thousands of cores take less than a second
of execution time per time step [1]. Parallel I/O can enable very high I/O
bandwidth of the range of 5 – 20 GBps on large number of cores [2,3]. A com-
bination of high simulation rate and high I/O bandwidth leads to high rate
of generation of gigabytes of climate data as output and hence rapid accu-
mulation of data in the stable storage. This gives rise to the critical problem
of storage limitation for long-running climate applications which can eventu-
ally lead to stalling of simulations due to unavailability of storage. We have
developed an adaptive framework that automatically tunes various parame-
ters including the frequency of visualization output and number of processors
for simulations to enable simultaneous simulations and continuous online re-
mote visualization of critical weather applications in environments with such
storage and network constraints.

We also consider computational steering and feedback control of critical
weather applications by remote scientists in addition to the automatic tun-
ing of the parameters. Computational steering is a well-studied approach
that allows the user to interactively explore a simulation in time or space by
giving feedback to the simulation, based on visualization output. By allow-
ing user input to instantaneously impact the simulation, interactive steering
“closes the loop” between simulation and visualization [4,5]. Unlike existing
efforts on computational steering, a steering framework for controlling the
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high performance simulations of critical weather events needs to take into
account both the steering inputs of the scientists and the criticality needs
of the application. For our work, we use the minimum progress rate (MPR)
of the simulations as a parameter to represent the criticality of the applica-
tion. This is a parameter input by the climate scientist to express the desired
quality-of-service of the weather simulations. It denotes the minimum num-
ber of climate days that has to be simulated and output in a given wall-clock
time by the application. A steering framework for critical weather applica-
tions, while allowing the scientist or user to remotely steer various application
parameters including the resolution of simulations and the frequency of out-
put for visualization, should also analyze the impact of the user-specified
parameters and given resource constraints on the MPR, guide the user on
possible alternative options, and possibly override the user-specified values
with automatically determined values in case of infeasibility. For example,
the steering framework should override a very high output frequency spec-
ified by the user if it determines that the high output frequency can lead
to unavailability of storage and severely compromise the MPR or criticality
needs of the application.

We have developed an integrated user-driven and automated steering
framework, InSt (Integrated Steering), for simulations, online remote visu-
alization, and analysis for critical weather applications. InSt allows steering
of application parameters including resolution of simulation, rate of simu-
lation and frequency of data for visualization. Further, it allows scientists
to specify region of interest and perform finer resolution simulation for that
region of interest. However InSt also considers the criticality of the appli-
cation, namely, the minimum progress rate needed for the application, and
various resource constraints including storage space, network bandwidth, and
the number of processors, to decide on the final parameter values for sim-
ulation and visualization. Thus our framework tries to find the best pos-
sible parameter values based on both user input and resource constraints.
Our framework InSt, effectively combines computational steering by the
user/scientist with the algorithmic steering performed by the runtime sys-
tem of the framework. Thus our framework is unique since it considers the
reconciliation of both user-driven computational steering and algorithmic
steering, unlike existing work that considers only user-driven computational
steering [4, 6–8]. We present results that show how the framework provides
quality-of-service with respect to high rate of simulation, continuous visual-
izations, and also performs reconciliation between algorithm and user-driven
computational steering.

Section 2 describes related work in computational steering of large-scale
simulations and visualizations of scientific data. Section 3 presents our inte-
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grated steering framework including the components and interactions. Sec-
tion 4 explains the reconciliation between the algorithmic steering and user-
driven steering. Section 5 presents our experiments involving different net-
work bandwidths and results including simulation rates. Section 6 gives
conclusions and enumerates our plans for future work.

2 Related Work

The analysis and study of time-varying output data, obtained from numer-
ical simulations, is integral to the scientific process. Currently climate sci-
entists have been analyzing the output of climate simulation in an offline
“post-processing” step after the simulation is completed. There have been
strategies on offline visualization for earthquake simulations [9]. However,
these strategies cannot be applied for online visualization, which is very im-
portant for critical climate applications. Tu et al. [10] and Ma et. al. [11,12]
proposed tightly-coupled execution of the simulation and visualization com-
ponents where simulation is followed by visualization on the same set of pro-
cessors. They have considered the simulation of earthquake ground motion.
The simulation and visualization cycles alternate executions on the same set
of processors using the same shared data, minimizing the cost of communi-
cation from the simulation to the visualization component. Due to alternate
executions, the simulation component is stalled while the visualization is
performed. The simulation component is generally more compute-intensive
than the visualization component. Hence, stalling simulation while the visu-
alization component runs would cause the subsequent output of simulation
to be produced after a considerable delay. The above efforts consider critical
climate applications in tightly-coupled environments. Our work adaptively
performs simultaneous simulations and online remote visualization for high-
performance applications.

Computational steering has been extensively studied over the past several
years [5,8,13–18]. A variety of steering systems have emerged like SCIRun [4],
CUMULVS [18], Discover [13] etc. A taxonomy of steering systems and
tools can be found in [5, 19]. Different kinds of steering have been used.
Exploratory steering allows the scientists to control the execution of long-
running, resource-intensive applications for application exploration. For ex-
ample, in the work by Shenfield et al. [17], they propose a steering system
that allows user to monitor or alter execution parameters of multi-objective
evolutionary algorithm for engineering design. Performance steering allows
scientists to change application parameters to improve application perfor-
mance. Algorithmic steering uses an algorithm to decide application param-
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eters to improve system and application performance [20]. For example, the
work by Ribler et al. [15] proposes using fuzzy logic to adapt to changing
application resource demands and system resource availability.

Computational steering has been applied to different kinds of applications
like molecular dynamics simulation, biological applications, astrophysics, at-
mospheric simulations, computational fluid dynamics etc [6,7,21,22]. These
frameworks were mainly developed for exploratory steering in order to change
simulation parameters interactively and thereafter, visualizing the simulation
output with the new parameters. In the work in [17], the authors show that
steering of multi-objective evolutionary algorithm improves quality of the so-
lutions. The work in [6] describes an exploratory simulation environment for
Smoothed Particle Hydrodynamics simulation of astrophysical phenomena
in areas such as star formation and evolution. They allow the user to alter
input parameters to influence simulation behaviour.

There are some steering systems which do performance steering [14, 15,
18, 23–25]. CUMULVS [18, 23] provides the user with a viewer and steering
interface for modifying the application’s computational parameters and im-
proving application performance. It allows user-directed checkpointing for
fault-tolerance. Autopilot [14,15] is about dynamically adapting to changing
application resource demands and system resource availability. They use sen-
sors to capture system performance and actuators to configure application
behaviour. They have used fuzzy logic in their decision mechanism to bal-
ance conflicting performance goals. The fuzzy logic decides where and what
existing policy parameters are needed to be changed. Active Harmony [25]
deals with automated performance tuning. It allows runtime tuning of ap-
plication parameters like read-ahead parameter, switching of algorithms etc.
They have developed runtime tuning algorithms to intelligently set the pa-
rameters at runtime to tune the application performance. The most common
performance metrics considered are CPU time or memory space used.

There have been some efforts on remote computational steering [26, 27].
Wu et al. [27] focus on computational steering in distributed environments.
They formulate visualization pipeline configuration problems with the ob-
jective of maximizing the frame rate. They show that these problems are
NP-complete and propose heuristics based on a dynamic programming ap-
proach. In the work by Brooke et al. [26], the authors show how geographi-
cally distributed teams can view simultaneously the visualization of a running
simulation and can steer the application. They have presented application
steering of simulations in condensed matter physics, plasma physics, and fluid
dynamics in a collaborative environment.

Jean et al. [28] have developed an integrated approach for online monitor-
ing, steering and visualization of atmospheric simulations using Falcon [29].
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In this work, they have done simulation of physical and chemical interac-
tions in the ocean and atmosphere. In order to evaluate different parameter
settings by the user, they have built a steering interface to let the user dy-
namically modify the application execution.

Our work differs from the above efforts on computational steering because
we not only let the user interactively steer the application, but we also let
the system override the user decision in order to meet resource constraints
and application performance of critical weather applications.

3 Adaptive Integrated Steering Framework

Simultaneous and continuous visualization for user-guided simulation of crit-
ical weather applications require robust middleware for better application
performance and efficient resource management. We have developed an adap-
tive integrated steering framework, InSt, that performs automatic tuning as
well as user-driven steering. Our framework, shown in Figure 1, consists
of the following components to perform coordinated simulations, online re-
mote visualizations, and user-driven steering: an application manager that
determines the application configuration for weather simulations based on
resource characteristics and user input, a simulation process that performs
weather simulations with different application configurations, a visualization
process for visualization of the frames, frame sender and receiver daemons
that deal with transfer of frames from simulation to visualization sites, sim-
daemon and visdaemon for communication of user-specified simulation pa-
rameters and system response and user interface for accepting user input.
In our work, we remove the frames from the simulation site once they are
transferred to the visualization site. The following subsections describe in
detail the primary components.

3.1 User Interface, SimDaemon and VisDaemon

The user gives input through the user interface as shown in Figure 1. In
particular, user can specify nest location, simulation resolution, and bounds
for output interval and simulation progress rate through the user interface.
The input values from the user are sent to the application manager through
the VisDaemon and SimDaemon. The VisDaemon receives user input from
the user interface through the visualization process, and communicates the
same to the SimDaemon. The SimDaemon specifies this user input to the
application manager. The response from the manager is conveyed back by
the daemons to the user through the user interface.
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Figure 1: InSt: Integrated Steering Framework

3.2 Application Manager

The application manager is the primary component of InSt and acts as the
bridge between automatic steering and user-driven steering in our frame-
work. The application manager periodically monitors the resource parame-
ters, namely the free disk space and available network bandwidth. For au-
tomatic/algorithmic steering, the application manager periodically invokes
the decision algorithm, explained in Section 3.4, for obtaining the number of
processors for simulations and the frequency of weather data output to be
generated by the simulations for continuous visualization. For user-driven
steering, the application manager asynchronously receives the user inputs,
including the upper bound for frequency of output and the simulation res-
olution, from the visualization site. The manager checks the feasibility of
running the simulations with the user inputs, advises the users of alternate
options if not feasible, and invokes the decision algorithm with the user inputs
and resource parameters if feasible.

The manager writes the simulation parameters output by the decision al-
gorithm to the application configuration file, and starts or stops-and-restarts
the simulations with the parameters. More details on the reconciliation of
the automatic/algorithmic and user-driven steering are given in Section 4.
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3.3 Simulation Process

The simulation process is the weather application that simulates the weather
events for a desired number of days. The simulation process periodically
reads the simulation parameters from the application configuration file writ-
ten by the application manager and stops for restarting when the parameters
in the configuration file are different from the parameters used for current
execution. The simulation process also stalls execution (using sleep) if the
available free disk space becomes less than a threshold. It periodically checks
the disk space and continues execution only when the disk space becomes
available again.

3.4 Decision Algorithm

The decision algorithm invoked by the application manager determines

1. the number of processors, and

2. the frequency of output of weather data

for execution of weather simulations for a given

1. resolution of simulation,

2. the bandwidth of the network connecting the simulation and visualization
sites,

3. the available free disk space at the simulation site, and

4. the minimum progress rate (MPR) of simulations desired by the user.

The algorithm also takes as input the execution times for different number of
processors and simulation resolutions. The decision algorithm also considers
lower bound for frequency of output or upper bound for interval between
outputs, upper output interval. This upper bound corresponds to the mini-
mum frequency with which the climate scientist would want to visualize the
weather events.

The objective of the decision algorithm is to maximize the rate of simu-
lations and to enable continuous visualization with maximum temporal res-
olution. We define temporal resolution as the frequency at which successive
frames are visualized. However, these objectives are contradictory. Increas-
ing the frequency of output of weather data by simulations can decrease
the rate of simulations due to increase in number of writes to the disk and
can also lead to rapid consumption of storage, eventually stalling the sim-
ulations. Unlike traditional scheduling algorithms that minimize execution
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times or maximize simulation rates, our decision algorithm may have to some-
times “slow down” the simulations, since faster simulations can lead to faster
consumption of storage if the network to the visualization site is slow.

We can think of our decision algorithm problem as an optimization prob-
lem that primarily attempts to maximize the simulation rate within the con-
straints related to continuous visualization, acceptable frequency of output,
minimum quality-of-service expressed by the user in the form of minimum
progress rate of simulations (MPR), I/O bandwidth, disk space and net-
work speed. We consider an important constraint involving the minimum
progress rate (MPR) of simulations, for considering the criticality needs of
the application. This constraint is also useful for ensuring quality of service
to the climate scientist for continuous and fast visualization. We formulate
our problem as a linear programming problem with constraints to obtain the
number of processors and the frequency of output for simulations. Since we
want the best possible throughput of the simulation in spite of the resource
constraints, we express the objective of our optimization problem as

minimize t

where t is the execution time to solve a time step. The parameters used in
the formulation are listed in Table 1. Among these parameters, the decision
variables involved in the formulation are S, F , T and t. In the table, a
frame is the simulation output of one time step of simulation and corresponds
to the smallest unit of simulation output that can be visualized. Interval
corresponds to some fixed execution time for the simulations. The following
sub-sections describe the formulation of the constraints.

Table 1: Problem Parameters

t Time to solve one simulation time step
S Number of frames solved in an interval
F Number of frames output in an interval
T Number of frames transferred in an interval
O Size of one frame output in one time step
D Total remaining free disk space
TIO Time to output one time step
b Network bandwidth

Time Constraint: For minimum stalling at the visualization end, it is
desirable to transfer frames continuously. Consider an interval I when T
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frames are transferred, S frames are solved and F frames are output. For
continuous visualization, the time to produce F frames should be less than
the time to transfer T frames since the next set of frames should be ready for
transfer by the time the transfer of current frames is over. If the next set of
frames are not available, the continuity of the visualization will be affected
and the visualization process will incur idling. The time to produce a frame
corresponding to a time step includes the time to solve the time step and
the time to write the frame onto the disk. Thus, the time to produce F
frames includes the time to solve S frames and to write F frames onto the
disk. This gives equation (1) where tts is the time to solve, tto is the time to
output and ttt is the time to transfer. Expanding equation (1), we obtain the
constraint specified in equation (2) which can be rearranged as equation (3).
The relation between S and F is determined by the output frequency for
the simulation. For example, if the output frequency is 1 then S = F , i.e.
every frame that is solved is written to the disk.

tts + tto ≤ ttt (1)

S · t + F · TIO ≤
O
b
· T (2)

t + (F/S) · TIO ≤
O
b
· (T /S) (3)

Disk Constraint: Assuming that the rate of input to the disk from the
simulation is greater than the rate at which the simulation output data is
transferred to the visualization site, then the time n in which the disk will
overflow is given by equation (4) where Rin and Rout are the rate of input to
the disk and rate of output from the disk respectively. Rin is calculated using
the solve time t, the output data size O and the interval of output (inverse
of frequency expressed in simulated time units) OI, and Rout is calculated
using network bandwidth b. From this we derive equation (5) which can be
rearranged as equation (6).

n ≤ D
(Rin)− (Rout)

(4)

O · F
t · S + TIO · F

− b ≤ D
n

(5)

t ≥

[
O

(Dn + b)
− TIO

]
· (F/S) (6)

Rate Constraint: A steady rate of progress in simulation is required for
critical weather applications in order for scientists to provide advance infor-
mation based on visualization output. For weather applications, the rate
of progress is represented by the ratio of the time simulated by the appli-
cation (simulation time) and the wall-clock time taken by the application
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for the simulation (wall-clock time). For critical applications like cyclone
tracking where advance information is needed by the scientists to provide
timely guidance to decision makers, this ratio has to be greater than 1, i.e.,
the simulation time has to be greater than the wall-clock time taken for the
simulation. The rate of simulation is dependent on the computation speed
as well as on the output frequency. Higher the frequency of output, higher
will be the number of I/O writes to the stable storage and hence lesser will
be the simulation rate. Also, lower the I/O bandwidth, more significant will
be the impact of output frequency on the simulation rate. In most cases, the
scientists may want to specify a minimum acceptable limit for this ratio. We
denote this minimum ratio as MPR (Minimum Progress Rate), that is pro-
vided by the user/scientist in our steering framework. Equation (7) specifies
this constraint related to the rate of simulations. Let ts denote the integra-
tion time step associated with the resolution of the simulation. This is the
amount of time simulated or solved per time step and depends on the simu-
lation resolution. For example, in our weather application, if the simulation
resolution is 18 km, then the integration time-step was taken as 3 · 18 = 54
seconds. If S frames are solved in an interval I and F frames are produced in
that interval, then simulation time will be ts · S and wall-clock time will be
the summation of solve time and time to output F frames i.e. t ·S + TIO ·F
as given by equation (8). This can be rewritten as equation (9).

Simulation time

Wall − clock time
≥ MPR (7)

=⇒ (ts · S)
(t · S + TIO · F )

≥ MPR (8)

=⇒ ts

(t + TIO · F/S)
≥ MPR (9)

Bounds: Depending on the total number of processors, t has a lower bound
TLB, as specified in equation (10). We can specify upper bound OIUB for the
output interval based on the minimum frequency of visualization of weather
events desired by the users/climate scientists. In our framework, OIUB can
be specified or steered by the user. Output interval also has a lower bound
OILB based on the limitations of the simulation application. For our weather
application, the output interval has a lower bound of 1 simulated minute1.
The bounds for the output interval are specified in equation (11).

t ≥ TLB (10)
OILB ≤ OI ≤ OIUB (11)

Linearizing the Constraints: To linearize the non-linear constraints in
equations (3), (6) and (9), we substitute FS by z and T

S by y respectively to

1Simulated time units denote the time that is simulated and does not represent the
wall-clock time.
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obtain the constraints (12), (13) and (14) for our optimization problem.

t + z · TIO ≤
O
b
· y (12)

t ≥ O
(Dn + b)

− TIO · z (13)

ts

(t + TIO · z)
≥ MPR (14)

It is clear that OI depends on the ratio between the number of frames
solved by the simulations and the number of frames output to the disk as
explained above. Let ts denote the integration time step associated with the
resolution of a climate simulation. This is the amount of time simulated or
solved per time step and is constant for a given simulation. OI is a multiple
of ts. A frame is solved after every ts simulated time and a frame is output
to disk after every OI simulated time. Thus the total time simulated in
an interval of execution time, where S frames are solved and F frames are
output to the disk, is given by equation (15). Using equation (15), the bound
constraint of equation (11) can be rewritten as equation (16).

OI · F = ts · S (15)

OILB ≤
ts

z
≤ OIUB (16)

We used GLPK (GNU Linear Programming Kit) [30] to solve the above
linear programming problem and obtain the values for t, z and y. From the
value for t, we determine the corresponding number of processors using the
benchmark profiling runs with the WRF simulations. We obtain the output
interval, OI, by substituting for z = F

S and ts in equation (15).
This decision algorithm is invoked every 1.5 hours during the simulation

run period. Given the inputs D, TIO, b and O, this algorithm outputs t and
OI to the application configuration file. The job handler reads the file to
look for changes with the current configuration and accordingly reschedules
WRF with the new configuration. Due to changing disk space, it might give
a different set of outputs, namely the number of processors and the output
interval OI, at different points of time during the simulation run-period.

4 Reconciling User-driven and Algorithmic

Steering

Initially, before starting the simulations, the application manager specifies
default values for simulation resolution and MPR. The application manager
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then determines the frequency of output using the decision algorithm based
on resource constraints for the given resolution of simulation. The simula-
tions are then started with these values. The user at the visualization site
can change these simulation parameters during execution through the user
interface. The interface also allows the user to specify a location for for-
mation of nest or sub-region in the domain for finer resolutions. When the
user requests nest placement or a finer simulation resolution, the simulation
process restarts and continues with a new configuration involving the nest
and the new resolution.

When a user specifies an output interval (inverse of frequency) and/or
MPR value, InSt considers the criticality of the application, proactively
checks the feasibility of executing the simulations with these inputs, and
guides the user with possible alternative values for ensuring continuous and
reasonable progress of simulations and visualization. When a user specifies
an output interval, the framework checks if the specified interval can be used
without violating the rate constraint of equation (9), i.e., if the simulations
can generate output with the specified interval such that the simulation rate
will continue to be greater than the current MPR used by the application
manager. This relationship between output interval, OI, and MPR is given
by equation (17) which is derived using equations (9) and (15).

MPR ≤ ts

[t + TIO · (ts/OI)]
(17)

It can be clearly seen that there is a direct relation between OI and MPR.
For example, let the resolution be 15 km, the integration time-step, ts, be 45
seconds, TIO be 43 seconds and t be 3.95 seconds. Now if the user requests
OI of 180 seconds (i.e. solved time-steps are output onto the storage every
3 simulated minutes), then from equation (17), MPR will be less than or
equal to 3.06. But if the current MPR is 5, then the system clearly cannot
satisfy his request for an OI of 180 seconds. Therefore in such cases, InSt
has to override the user-requested value for OI.

Also, it can be seen from equation (17) that if OI is too low, it will
decrease the simulation rate as well. Hence to continuously simulate and
visualize at a steady rate, InSt determines the lower bound of OI from
equation (17) using the current value of MPR used by the application man-
ager. If the value of OI requested by the user is less than this lower bound,
then InSt does not incorporate the user-specified OI. In this case, the InSt
framework informs the user of the lowest feasible OI. If the user-specified
value of OI is greater than the lower bound, this value forms the upper bound
for OI in the decision algorithm, i.e. the decision algorithm in InSt tries to
find the best possible OI within the user-specified bound.
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If the user specifies a MPR value, then the application manager attempts
to change the current MPR value it uses in the decision algorithm with
the user-specified value. However, it first checks if the user-specified MPR,
uMPR is feasible for the current resolution of simulations by calculating
an upper bound, MPRmax, feasible for the resolution and comparing the
user-specified uMPR with MPRmax. For calculating MPRmax, the feasible
upper bound, we substitute OI with ∞ and t with its lower bound TLB in
equation (17) and obtain MPRmax as the ratio of ts and TLB. If the user-
specified MPR, uMPR, is greater than this feasible upper bound, MPRmax,
for the current resolution, InSt proactively tries to find a coarser resolution
and checks the feasibility of uMPR for the coarser resolution by calculating
MPRmax for the coarser resolution. The application manager then provides
the user with the options of coarser resolution at which the uMPR is feasible.
Thus, InSt proactively tries to find a balance between the algorithmic steer-
ing of the decision algorithm and the user-driven steering values considering
the criticality, represented by MPR, of the application.

The flowchart in Figure 2 depicts the reconciliation or handshaking di-
alogue between the algorithmic steering and user-driven steering. In the
flowchart, MPR is the value currently used by the application manager
for simulations, Res represents the current resolution of simulation, uMPR
and uOI are the user-provided MPR and OI (output interval) values. The
flowchart shows the various feasibility analysis done by the application man-
ager before accepting or overriding user request. If the user-specified val-
ues are approved by the application manager, the simulation process is up-
dated with the new values. This is denoted in the flowchart using connectors
marked ‘U’. When the application manager is not able to satisfy user-request
due to infeasibility with respect to the current minimum progress rate used
in the simulations, then the user is recommended an optimal set of values.
This is denoted by connectors marked ‘I’ in the flowchart.

Therefore the user drives the simulation process and the automatic tuning
framework steers the weather simulation to the favorable state of continuous
visualization with minimum stalling and maximum progress rate.

5 Experiments and Results

5.1 Resource Configuration

For all our experiments, visualization was performed on a graphics worksta-
tion in Indian Institute of Science with a dual quad-core Intel R©Xeon R© E5405
and an NVIDIA graphics card GeForce 8800 GTX. We used hardware accel-
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Figure 2: Flowchart depicting reconciliation

eration feature of VisIt [31] for faster visualization. We executed the simu-
lations on two different sites resulting in two different remote visualization
and computational steering settings, namely, intra-country and inter-country
steering. In the intra-country configuration, the simulations were performed
on a quad-core Intel R© Xeon R© X5460 cluster, gg-blr, in the Centre for Devel-
opment of Advanced Computing (C-DAC), Bangalore, India. The transfer
between simulation and visualization site for this intra-country configuration
was carried out on the National Knowledge Network (NKN) [32] with the
maximum bandwidth of 1 Gbps. In the inter-country configuration, the WRF
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Table 2: Simulation and Visualization Configurations
Configuration Simulation Configuration Maximum

Cores
for Sim-
ulation

Maximum
Disk
Space
Used

Average
Sim-Vis
Band-
width

intra-
country

gg-blr: HP Intel Xeon Quad Core Processor
X5460, 40 nodes, 320 3.16 GHz cores, RHEL 5.1
on Rocks 5.0 operating system, each with 16 GB
RAM and 500 GB SATA based storage, and con-
nected by Infiniband primary interconnect and
Gigabit Ethernet secondary interconnect. For
our work, we used the Gigabit network

96 150 GB 40 Mbps

inter-
country

abe: Dell PowerEdge 1955 dual-socket quad-core
compute blades, 1200 blades, 9600 2.33 GHz
cores, RHEL 4 operating system, 1 GB RAM per
core, 100 TB Lustre filesystem, and connected by
Infiniband

128 700 GB 8 Mbps

simulations were conducted on the dual-socket quad-core Intel 64 (Clover-
town) PowerEdge 1955 cluster, Abe, in National Center for Supercomputing
Applications (NCSA), Illinois, USA. Table 2 gives the detailed specifications
of the two resource configurations including the maximum cores used for sim-
ulations, the maximum disk space used by our adaptive framework for the
experiments, and the average available bandwidth between the simulation
and the visualization sites for each of the configurations.

5.2 Weather Model and Cyclone Tracking

We have applied our framework for an important critical weather application,
namely, large-scale and long-range tracking of cyclones. Visualization of cy-
clones is vital for subsequent data analysis and to help scientists comprehend
the huge volume of data output. Visualization can be helpful in identifying
important aspects of the modeled region. For example, the development of
low pressure or the appearance of high vorticity can be easily detected.

In our experiments, we used our framework for tracking a tropical cyclone,
Aila, in the Indian region. Aila was the second tropical cyclone to form in
the Northern Indian Ocean during 2009 [33]. The cyclone was formed on
May 23, 2009 about 400 kms south of Kolkata, India and dissipated on May
26, 2009 in the Darjeeling hills. There were 330 fatalities, 8,208 reported
missing and about $40.7 million estimated damage. We simulated Aila upto
a finest resolution of 3.33 km using a mesoscale numerical weather forecast
model, WRF (Weather Research and Forecasting Model) [34,35].

The modeled region of forecast is called a domain in WRF. The WRF
simulations involve one parent domain which can have child domains, called
nests. WRF supports nesting to perform finer level simulations in specific

16



regions of interest. We used the nesting feature supported by WRF to track
the lowest pressure region or eye of the cyclone and perform finer level simu-
lations in the region of interest inside the parent domain as shown in Figure 3.
The nesting ratio i.e. the ratio of the resolution of the nest to that of the
parent domain, was set to 1:3.

Figure 3: Windspeed visualization in finer resolution nest inside parent domain

As WRF is a regional model, with each level of refinement, it needs input
data at a finer resolution. Before executing WRF, the WRF Preprocessing
System (WPS) is executed to interpolate the meteorological data onto the
domain of interest. The 6-hourly 1-degree FNL analysis GRIB meteorological
input data for our model domain was obtained from CISL Research Data
Archive [36]. WRF allows for writing the weather data at specified output
frequencies. WRF outputs data in the form of NetCDF [37] files. Each
NetCDF file contains output of a number of simulation time steps. WRF
also supports restart files for checkpointing the data during execution, and
continuing the application from the checkpointed data.

For the intra-country experiments, we performed simulations for an area
of approximately 32×106 sq. km. from 60◦E - 120◦E and 10◦S - 40◦N over
a period of 2 days. For the inter-country experiments, we performed simula-
tions over a larger area or domain and for a longer period of time, since the
Abe cluster supports faster rate of simulations (approximately 1.5 time steps
per second) and has faster Infiniband interconnect. For these inter-country
experiments, the domain was approximately from 30◦E - 150◦E and 10◦S -
40◦N and the simulation was done over a period of 3 days and 18 hours.
These domains correspond to the areas of formation and dissipation of Aila.

5.3 Framework Implementation

The modifications to the WRF weather application for our work are minimal.
For tracking cyclones, our framework contains mechanisms for identifying
the formation of cyclones in addition to the functionalities described in the
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earlier sections. Our framework forms the nest dynamically based on the
lowest pressure value in the domain and monitors the nest movement in the
parent domain along the eye of the cyclone. The main modification is to
make the WRF stop for rescheduling on different number of processors when
application configuration file specifies the number of processors and output
interval that are different from the current configuration. For our WRF
executions, the default upper bound for output frequency was specified as 30
simulated minutes and the lower bound was specified as 3 simulated minutes.
However, the user can change these values during steering.

To obtain the simulation rates for different number of processors, that are
used by our decision algorithm, sample WRF runs, each with a simulation
period of 1 hour, were executed for different discrete number of processors
spanning the available processor space and using performance modeling or
curve fitting tools [38] to interpolate for other number of processors. These
WRF profiling runs were executed on 16, 24, 32, 48, 56, 64, 80 and 96
processors in gg-blr cluster and on 32, 48, 64, 80, 96, 112 and 128 processors
in abe cluster.

For faster I/O we used WRF’s split NetCDF approach, where each pro-
cessor outputs its own data. This approach is beneficial, especially for low
bandwidth, low latency networks for faster data transfer from the simula-
tion site. It also significantly reduces the I/O time per time step. We have
developed a utility to merge these split NetCDF files at the visualization
site. We have also developed a plug-in for VisIt to directly read the WRF
NetCDF output files, eliminating the cost of post-processing before data anal-
ysis. We have customized VisIt to automatically render as and when these
WRF NetCDF files are merged after arriving at the visualization site. We
have also visualized the output using volume rendering, vector plots employ-
ing oriented glyphs, pseudocolor and contour plots of the VisIt visualization
tool. For the steering interface, we have developed a GUI inside VisIt using
Qt. A snapshot of the GUI can be seen in Figure 1.

The application manager periodically (in our work, every 1.5 hours) mon-
itors the available disk space using the UNIX command df. The application
manager also uses the average observed bandwidth between the simulation
and visualization sites, obtained by using the time taken for sending about 1
GB message across the network. The application manager also periodically
invokes our decision algorithm every 1.5 hours. This frequency was sufficient
for our experiment settings where the storage space and network bandwidth
did not exhibit high fluctuations. For highly dynamic environments, the
decision algorithm will have to be invoked more frequently. Although the
threshold values used in our InSt are specific to our experiment settings
and WRF simulations, the general principles of our steering framework are
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generic and applicable to other applications.

5.4 Automatic Tuning Results

We first demonstrate the efficiency of the decision algorithm and the auto-
matic tuning of parameters in the InSt framework in the absence of user
inputs. For experiments in this section, our framework automatically de-
termines the WRF nest location and changes the resolution of simulations
based on pressure values in the weather data. Our framework spawns a nest
when the pressure drops below 995 hPa. The nest is centered at the location
of lowest pressure in the parent domain. We also use a configuration file
that specifies the different resolutions for simulations and visualization for
different pressure gradients or intensity of the cyclone. This can be specified
by the climate scientists who typically use coarser resolutions for the initial
stages of cyclone formation and finer resolutions when the cyclone intensi-
fies. As and when the cyclone intensifies i.e. the pressure decreases further,
our framework changes the resolution of the nest multiple times to obtain a
better simulation result from the model.

5.4.1 Intra-country Results

Figure 4(a) shows the results for the intra-country experimental setup using
the gg-blr cluster. The graph shows three curves: a simulation curve (blue)
that plots the simulated time versus wall-clock time, a visualization curve
(red) that plots the times at which the corresponding output were visualized,
and a disk availability curve (green) that shows the consumption of disk space
during the execution. The x-axis shows the wall-clock time progression of
execution for the simulation and disk availability curves. For the visualization
curve, the x-axis shows the wall-clock time when the different frames are
visualized. For the simulation and visualization curves, the left y-axis shows
the corresponding simulation times represented by the frames. For the disk
availability curve, the right y-axis shows the percentage of remaining disk
space.

For this experiment, the initial resolution of the simulation was chosen as
24 km. The resolution was changed to 21 km when the lowest pressure drops
below 994 hPa, 18 km for pressure less than 991 hPa, 15 km for pressure
less than 989 hPa and 12 km for pressure less than 987 hPa. The minimum
progress rate (MPR) of simulations for the rate constraint of our algorithm
was chosen as 5.

Figure 4(a) shows that the lag between visualization and simulation is
minimal resulting in a truly online visualization. This is primarily because
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Figure 4: Simulation and Visualization progress, Disk Consumption and Adaptivity for intra-country
configuration. Initial WRF resolution = 24 km, MPR = 5.

of the high network bandwidth. However, the lag is not constant because
of variation in the network bandwidth and difference in simulation rates at
different points of execution. When WRF restarts at a finer resolution, it also
needs input data at the finer resolution. These regions can be seen as the flat
regions in the curve. The long flat regions are due to the unusually low I/O
bandwidth in the ggblr cluster. These regions also correspond to the increase
in available disk space because of the continuous transfer of frames from the
simulation site to the visualization site even during these restart events in
simulation. It can be observed that the remaining disk space is always above
90%. This is because the network bandwidth for this experiment is quite
high, which implies that the rate at which the disk is freed is quite high.

Figure 4(b) shows the values for the number of processors and output
interval by the simulations automatically determined by InSt at different
stages of execution for the intra-country configuration. During the initial
stages, our framework chooses an initial value of 9 and 80 for output interval
and the number of processors respectively. During the course of execution,
the number of processors and output interval changes a few times. This
happens when one or more parameters change in the constraint equations as
explained in Section 3.4. For example, when resolution changes from 18 km
to 15 km, the time to solve a time step, the output data size per time step
and the time to output a time step also change. So, the decision algorithm
re-evaluates the correct number of processors and the best output interval
for the current parameters. As the resolution becomes finer, the output size
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Figure 5: Simulation and Visualization progress, and Disk Consumption for inter-country configura-
tion. Initial WRF resolution = 18 km, MPR = 3. Steady progress in simulation and visualization without
stalling is observed.

and hence the time to output increases. Our InSt framework also provides
guarantees regarding the rate of simulations (simulation time / wall-clock
time). Specifically, the framework attempts to maintain higher simulation
rates than the minimum progress rate (MPR), using the rate constraint in
equation 9 of the decision algorithm. For the intra-country experiment, the
MPR was specified as 5. The decision algorithm increases the output inter-
val to satisfy the MPR and to prevent disk overflow due to frequent I/O.
Thus, our framework InSt algorithmically steers and adaptively changes the
execution and application parameters based on the application and resource
configurations and application simulation rates.

5.4.2 Inter-country Results

Figure 5 shows the simulation, visualization and disk usage graphs obtained
in the inter-country configuration with NCSA’s Abe cluster in USA for simu-
lations, and the visualization engine in IISc, India. For this experiment, the
initial resolution of the simulation was chosen as 18 km. The resolution was
changed to 15 km when the lowest pressure drops below 993 hPa, 12 km for
pressure less than 991 hPa and 10 km for pressure less than 989 hPa. The
minimum progress rate (MPR) of simulations for the rate constraint of our
algorithm was chosen as 3.

From Figure 5(a), we can see that the simulation for 3 days and 18 hours
was completed in about a day because of the high simulation rate. The
simulation curve shows a rapid change in slope for the initial few hours when
the cyclone is being formed and the simulation resolution is being refined.
After it reaches the finest resolution, it continues at a steady rate and there is
not much change in slope. At a coarser resolution, the time steps are solved
at a much faster rate because the number of grid points are lesser than in the
finer resolution. Hence the slope is steeper in the beginning of the simulation.
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Figure 5(b) shows that we are able to continuously visualize despite the
slow network bandwidth. It can be seen that there is a change in slope of
the curve at a point corresponding to 23rd May, 05:00 hours simulation time
step. This is because a nest is formed at this time step, and hence the total
amount of output data for a single time step increases and hence the time to
transfer one time step increases.

Figure 5(c) shows that the simulation completed without overflowing
available disk space. This is because of adjusting the number of proces-
sors to the correct value so that the disk space is not a problem even though
the simulation rate is high and the network bandwidth is low.

We find a considerable time lag between the time when a time step was
simulated and when the corresponding frame was visualized. This is be-
cause of the high simulation rate in Abe cluster, and the slow Internet-based
transfer of the frames to the visualization site in India. The time taken for
simulating a time step in the coarsest resolution in Abe is approximately
0.6 seconds. Our framework chose the initial number of processors for WRF
executions in Abe as 96, and the output interval for the simulations as 30.
The maximum number of processors, i.e 128 processors were not chosen by
the optimization algorithm because of the disk space constraint due to the
slow network. If simulation had started on 128 processors, it would have pro-
gressed at a much faster rate leading to storage problem later. At the same
time, it was also not drastically reduced so that a minimum progress rate of
simulation is maintained without overflowing the disk. The output interval
was chosen to be 30 because more output frames would mean a higher disk
space consumption rate due to slow rate of data transfer from the disk.

Figure 6(a) shows the change in the number of processors during the
course of execution. It can be seen that the change is not frequent, this
is because the decision algorithm selects an optimal value considering the
parameters like simulation resolution, I/O bandwidth, network bandwidth,
time to solve and free disk space available. When the simulation runs at a
given resolution, only the disk space varies. However since the total available
disk space is already considered by the algorithm while selecting the optimal
value, there is not much variation later during the run. When the resolution
changes, some of the parameters change and hence we can see some varia-
tion in the number of processors. Since the simulation starts with a coarser
resolution and then changes to a finer resolution at different points of the
experiment, the number of processors is more for the finer resolution. This
is because at a finer resolution, the time to solve a time step increases.

Figure 6(b) shows the actual rates of simulations for different stages of
WRF execution for the experiment with the inter-country configuration. We
set an MPR value of 3 for this experiment and we find that the rates are al-
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Figure 6: Actual rates of simulations and change in number of processors for inter-country configura-
tion . The rate constraint of our decision algorithm ensures higher simulation values than the MPR.

ways maintained higher than the MPR value, thus ensuring minimum guar-
antees in the speed of simulations, which is very essential for continuous
tracking of critical weather events. Even though the simulation is slowed
down in the beginning of the experiment when the simulation rate is quite
high due to coarser resolution, yet the framework ensures that the MPR is
satisfied.

5.5 Computational Steering Results

In this section, we demonstrate the user-driven steering supported by InSt,
namely, the various steering capabilities provided to the user, the feedback
mechanisms in the framework, and the reconciliation of the user-driven steer-
ing and automatic tuning by the framework. For these experiments, the sim-
ulations are started at a particular resolution but unlike in the automatic
tuning experiments of the previous section, the resolutions of the ongoing
simulations can be changed only by the user. Similarly, the placement of the
nest for finer simulations can also be performed only by the user.

5.5.1 Intra-country Steering

Figure 7 shows the steering results for the intra-country experimental setup
using the gg-blr cluster. The graph also shows the various steering events
provided by the user.

Initially, the simulations were started with a resolution of 24 km, and
MPR of 5. User input at various stages of the simulation and visualization
resulted in steering events. Below, we list the steering events together with
the system response and the effect of these events.

• E1: This event occurs after 3.8 hours of execution. In this event the
user decides to form a nest based on the visualization output and also

23



00:00
01:36

03:12
04:48

06:24
08:00

09:36
11:12

12:48
14:24

16:00

Wall clock time

23-May 00:00

23-May 06:00

23-May 12:00

23-May 18:00

24-May 00:00

24-May 06:00

24-May 12:00

24-May 18:00

25-May 00:00

S
im

u
la

ti
o
n
 t

im
e

E1

E2

E3 E4

E5

E6

70

75

80

85

90

95

100

P
e
rc

e
n
ta

g
e
 o

f 
D

is
k 

S
p
a
ce

 R
e
m

a
in

in
g

Simulation Throughput
Visualization Progress
Remaining Disk Space

Figure 7: Simulation (blue) and Visualization (red) progress, and Disk Consumption (green) for intra-
country configuration with computational steering. Initial WRF resolution = 24 km, MPR = 5. Events
E1 − E6 affect the simulation throughput and the visualization as reflected in the graph.

provides the nest location. This causes the decision algorithm to recon-
sider the various system and application parameter values and compute
the optimal number of processors and output interval. The formation
of nest decreases the simulation rate and hence the slope decreases after
the event.

• E2: This event occurs after about 4.8 hours of execution. In this event
the user decides to refine the simulation to a finer resolution of 18 km.
To start at a finer resolution, WRF has to preprocess input data at that
resolution. Hence we observe the flat region after E2 corresponding to
the time required for preprocessing. This time depends on the I/O
bandwidth of the system. The framework then starts with the user-
provided resolution of 18 km.

• E3, E4: This event occurs after about 8 hours of execution. E3 denotes
the event where the user requests for a simulation rate of 8 but the sys-
tem denies owing to infeasibility. The maximum rate possible with an
output interval of 30 at resolution of 18 km is 6 considering the time to
solve and time to output in this experimental setup. This value can be
estimated using equation (17). The system then tries to find a coarser
resolution at which the user’s desired rate is feasible as explained in Sec-
tion 4. In this case, the system provides an alternate option of making
the resolution 21 km. In this way, the system tries to satisfy one re-
quirement of the user, while compromising another based on feasibility
analysis. The user can then prioritize resolution over rate or the other
way round. E4 denotes the event where the user asks for a resolution
of 21 km, as suggested by the system. As these events demonstrate,
InSt takes a proactive approach towards user-driven computational
steering. While it attempts to steer the simulations based on user in-
puts, it also analyzes the impact of the user inputs on the criticality
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of the application, namely, the MPR desired for the simulations, and
“advises” the user about possible violations of the “quality-of-service”
due to his inputs, and provides him with suitable alternate options.
Thus, InSt follows an effective reconciliation approach towards steer-
ing executions. Unlike existing work that mainly focuses on user-driven
steering, this reconciliation of the user inputs and the criticality needs
of the application is very essential for critical weather applications like
cyclone tracking.

• E5: This event occurs after about 10.6 hours of execution. In this
event the user decides to increase the output interval to 21. As can be
seen in the simulation curve, the slope slightly increases signifying an
increase in the simulation rate. The simulation rate increases because
the increased output interval causes the simulation process to spend
lesser amount of time writing files to disk.

• E6: This event occurs after about 11.8 hours of execution. This is
where the user decides to refine the resolution for better visualization.
Since finer resolution implies more time to solve a time step, it can be
seen from the graph that the slope of the simulation curve after E6 is
lower compared to before.

Figure 7 shows that the available disk space is always above 95%. This
is because of adjusting the number of processors by the decision algorithm
to the correct value so that disk space is not a problem even when inputs
are given by the user. Fluctuations in the disk curve can be seen at times
corresponding to the events E1 to E6. Increase in disk space can be seen
after the events and before restarting WRF because during this period, the
transfer rate remains the same as there is almost no input to the disk.

5.5.2 Inter-country Steering Results

We also performed inter-country steering from the visualization site in India
to the simulation site in NCSA, USA. Figure 8 shows the results obtained
in the inter-country configuration with NCSA’s Abe cluster in USA for sim-
ulations, and the visualization engine in IISc, India. The graph shows the
various algorithmic steering events and user-driven steering events.

Initially, the simulations were started with a resolution of 18 km, and
MPR of 3 on 96 processors with an output interval of 30 simulated minutes.
Below, we list the algorithmic events (E1 and E4) and user-driven steering
events (E2 and E3) that occurred during the 11 hours of execution. The
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response to these events in terms of the simulation throughput and visual-
ization progress is similar to the intra-country experiment.

• E1: This event occurs after 30 minutes of execution. In this event,
the decision algorithm computes the number of processors as 80. This
change from 96 to 80 is because of the rapid disk space consumption
due to the high simulation rate at coarser resolution.

• E2: This event occurs after 2 hours of execution. In this event, the
user requests for change in output interval to 60 simulated minutes.

• E3: This event occurs after 5 hours of execution. In this event, the
user requests for change in resolution from 18 km to 12 km for better
simulation output.

• E4: This event occurs after 8 hours of execution when finer resolution
causes the simulation rate to decrease. The decision algorithm increases
the number of processors from 80 to 112 in response to this event and
maintains the minimum simulation rate.

6 Conclusions and Future Work

High-performance simulations, effective “on-the-fly” remote visualizations,
and user-driven computational steering of simulations based on feedback to
focus on important scientific phenomena are essential for efficient monitoring
of critical weather events, and providing timely analysis. In this paper, we
have described our integrated steering framework, InSt, that combines user-
driven steering with automatic tuning of application parameters based on
resource constraints and the criticality needs of the application to determine
the final parameters for simulations. Our steering framework proactively an-
alyzes the impact of user inputs on the criticality of the application, advises

26



the user on violations, guides with alternate options, and arrives at the final
agreeable parameters. We have demonstrated the algorithmic and steering
aspects of our framework with experiments involving intra and inter coun-
try steering. Results of these experiments demonstrate how the framework
guarantees a minimum rate of simulation, continuous visualizations, and rec-
onciliation between algorithm and user-driven steering.

In future, we plan to investigate research challenges related to steering
across very-slow networks similar to our inter-country configuration. We also
plan to expand our framework and research to include simultaneous steering
of multiple simulations and multi-user steering in grid environments. We
plan to apply our techniques for other critical applications and form a more
generic framework.
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