
Effective Automatic Data Allocation for Parallelization of
Affine Loop Nests

IISc-CSA-TR-2014-2
March 2014

Chandan Reddy
Indian Institute of Science

chandan.g@csa.iisc.ernet.in

Uday Bondhugula
Indian Institute of Science
uday@csa.iisc.ernet.in

ABSTRACT
This paper proposes techniques for data allocation and computation
mapping when compiling affine loop nest sequences for distributed-
memory clusters. Techniques for transformation and detection of
parallelism, and generation of communication sets relying on the
polyhedral framework already exist. However, these recent ap-
proaches used a simple strategy to map computation to nodes –
typically block or block-cyclic. These mappings may lead to ex-
cess communication volume for multiple loop nests. In addition,
the data allocation strategy used did not permit efficient weak scal-
ing. We address these complementary problems by proposing au-
tomatic techniques to determine computation placements for iden-
tified parallelism and allocation of data. Our approach for data al-
location is driven by tiling of data spaces along with a scheme to
allocate and deallocate tiles on-demand and reuse them. We show
that our approach for computation mapping is able to come up with
more effective mappings than those that can be developed using
vendor-supplied libraries. Experimental results on some sequences
of BLAS calls demonstrate a mean speedup of 1.82× over ver-
sions written with ScaLAPACK. Besides enabling weak scaling for
distributed memory, data tiling also improves locality for shared-
memory parallelization. Experimental results on a 32-core shared-
memory SMP system shows a mean speedup of 2.67× over code
that is not data tiled.

1. INTRODUCTION AND MOTIVATION
A significant amount of work has been done in the past two

decades on parallelizing for distributed-memory. A majority of this
work was done in developing compiler technology for high perfor-
mance Fortran. However, even in domains where it was suitable,
namely programs with regular accesses, there was limited success.
Several steps involved in achieving good performance remained
manual. The quality of communication code as well as the ability to
automatically apply complex transformations was a big limitation.
Hence, even for programs that involve regular accesses such as se-
quences of linear algebra kernels, the approach currently used to
obtain the best performance is to rely on highly tuned libraries. In
addition, none of the previous approaches on automatic distributed-
memory parallelization and code generation have been directly em-
ployed so far even in domain-specific language compilation. MPI
still happens to be the dominant and de facto programming model
due to the lack of any compiler support. The objective of our pa-
per is to further improve automatic compiler and runtime support
for distributed-memory clusters of multicores with emphasis of ex-
ploiting locality.

Some of the limitations in parallelization and code generation
for regular programs, in particular, affine loop nests, have been ad-

dressed in recent years [3, 5, 4, 8]. These works provide techniques
for transformation and detection of parallelism, and generation of
communication sets relying on the polyhedral framework. How-
ever, these works use a simple strategy to map identified parallelism
– typically block or block-cyclic. Previous automatic data distribu-
tion works [12, 6, 11, 13] also employed only block or block-cyclic
mappings for loop nests with the possibility to re-distribute in be-
tween. In spite of a good choice of loop transformations and struc-
ture, these strategies to map identified parallelism significantly im-
pact communication volume and load balance. Some specialized
mappings such as multipartitioning [15, 7] were known and imple-
mented in dHPF, but these works did not provide any automatic
way to determine such mappings. In addition to this, there has
been significant room for improvement in the way data allocation
was handled – to better exploit locality in conjunction with com-
pute transformations. This paper provides an effective solution to
these missing steps.

Our approach for data allocation works by tiling of data spaces.
A data tile is the granularity at which data is allocated and it is itself
contiguous in main memory. Data local to a node as well as that
which is received from remote nodes is accessed by first address-
ing a data tile and then indexing into it. A compiler-based approach
with light-weight runtime helper functions handles on-demand al-
location and deallocation of tiles, and their reuse. The approach
can work in conjunction with either static or dynamic scheduling of
compute tiles. Besides enabling weak scaling for distributed mem-
ory, data tiling improves locality for shared-memory parallelization
– by reducing cache conflict misses, data TLB misses, and false
sharing, and allowing better prefetching.

Although manual distributed-memory parallelization as seen by
a programmer often starts with the step of data decomposition fol-
lowed by computation decomposition, we show that this seemingly
natural approach is not the efficient one when designing flexible
and automatic compiler support. We argue that emphasis should
first be placed on determining the right computation transformation
and a placement. If good computation distributions are found, the
initial data distribution only impacts “first-read” and “last write”
communication. Determining a data distribution and then a com-
pute distribution as done by some previous approaches may even
prevent certain computation distributions where the owner of data
has to change in order to exploit locality. Our approach neither has
the notion of an owner for data, nor that of fixed distribution, nor
re-distribution. Instead data that is accessed for a piece of compu-
tation is allocated on demand (if not already allocated), with com-
munication data flowing from one node to another as dictated by
computation mappings. In summary, the contributions of our work
are that of:

• developing a technique to map identified parallelism after
transformation encompassing block, block-cyclic and other
specialized and arbitrary mappings,

• devising a data allocation technique based on data tiling to
provide improved locality and enable weak scaling for dis-
tributed memory parallelization,

• and demonstration through experiments that our approach is
significantly better than previous approaches and the code
generated outperforms that which can be written even using
vendor supplied BLAS libraries.

More specifically, for some sequences of BLAS calls, the code
we automatically generate beats code manually written using Intel
ScaLAPACK library by a mean factor of 1.82× while running on
a 32-node InfiniBand cluster of multicores. Shared-memory par-
allelization results obtained on a 32-core shared-memory NUMA
SMP system show a mean speedup of 2.67× over code that is not
data tiled.

The rest of this paper is organized as follows. Section 2 describes
our approach to find computation placements. Section 3 describes
how data tilings are found. We describe in Section 4 how allocation
is performed based on a tiled view of data spaces. Experimental
results are presented in Section 5. Related work and conclusions
are presented in Section 6 and 7 respectively.

2. DETERMINING COMPUTATION MAP-
PINGS

In this section, we describe how we find a suitable way of map-
ping available parallelism to a set of nodes. In particular, the pre-
sented strategy subsumes commonly used distributions like block,
block-cyclic as well as more complex mapping schemes. The map-
pings are obtained for all parallel loop nests together. In the rest of
this paper, the term node is used to refer to a set of processors that
have shared memory, typically, an SMP system of general-purpose
multicores. Multiple nodes are connected over an network inter-
connect.

To be self-contained, we briefly describe certain distribution pat-
terns – although some of them are very well-known. A block distri-
bution distributes a set of iterations into equal or nearly equal con-
tiguous chunks where the number of chunks is equal to the number
of processors. A cyclic distribution distributes a set of iterations
across processors in a round-robin manner at the granularity of a
single iteration. When this granularity is changed to a contiguous
chunk of some fixed size, the resulting mapping is a block-cyclic
mapping. We define another specialized mapping that we call a su-
doku mapping due to its similarity with the popular number place-
ment puzzle of the same name. A sudoku mapping assigns tiles
from an n-dimensional view to processors in a way such that all
tiles along any of the (n−1 dimensional) canonical hyperplanes are
mapped on to distinct processors. We will see that such a mapping
(Figure 5a) has interesting properties in minimizing communica-
tion if two pieces of computation require an array to be distributed
in conflicting ways. Multipartitioning [15] implemented in dHPF
is one possible perfect sudoku mapping and such a mapping was
used in the manually parallelized versions of NAS BT and SP.

The computation mapping of a statement Si, denoted by πSi ,
maps computation tiles to nodes. The chosen computation map-
pings have a significant impact on the execution time of a program.
Two key factors to be considered while deciding computation map-
pings are communication volume and load balance. We call a com-
putation mapping for a given program optimal if it leads to the low-
est communication volume and perfect load balance. Consider the

sample tiled ADI code shown in Figure 2. The optimal computa-
tion mapping πS1 for the forward x sweep loop is the block distri-
bution along ii loop iterations. This distribution leads to no com-
munication and all nodes gets equal number of iterations. Similarly,
the optimal mapping πS2 for the y sweep is the block distribution
of jj. However, these mappings are not optimal for the entire pro-
gram as they demand a transpose of array X between the nests of
S1 and S2, and thus a large amount of communication. Signifi-
cantly better mappings exist and in this section, we will describe a
technique to find such computation mappings automatically.
//forward x sweep
for (i=0; i<N; i++)
for (j=1; j<N; j++)
X[i][j] = X[i][j] - X[i][j-1] * A[i][j] / B[i][j-1]; //S1

//upward y sweep
for (j=0; j<N; j++)
for (i=1; i<N; i++)
X[i][j] = X[i][j] - X[i-1][j] * A[i][j] / B[i-1][j]; //S2

Figure 1: Sample ADI program with only forward x and y sweeps.

We model the problem of finding optimal computation mappings
as a graph partitioning problem on the inter-tile communication
graph (TCG). Each vertex in the TCG represents a computation
tile of the program. An edge e is added between two vertices if
and only if there is communication between the corresponding two
tiles when they are executed on different nodes. The weight of the
edge ew will be equal to the communication volume between the
two tiles. Finding the optimal computation mappings is equivalent
to partitioning the TCG into p (number of nodes) equal size parti-
tions with the objective to minimize the sum of those edge weights
that straddle partitions. This objective function represents the total
communication volume for the entire program execution. The re-
sulting computation mappings will thus have lower communication
volume.
//forward x sweep
for (jj=0; jj<floord(N, 128); jj++) //serial loop
for (ii=0; ii<floord(N, 128); ii++) //parallel loop
for (i=max(1, ii*128); i<min(ii*128+127, N); i++)
for (j=max(1,jj*128); j<min(jj*128+127, N); j++)
X[i][j] = X[i][j] - X[i][j-1] * A[i][j] / B[i][j-1]; //S1

//upward y sweep
for (ii=0; ii<floord(N, 128); ii++) //serial loop
for (jj=0; jj<floord(N, 128); jj++) //parallel loop
for (j=max(1, jj*128); j<min(jj*128+127, N); j++)
for (i=max(1, ii*128); i<min(ii*128+127, N); i++)
X[i][j] = X[i][j] - X[i-1][j] * A[i][j] / B[i-1][j]; //S2

Figure 2: Tiled ADI program, tile size = 128

Figure 3a illustrates the tiled iteration domain along with RAW
dependences for the ADI example. A vertex is added to TCG for
each of the tiles. Previous work [8] describes techniques (FOIFI)
to determine the communication sets and receiving tiles for a given
tile. Dependence edges that cross tile boundaries are used to de-
termine the necessary communication sets and receiving tiles. We
use these techniques to build the TCG. For a given tile, an edge is
added to each of its receiving tiles. The size of the communication
set between sender and receiver tiles is set as the weight of edge
between them. In the Figure 3b, edges are added from T0 to its
receivers T3 and T9, with the edge weights 2 and 4 respectively.

2.1 Load balancing constraints
A parallel phase is a contiguous band of parallel loops/dimen-

sions that have been identified for potential extraction of paral-
lelism. Programs often consist of multiple parallel phases. To
achieve good load balance, it is essential that an equal or a nearly

i

j

i

j

S1

S2

T9

T10

T11

T12

T13

T14

T15

T16

T17

T0

T1

T2

T3

T4

T5

T6

T7

T8

(a) Tiled iteration space with dependences

S1

S2

T0

T1

T2

T3

T4

T5

T6

T7

T8

T11

T10

T9

T14

T13

T12

T17

T16

T15

2 2

2 2

2 2

2

2

2

2

2

24

4

4

4

4

4

4

4

4

(b) Inter-tile communication graph

S1

S2

S1

S2

P0

P2

P1

P1

P0

P2

P2

P1

P0

P1

P2

P0

P2

P0

P1

P0

P1

P2

2 2

2 2

2 2

2

2

2

2

2

24

4

4

4

4

4

4

4

4

(c) Computation distribution

Figure 3: ADI

equal number of tiles are allocated to all nodes in each parallel
phase. We identify the tiles that belong to a parallel phase and add
constraints that will minimize load imbalance within each parallel
phase. Vertex weights are used to distinguish between tiles that be-
long to different parallel phases. The vertex weight is a vector of
size equal to the total number of parallel phases. All tiles which
belong to the ith parallel phase will have a vertex weight with the
ith component set and rest zero. Let Si be the sum of the ith ver-
tex weight component of all vertices belonging to a single parti-
tion. For each vertex weight component, we add load balancing
constraints that minimizes the difference between Sis of any two
partitions. These constraints make sure that the resulting compute
tile mappings will assign an equal or a nearly equal number of tiles
to each node in each parallel phase.

When performing static scheduling, all tiles belonging to a band
of tiled parallel loops, for a given value of surrounding sequential
loops, are said to belong to a single parallel phase. Figure 2 shows
the tiled code for the ADI example. For the first loop, ii is the
innermost tiled parallel loop. All the iterations of ii, for a particular
value of outer sequential loop jj, belong to the same parallel phase.
In case of dynamic scheduling, we do a topological sort of the TCG
to identify tiles that belong to the same parallel phase – all tiles at
the same level belong to a single phase. For the ADI example in
Figure 3b there are six parallel phases. All tiles belonging to the
same parallel phase are marked with the same color. Tiles T0, T1
and T2 belong to same parallel phase and each will have vertex
weights as 〈1, 0, 0, 0, 0, 0〉. Similarly T9, T12 and T15 belong to
same parallel phase and will have vertex weight as 〈0, 0, 0, 1, 0, 0〉.
The load balancing constraints ensures that Tiles T0, T1 and T2
are equally divided among all nodes.

The above formulation finds partitions that have an equal number
of tiles in each partition. If number of iterations in the tiles are
not equal, assigning equal number of tiles to each partition could
lead to load imbalance. To overcome this issue, we set number of
iteration in the tile as the vertex weight component. Load balancing
constraints on vertex weights ensures that each partition will have
an equal number of iterations, in each parallel phase.

Figure 3c shows one of the optimal solutions for graph parti-
tioning of the ADI example. In each parallel phase, equal number
of tiles are assigned to all the nodes, which ensures perfect load
balance. Computation mapping is identical for both S1 and S2.
Computation tile 〈ii, jj〉 of S1 and 〈ii, jj〉 of S2 are mapped to

the same node, thus eliminating communication between S1 and
S2. We call this type of computation mapping as ‘sudoku‘ dis-
tribution, since all the node are assigned equal number of tiles
in each row and column. Sudoku distribution is very similar to
multi-partitioning mappings [15]. Sudoku mappings may not have
modulo shift mappings of nodes as defined in multi-partitioning
mappings. Figure 4a shows the computation mappings for sten-
cil programs with near-neighbor communication, which is exactly
the block distribution. Figure 4b shows the obtained computation
mappings for tapered iteration spaces. This mapping is slightly dif-
ferent from block-cyclic mapping. In this mappings, first and last
columns are mapped to node P0, where as in block-cyclic map-
pings first and fourth columns will be mapped to node P0. The ob-
tained mappings has slightly better load balance than block-cyclic
distribution, as equal number of tiles are allocated to all the nodes.

The graph partitioning solution of the TCG also determines the
optimal dimensionality of the computation mapping. Note that a
higher dimensional mapping is not necessarily optimal for an entire
sequence of loop nests being optimized. Consider a program with
the first loop nest (forward x sweep) of ADI. The TCG of this pro-
gram contains only the upper half of Figure 3b with just nodes of
S1. The optimal computation mapping for this graph is a 1-d block
distribution of ii loop. Similarly, for the lower half with the sec-
ond loop nest (upward y sweep), the optimal computation mapping
is a 1-d block distribution of the jj loop. Our graph partitioning
approach is able to find these solutions.

2.2 Scalability of graph partitioning
Graph partitioning with load balancing constraints is an NP-hard

problem. Solutions to these problems are generally derived using
heuristics and approximation algorithms. Open-source software
packages such as METIS [16] and SCOTCH [19] can be used to
solve graph partitioning problems. As the problem size increases,
the number of vertices and edges in the graph also increase. The
number of load balancing constraints also increases as we add load
balancing constraints to each parallel phase, and this depends on
the problem size. Even state-of-the-art graph partitioning software
such as these do not scale as the problem size increases. For ex-
ample, to partition a TCG of ADI with 64 vertices into 4 partitions,
METIS takes around 240s. If the problem size is increased further,
both the time taken and the memory required for partitioning in-
creases drastically. Another major problem is that the quality of

P0 P0 P1 P1 P2 P2

P0 P0 P1 P1 P2 P2

P0 P0 P1 P1 P2 P2

P0 P0 P1 P1 P2 P2

(a) computations with
near-neighbor communication

P0

P0

P0

P0

P0

P0

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P2

P1

P1

P0

(b) Unbalanced computa-
tion

Figure 4: Computation distributions

P0

P0

P0

P1

P1

P1

P2

P2

P2

(a) Representative mapping

P0

P2

P1

P1

P0

P2

P2

P1

P0

(b) Scaled mapping (dot is tile)

Figure 5: Scaling a computation mapping for ADI

the obtained solution degrades as the problem size increases. For
the ADI example, we observe that perfect “sudoku” mappings are
not obtained for more than 32 vertices.

In order to make our approach scalable for larger problem sizes,
we use an approximation to partition the TCG. Note that the de-
pendence patterns typically do not change as the problem size is
increased beyond a certain point. Hence, the optimal mappings for
a larger problem size can often be obtained by scaling the opti-
mal mappings for a smaller one. The computation mappings for
larger problem sizes and the actual number of processors are de-
rived from the computation mappings for a smaller problem size
and number of processors. At compile time, we build the TCG
for a smaller problem size. Problem sizes are chosen such that the
number of vertices in each parallel phase is a particular number that
is sufficient to distinguish the nature of the obtained mapping. The
number of processors is fixed at four which we found to be suffi-
cient in practice, and the problem size is set so that we have at least
two times the number of processor tiles along each parallel dimen-
sion. This allows us to distinguish between block and block-cyclic
mappings. The edges weights and vertex weights are computed
for this smaller graph, and this is partitioned using METIS. This
step is very fast owing to a very small graph. At runtime, when
the problem size is known, the partitioning solution for the input
problem size is obtained from the solution of the smaller repre-
sentative graph. The mapping obtained is first classified as either
being block, block-cyclic, sudoku or an arbitrary one. If a map-
ping is identified as block, sudoku, or arbitrary, then we perform a
“block” scaling of the mapping for the right problem size and the
number of processors. This is illustrated in Figure 5 which shows
the computation mapping obtained for larger problems sizes for the
ADI example. We then generate a function that returns the correct
mapping for any given number of nodes.

For block and sudoku mappings, block scaling ensures that the
respective property continues to hold. For arbitrary mappings, we
find the block scaling to be a reasonable approach though we have
not seen cases where we found arbitrary mappings. When the solu-
tion obtained through graph partitioning corresponds to a cyclic or a
block-cyclic mapping, we perform a cyclic scaling analogous to the
block scaling described above. Overall, this approximate approach
of using a representative graph and then scaling the solution analyt-
ically based on an identified template mapping does not take more
than a second on any of the examples considered for evaluation.
Actual communication costs finally depend on network topology –
finding computation mappings that are optimal for a given network
topology is beyond the scope of this work and is left for future.

3. DATA TILING
As introduced earlier, the idea is to tile the data space similar to

tiling an iteration space, compute data required by a compute tile
at the granularity of data tiles, and allocate only the required data
tiles on-demand at a node. A node itself could comprise multiple
cores that share memory.

3.1 Finding data tiling hyperplanes
In this section, we describe techniques to find the shape of the

computation and data tiles. We determine the shape of computation
and data tiles such that the data accessed by a computation tile is
packed into as few data tiles as possible.

Let S1, S2, . . . , Sn be the statements of a program. Let DSj be
the domain of Sj . Let E be the set of dependences edges with each
edge e ∈ E characterized by a dependence polyhedron Pe. Pe

is a set of linear constraints that relate source iterators and target
iterators that are in dependence. A one-dimensional affine transfor-
mation for Sj , denoted by φSj , is defined as

φSj (~i) = ~hSj ·~i+ h
Sj

0 . (1)

φSj can be viewed as a function mapping iterations of Sj to num-
bers that represent virtual processor ids. For example, φSj (~i) =

(1, 0)T .~i + 0 maps all iterations (i, j) to virtual processor i. φSj

partitions the iteration space of Sj , and ~h = (1, 0) represents the
orientation of the hyperplane that partitions it. When φSj satisfies
certain properties, we call it a tiling hyperplane.

Similarly, for arrays we define an array mapping function ψAk

that maps array elements to virtual processors represented by

ψAk (~a) = ~dAk ·~a+ d
Ak
0 , (2)

where ~d represents the orientation of the hyperplane that partitions
the array space, d0 is the constant offset, and ~a is a data element
in Ak. We call these mappings data tiling hyperplanes if they are
found to satisfy certain properties that we will describe later in this
section.

Consider the first loop nest of the ADI example shown in Fig-
ure 1. Assume that the computation mapping for S1 is φS1(~i) =

(1, 0)T ·~i. Different iterations of the i loop will be mapped to dif-
ferent virtual processors. For the array access X[i][j], different
iterations of i loop access different rows of array X . Hence, the
first dimension of X has to be partitioned. This corresponds to the
array mapping ψX(~a) = (1, 0)T ·~a, which in turn corresponds to
a row distribution of X . If the array access had been X[j][i], then
for φS1(~i) = (1, 0)T ·~i, the corresponding data mapping would be
ψX(~a) = (0, 1)T ·~a, i.e., a column-wise distribution of X . Hence,
the choice of data partitioning hyperplanes, for a given computation
mapping, is driven by the array accesses.

Let F i
sj ,Ak

be the ith access function of array Ak in statement
Sj . In our model, F is an affine function of loop iterators and

program parameters. φsj (~i) is the virtual processor to which iter-
ation ~i will be mapped. F i

sj ,Ak
(~i) represents data accessed by ~i.

ψAk (F i
sj ,Ak

(~i)) is the virtual processor to which the data accessed
by~i will be mapped. Now, we require that the data accessed by~i
be mapped to the same virtual processor as the one~i is mapped to,
i.e.,

φsj (~i) = ψAk (F i
sj ,Ak

(~i)). (3)

The above condition is conceptually the same as that used by
Anderson and Lam [2], but it was in a form that worked only for
perfect loop nests and uniform dependences, and hence the subse-
quent approach relying on it was also different. It is not obviously
always possible to ensure condition (3) since multiple iterations
can access the same data. Hence, what we try to capture is the
difference between the LHS and RHS of (3) as follows and try to
minimize it:

γi
sj ,Ak

(~i) = |φsj (~i)− ψAk (F i
sj ,Ak

(~i))| ~i ∈ Dsj . (4)

The above definition is thus used to connect compute and data tiling
hyperplanes. We now first describe the existing technique to char-
acterize and choose from valid compute tiling hyperplanes, and
then show how data tiling constraints and objectives are integrated
into it to minimize γs. Previous work [5] provided an automatic
approach to find compute tiling hyperplanes that exposed maximal
course-grained parallelism and locality based on an Integer Linear
Programming formulation. To enforce validity for tiling for an edge
e with dependence polyhedron Pe, the following constraint ensures
non-negative dependence components that is sufficient for tiling:

φsj (~t)− φsi(~s) ≥ 0, 〈~s,~t〉 ∈ Pe. (5)

Then, the following cost function has been used to select the best
hyperplane among the set of valid tiling hyperplanes.

δe(~t, ~s) = φsj (~t)− φsi(~s), 〈~s,~t〉 ∈ Pe (6)

This cost function is a measure of communication volume or reuse
distance – and the ILP is solved to minimize it.

We now add data tiling hyperplane coefficients to the ILP de-
scribed above and use (4) to relate compute and data tiling hyper-
plane coefficients. (4) cannot be directly added as it leads to non-
linear constraints between hyperplane coefficients and loop itera-
tors. The bounding function technique [10] can again be used here
obtain constraints in a linear form. When the iteration spaces are
bounded, one can obtain an upper bound on γi

sj ,Ak
(~i). The maxi-

mum mismatch quantified by γ occurs when the iterations and the
entire data accessed by them are mapped onto different virtual pro-
cessors. This mismatch can be bounded by an affine function of
program parameters ~p, i.e., there exists vAk (~p) = uAk .~p+w such
that

vAk (~p)− γi
sj ,Ak

(~i) ≥ 0, ~i ∈ Dsj (7)

By minimizing the bounding function coefficients ~uAk , we indi-
rectly minimize (4). Now the affine form of the Farkas lemma can
be applied to (7).

vAk (~p)− γi
sj ,Ak

(~i) ≡ λsj ,A
i
k0

+ Σtλsj ,A
i
kt

(at~i+ bt), (8)

where λSj ,A
i
kt
≥ 0 are the Farkas multipliers and at~i+ bt ≥ 0 are

the faces of Dsj . The coefficients of~i and ~p in the resulting equa-
tions are eliminated using Fourier-Motzkin elimination to obtain
constraints in a linear form.

The resulting ILP system with tile validity conditions (5), cost
function constraints (6) and data hyperplane constraints (7) is solved

using PIP [9] to get both compute and data tiling hyperplanes. PIP
computes the lexicographical minimal solution for the ILP. Hence,
the order of variables is important. We add separate bounding
function coefficients for each of the arrays to ensure that non-zero
bounding coefficients of one array do not affect the choice of data
hyperplanes for the other arrays. If there is a mismatch between
computation and data tiling hyperplanes, then the bounding func-
tion coefficients of (7) will be non-zero. If same bounding func-
tion coefficients are used for all arrays, then the mismatch between
computation and data hyperplanes for a single array may lead to
sub-optimal data tiling hyperplane for other arrays. Let us, ws be
the bounding function coefficients from the (6), uAk , wAk be the
bounding function coefficients for array Aj resulting from (7), and
hsj be the vector of compute hyperplane coefficients, and dAk that
of the data tiling hyperplane coefficients. (9) shows the order of
variables used for the lexicographic minimal solution:

min≺(us, uA1 , . . . , ws, wA1 , . . . , hs1 , . . . , dA1 , . . .) (9)

Consider the example shown in Figure 6. For compute tiling
hyperplane (1,0), there is no need to tile array v1 and v2, as all iter-
ations of i loop access entire v1 and v2 arrays. Once we solve the
ILP, we obtain a compute tiling hyperplane for each of the state-
ments, φSj , and a data tiling hyperplane for each of the arrays,
ψAk . A data tiling hyperplane ψAk is considered to be invalid for
all F i

Sj ,Ak
if the φSj lies in the union of the null spaces of all ar-

ray access functions, F i
Sj ,Ak

. If this condition is satisfied, then all
iterations of Sj access the entire array Ak. Hence, it is not neces-
sary to tile the array space even if the iteration space of Sj is tiled
with φSj . It is necessary to tile the data space only when different
partitions of the iteration space, due to φSj , access different parts
of array Ak.
for (i=0; i<N; i++)
for (j=1; j<N; j++)
B[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

Figure 6: First loop nest of gemver

3.2 Iteratively finding all hyperplanes
A statement can have as many compute tiling hyperplanes as the

dimensionality of its iteration space. Similarly, an array can have
as many data tiling hyperplanes as its dimensionality. Solving the
ILP formulation described in the previous section gives us a sin-
gle compute tiling hyperplane for all statements and a single data
tiling hyperplanes for all arrays. We add new constraints to the
ILP to ensure that subsequent compute tiling hyperplanes are lin-
early independent of ones already found. However, for data tiling
hyperplanes, linear independence constraints are only added with
respect those that were found to be valid. Algorithm 1 describes
the complete procedure to find all compute and data tiling hyper-
planes. For the ADI example 1, the first compute hyperplane for S1
and S2 is (1,0), corresponding data tiling hyperplane for arrays X ,
A and B is (1,0). The second compute hyperplane for S1 and S2
is (0,1), corresponding data tiling hyperplane for arrays X , A and
B is (0,1). Since, each of the data tiling hyperplanes are linearly
independent of each other, they form a full rank matrix.

4. DATA ALLOCATION
In this section, we describe how data is indexed and managed

once data tiling hyperplanes for each array have been determined.
The data accessed for array Ak through access function F in Sj

can be computed by taking the image of the DSj under F . How-
ever, we are interested in computing data accessed by a particular

Algorithm 1: Finding compute and data hyperplanes
Input: Data dependences (E), array access functions (F)
Output: φSj

∀Sj , ψAk
∀Ak

1 C ← ∅;
valid_hyperplanes_Sj ← ∅ ∀Sj ;
valid_hyperplanes_Ak ← ∅ ∀Ak;
num_valid_hyperplanes_Sj ← 0 ∀Sj ;
num_valid_hyperplanes_Ak ← 0 ∀Ak;
max_num_hyperplanes←max(dim(Sj)) ∀Sj ;
for each e ∈ E within fused loops do

2 Add validity constraints resulting from φsj (~t)−φsi (~s) ≥ 0 to C

3 for each e ∈ E do
4 Add the bounding function constraints resulting from

|v(~p)− δe(~t, ~s)| ≥ 0 to C;

5 for each F i
sj ,Ak

∈ F do
6 Obtain constraints resulting from φsj (

~i)−ψAk
(F i

sj ,Ak
(~i)) ≥ 0

and ψAk
(F i

sj ,Ak
(~i))− φsj (~i) ≥ 0 to C;

7 while max_num_hyperplanes ≥ 0 do
8 Solve the ILP with constraints in C;

max_num_hyperplanes← max_num_hyperplanes - 1;
for each φSj

found do
9 if num_valid_hyperplanes_Sj < dim(Sj) then

10 Add φSj
to valid_hyperplanes_Sj ;

num_valid_hyperplanes_Sj++;
Add constraints to exclude hyperplanes linearly
dependent on φSj

;

11 for each ψAk
found do

12 if ψAk
is a valid data tiling hyperplane then

13 if num_valid_hyperplanes_Ak <dim(Ak) then
14 Add ψAk

to valid_hyperplanes_Ak;
num_valid_hyperplanes_Ak ++;
Add constraints to exclude hyperplanes linearly
dependent on ψAk

;

compute tile. This enables us to allocate only the data required for
the tile on the node it executes on. To accomplish this, the image
of the access function is computed while treating dimensions outer
to the tile, that we call inter-tile iterators, as parameters. The re-
sulting image will be a set, parametric in the inter tile iterators. By
plugging in a particular value for these inter tile iterators, precise
data accessed by that particular compute tile can be obtained. The
shaded rectangle in Figure 7 shows the parametric data region of
compute tile (1,0) due to the array access A[i][j − 1].

When the data tiling hyperplanes are used, the parametric data
regions obtained above end up getting tiled as well in the same way
iteration spaces are tiled. Same tile sizes are used when tiling the
iteration space using compute tiling hyperplanes and the paramet-
ric data region using the corresponding data tiling hyperplane. Af-
ter tiling, the dimensions of the parametric data region include the
newly added inter data tile iterators, intra data tile iterators and the
inter compute tile iterators. For a particular value of compute tile
iterators, inter data tile iterators enumerate all data tiles accessed,
and intra data tile iterators scan data points inside a data tile.

On-Demand data tile memory allocation: Projecting out the
inter data tile iterators, we get parametric polyhedron that can be
used to enumerate all the data tiles that a compute tile accesses.
We use this polyhedron to generate a function that will allocate
memory for the data tiles required by a given compute tile. This
function will be called just before the execution of a compute tile.
This will ensure that data required by a compute tile is allocated
only on that node which will execute the compute tile. For the ADI
example generated function returns data tiles D0 and D1 for the
compute tile (0,1), and only D0 for the compute tile (0,0).

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 7: Accessed data for compute tile (0,1) for A[i][j − 1] in
ADI

Algorithm 2: Determine accessed data tiles for array Ak

Input: Parametric data region DAk
of array Ak , data tiling

hyperplanes ψAk
, tile sizes τk

Output: Parametric data tiles accessed
1 for each data tiling hyperplane ψAk

(~a) = ~dk·~a+ dk0, tile size τk
do

2 add a inter data tile dimension ~aT , corresponding to ~a
add the following two constraints to DAk

τk ∗ (~dk· ~aT) ≤ ~dk·~a+ dk0 ≤ τk ∗ (~dk· ~aT) + τk − 1

3 Project out the intra-tile data dimensions ~a in DAk
return DAk

Allocation of first-read data: Input data of the program being
compiled has to be initialized and distributed before start of pro-
gram execution. We thus also need to allocate that part of the input
data that is “live in” to the compute tiles to be executed on that
node. We call this the first-read data. First-read data of an array
A is set of all array elements whose values are first read by a com-
pute tile before a write is performed if at all. This set is identified
by computing the data accessed all read accesses, and then sub-
tracting out data accessed by target iterations of RAR and RAW
dependences entering the tile.

Data tile buffer reuse: Programs access different parts of the
array during the entire execution of the program. Often, we can
reuse the data tile buffers, rather than allocating new buffers for ev-
ery new data tile. A data tile buffer can be safely reused when all
the compute tiles that require this data tile have finished their ex-
ecution. We can precisely count the number of compute tiles that
require a given data tile. Per data tile ref-count is used to capture
number of compute tiles that need this data tile. We generate a func-
tion that will enumerate all the compute tiles executed by the given
processor and use Algorithm 2 to get all the data tiles accessed by
tile, and increment their ref-count. This function is invoked at the
start of the program. Once the compute tile has finished its execu-
tion and data required by other tiles is packed, we decrement the
ref-count of all the data tiles accessed by this compute tile. If the
ref-count becomes zero we add the data tile buffer pointer to free-
buffers queue. When we want to allocate a new buffer for data tile,
the free-buffer queue is checked fist, if it is non empty, one of its
buffers is returned. A new allocation is done only when free-buffer
queue is empty. Per data tile ref-count is used to track the liveness
information of data tiles. Since, we use dynamic scheduling, actual
schedule will be decided at runtime. Above techniques provide an
efficient, dynamic and schedule independent mechanism for data
tile buffer reuse.

Data tiling with dynamic scheduling: We have integrated data
tiling with a dynamic scheduling framework which schedules at
the granularity of compute tiles. First, we determine the compu-
tation mappings πS for a given problem size and the number of
nodes. The dynamic scheduling runtime distributes compute tiles
according to πS . The read-in data is allocated and data tile refer-
ence counts are initialized as per πS mappings. All compute tiles
that are mapped to a single node are dynamically scheduled. Be-

Algorithm 3: initialize_ ref_counts ()
Input: Set of all compute tiles
Output: data tile ref-counts

1 for each data tile ~d do
2 ref_count_ ~d← 0;

3 for each compute tile ~t do
4 if π(~t) = node_id) then
5 required_data_tiles← determine required data tiles (~t);

for each data tile ~d ∈ required_data_tiles do
6 ref_count_~d ++;

fore start of tile execution, we call the on-demand allocate function
(Algorithm 2), which will allocate all required data tiles if they had
not been already allocated. After the tile has finished execution,
we call the pack function which packs data required by other nodes
from the current node. Packed data is sent to its receive nodes using
asynchronous MPI primitives. Once the pack function is finished,
we decrement the ref-counts of data tiles used. Besides being called
at schedule time, the on-demand allocate function is also called
before data received from other nodes is unpacked. A concurrent
queue is used to maintain a list of free data tile buffers. Atomic
increment and decrement are used to modify data tile ref-counts,
and a compare-and-swap to update data tile buffer pointers. Thus,
the whole implementation is thread-safe and lock-free.

4.1 Re-indexing data spaces
After we perform data tiling transformation, the memory layout

of the arrays is changed. Array elements within the data tile are
now packed in contiguous memory locations. So we need to mod-
ify the original array access functions such that they access correct
elements in the new memory layout. The dimensionality of arrayA
is double because of the new tile dimensions that are added. There
should be an one-to-one mapping between original array dimen-
sions and new tiled dimensions to ensure correctness. We use fol-
lowing equation to obtain new array accesses from original array
accesses.

Figure 8: Original memory
layout

P0 P1

P1 P0

Figure 9: Tiled memory lay-
out

−→
T = (ψAk ·~a)/τk

~t = (ψAk ·~a)%τk
(10)

where
−→
T is the access vector corresponding to inter-tile dimen-

sions, ~t to intra-tile dimensions, ψA is the data tiling hyperplane,
and τ is the tile size. Since the array tiling hyperplanes form a full-
ranked matrix, a one-to-one mapping exists between original and
new array accesses. ~T represents inter data tile dimensions which
enumerates data tiles and ~t scans points inside a data tile. Array ac-
cess X[i][j] will be transformed into X[iit][jjt][it][jt]. If the data
tiling hyperplanes used are (1,0) and (0,1) and tile sizes τ1, τ2, the
new array access will be
A[i/τ1][j/τ2][i%τ1][j%τ2].
The size of the data tile that is to be allocated is τ1 ∗ τ2. This map-
ping is exact for data hyperplanes which have only one non-zero

component, i.e., all points in the new array layout will have corre-
sponding points in the original layout. If the data tiling hyperplanes
used are (1,1) and (0,1) and the tile size is τ , the new array access
as per (10) is A[(i+ j)/τ1][j/τ2][(i+ j)%τ1][j%τ2]. The size of
the data tile that needs to be allocated is (τ1 + τ2) ∗ τ2. Hence, if
the data tiling hyperplane has more than one non-zero component,
for example (1,1), we still obtain a correct one-to-one mapping.
We would have however allocated more than the required amount
of memory. We choose this mapping in spite of it not being exact
due to the simplicity of resulting new access expressions. With this
mapping of (10), we always have either a mod or a divide of an
entire expression – this enables us to simplify access expressions.

To selectively allocate only the required data tiles, we split the
transformed array accessAt[iit][jjt][it][jt] into two parts, (i) ptr =
At[iit][jjt] which returns the pointer to data tile (iit, jjt), and (ii)
ptr[it][jt] which indexes the array element within a data tile. At

is used as an array of pointers to data tiles. Only when a particular
data tile (iit, jjt) is required by a node, a new data tile buffer is
allocated and stored in At[iii][jjt].

Simplification of access expressions: Modified access func-
tions obtained after transformation have the additional cost of a
divide, a mod, and an additional memory access (to obtain the data
tile pointer) for each array access. This could lead to significant
overhead and may prohibit other optimizations such as vectoriza-
tion. We hoist the divide, mod and array dereference operations out
of the innermost loop by splitting it. Consider the data tiled code
shown in Figure 10. The transformed code is shown in Figure 11.
//forward x sweep
for (jj=0; jj<floord(N, 128); jj++)
for (ii=0; ii<floord(N, 128); ii++)
for (i=max(1,ii*128); i<min(ii*128+127, N); i++)
for (j=max(1,jj*128); j<min(jj*128+127, N); j++)
X[i/128][j/128][i%128][j%128] =

X[i/128][j/128][i%128][j%128] -
X[i/128][(j-1)/128][i%128][(j-1)%128] *
A[i/128][j/128][i%128][j%128] /
B[i/128][(j-1)/128][i%128][(j-1)%128]; //S1

Figure 10: Data tiled ADI example

//forward x sweep
for (jj=0; jj<floord(N, 128); jj++)
for (ii=0; ii<floord(N, 128); ii++)
for (i=max(1, ii*128); i<min(ii*128+127, N); i++){
j = max(1, jj*128);
//peeled iteration
X[i/128][j/128][i%128][j%128] =

X[i/128][j/128][i%128][j%128] -
X[i/128][(j-1)/128][i%128][(j-1)%128] *
A[i/128][j/128][i%128][j%128] /
B[i/128][(j-1)/128][i%128][(j-1)%128]; //S1

j++;
X_ptr = X[i/128][j/128];
A_ptr = A[i/128][j/128];
B_ptr = B[i/128][j/128];
i_mod = i%128;
lb = max(1, jj*128+1);
for (j=max(1,jj*128+1); j<min(jj*128+127, N); j++)
X_ptr[i_mod][j-lb] = X_ptr[i_mod][j-lb] -

X_ptr[i_mod][j-lb-1] * A_ptr[i_mod][j-lb] /
X_ptr[i_mod][j-lb-1]; //S1

}

Figure 11: Optimized data tiled ADI example

5. EXPERIMENTAL EVALUATION
This section presents experiments demonstrating improvement

over existing techniques. Our framework is implemented as a part
of a publicly available source to source polyhedral tool chain. The
input for our framework is sequential C code which can be arbi-

trarily nested affine loop nests. Compilable code to find compu-
tation placements and to distribute data is automatically generated.
Cloog-isl [3] is used to generate code from the polyhedral represen-
tation. METIS [16] is used to partition the initial graph (Section 2),
and to determine computation distributions.

We first determine the compute and data tiling hyperplanes us-
ing techniques described in Section 2. Computation hyperplanes
are used to transform and tile the sequential code [17]. Techniques
described in [4, 8] are used to construct communication sets and
generate MPI code for distributed memory. The communication
and distributed-memory code works for any arbitrary computation
placement. Data spaces are tiled and array access expressions are
modified using the data tiling hyperplanes. We generate functions
to perform on-demand allocation and buffer management as ex-
plained in Section 4. These functions are called at runtime for
buffer allocation and management. All of these steps work in an
end-to-end automatic manner taking unmodified sequential affine
loop nests in C to parallelized code.

Benchmarks: We present results for Floyd-Warshall (floyd),
LU Decomposition (lu), Cholesky Factorization (cholesky), Al-
ternating Direction Implicit solver (adi), 2mm (2mm), and 3mm
(3mm) benchmarks. All these benchmarks are chosen from the pub-
licly available Polybench/C 3.2 suite [18]. For comparing against
ScaLAPACK programs, we use atax, BiCG Sub Kernel (bicg),
gemver, gesummv, and matrix vector product and transpose (mvt)
benchmarks, also from the Polybench/C 3.2 suite [18]. All bench-
marks use double-precision floating-point operations. The com-
piler used for all experiments is ICC 13.0.1 with options -O3 -
ansi-alias -fp-model precise. pluto-data-tile-gp refers to our code.
Where applicable, we compare or comment on solutions that would
have been found by previous approaches [13, 15, 4], and we also
mention the specific mapping found by the graph partitioning ap-
proach. Problem sizes used are listed in Table 1 and 2.

Benchmark Problem size
floyd 4096 x 4096

cholesky 4096 x 4096
lu 8192 x 8192
2mm 2048 x 2048
3mm 2048 x 2048

Table 1: Problem sizes for shared memory evaluation

Benchmark Problem size per processor
gemver 20000 x 20000
bicg 40000 x 40000

gesummv 30000 x 30000
mvt 30000 x 30000
atax 30000 x 30000
floyd 2048 x 2048
lu 4096 x 4096
adi 128 x 4096 x 4096

Table 2: Problem size (per proc) for distributed-memory evaluation

5.1 Distributed memory
The experiments were run on a 32-node InfiniBand cluster of

dual-SMP Xeon servers. Each node on the cluster consists of two
quad-core Intel Xeon E5430 2.66 GHz processors with 12 MB L2
cache and 16 GB RAM. The InfiniBand host adapter is a Mel-
lanox MT25204 (InfiniHost III Lx HCA). All nodes run 64-bit
Linux kernel version 2.6.18. The cluster uses MVAPICH2-1.8.1
as the MPI implementation. We measured a point-to-point latency

of 3.36 µs, unidirectional and bidirectional bandwidths of 1.5 GB/s
and 2.56 GB/s respectively. We developed ScaLAPACK versions
of the benchmarks using multi-thread ScaLAPACK routines of In-
tel MKL 11.0.1 library. All experiments are run with 8 threads per
node.

Figure 12 shows the weak scaling performance for both ScaLA-
PACK code and our framework. ScaLAPACK internally uses 2-d
block cyclic distributions for all routines. Our framework computes
the optimal computation placements for each of the benchmarks.
For gemver, our framework finds the sudoku distribution that sig-
nificantly outperforms 2-d block cyclic distribution. As we are able
to fuse the first two loop nests in gemver and perform data tiling,
our single thread performance is improved by about 3x. For mvt,
bicg and gesummv benchmarks, transformations applied result in
an outer parallel loop. The output of our framework is a 1-d block
distribution with no communication, and this results in near ideal
scaling. Figure 13c shows the weak scaling performance for adi.
Previous schemes [4, 13] would have chosen 1-d block distribution
for adi, that leads to O(n2) communication (nxn being the data
size), and does not scale. On the other hand, our framework finds
the sudoku-like placement that hasO(n) communication only. Fig-
ure 13a shows the weak scaling performance for floyd. The per-
formance of pluto-data-tile-gp is very close to manually written
2-d blocked floyd. 2-d block distribution performs better than a 1-d
block one due to a higher ratio of computation to communication –
in this case, it leads to a 3× reduction in communication volume.
Our framework also implicitly finds the optimal dimensionality of
the distribution leading to the minimum communication volume.
Note that a higher dimensional mapping may not be necessarily
optimal for an entire sequence of loop nests being optimized.

5.2 Shared memory
The experiments were run on a four socket machine with AMD

Opteron 6136 CPUs (2.4 GHz, 128 KB L1, 512 KB L2 and 6 MB
L3 cache). The shared memory has a NUMA architecture and nu-
mactl to bind threads and pages appropriately for all our experi-
ments. When not performing data tiling (for comparison), we did a
simple interleaving of pages across all NUMA nodes.

Figure 14 shows that data tiling leads to a significant improve-
ment in single thread performance, and hence benefits shared-memory
parallelization as well. Data tiling enhances the spatial locality of
space tiled loops. After data tiling, data accessed by a compute
tile is contiguous in memory. There will only be cold caches for
all accesses to a data tile, i.e., conflict misses are eliminated. It
also reduces TLB misses and false sharing. Due to simplification
of the modified access functions, we completely eliminated asso-
ciated overhead from the innermost loop. This results in a geo-
metric mean speedup of 2.67× over code with no data tiling. For
cholesky we see a very high speedup of 5.42x. This is also due to
data tiling enabling vectorization. cholesky kernel had spatially
conflicting accesses in a single statement. This kernel is not readily
vectorizable by icc as the memory accesses are not contiguous. If j
is the innermost loop, then consecutive access of A[j][i] are array
size apart. However, after data tiling, accesses due to A[j][i] are
tile size apart, and icc can vectorize the code. So, in addition to
enhancing locality, data tiling also enables vectorization.

6. RELATED WORK
Our approach is built on top of and coupled with communica-

tion set generation and distributed-memory code generation works
of Bondhugula [4] and Dathathri et al [8]. The communication set
construction scheme of [8] is used and the volume of communica-
tion for a given transformation does not increase due to data tiling.

 0

 5

 10

 15

 20

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

scalapack
pluto-data-tile-gp (sudoku)
pluto-data-tile-block-cyclic

(a) gemver

 0

 2

 4

 6

 8

 10

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

scalapack
pluto-data-tile-gp

(b) mvt

 0

 2

 4

 6

 8

 10

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

scalapack
pluto-data-tile-gp

(c) bicg

 0

 5

 10

 15

 20

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

scalapack
pluto-data-tile-gp

(d) gesummv

 0

 2

 4

 6

 8

 10

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

scalapack
pluto-data-tile-gp

(e) atax

Figure 12: Weak scaling performance of scalapack and pluto-data-tile

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

pluto-data-tile-gp (2d-block)
pluto-data-tile (1d-block)
manual (2d-block)

(a) floyd

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

pluto-data-tile-gp (block-cyclic)
pluto-data-tile (block)

(b) lu

 0

 10

 20

 30

 40

 50

 60

1 2 4 9 16 25 32

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Number of processors

pluto-data-tile-gp (sudoku dist)
pluto-data-tile (1d-block)

(c) adi

Figure 13: Weak scaling performance of pluto-data-tile-gp on 32 processors (256 cores)

The works of Kennedy and Kremer [13], Chapman et al [6], Gar-
cia et al [11], Gupta and Banerjee [12] have addressed the problem
of finding automatic data distributions for distributed memory ar-
chitectures in the context of regular programs. These approaches
first decompose the input program into regions (also called phases)
at the granularity of loop nests. An array has a single distribu-
tion throughout a phase and data is remapped between phases (dy-
namic distributions). Within each phase, data distributions and ar-
ray alignments are found that lead to the least communication vol-
ume. The solution space of these works only includes data distribu-
tions typically supported by HPF (High Performance Fortran), i.e.,
block or block-cyclic. On the other hand, our technique first deter-
mines computation placements and the data distributions are then
derived from it. It thus automatically captures array alignments,
static and dynamic distributions, and array replications modeled
in the previous approaches. To provide this flexibility, our ap-
proach included an elaborate data allocation scheme. To summa-
rize, our approach has the following advantages over all previous
works: (i) our solution space includes arbitrary mappings includ-
ing multipartitioning-style, not just block and block cyclic, (ii) it

has the flexibility to apply locality-enhancing transformations such
as time tiling since we do not adhere to the “owner computes” rule,
and (iii) it minimizes both communication volume and load imbal-
ance.

The work of Anderson and Lam [2] combined with distributed-
memory code generation [1] deals with finding computation and
data distributions in a unified manner. It only deals with sequences
of perfectly nested loops, and finds affine computation and data
mappings to virtual processors. Heuristics are then used to map
virtual processors to actual physical processors, which again only
support block or block-cyclic mappings.

Multipartitioning [15] and generalized multipartitioning [7] were
specialized computation mapping schemes implemented in dHPF
that provided excellent scaling for SP and BT from NAS parallel
benchmarks. They are also suitable for the smaller gemver and adi
codes we used for evaluation. However, a general mapping strategy
that automatically deduced multipartitioning as a suitable mapping
while also incorporating block, block-cyclic, and other arbitrary
mappings for affine loop nests did not exist prior to this work.

Many recent works [14] and [22] addressed the problem of opti-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

floyd
lu cholesky

2mm
3mm

S
p
e
e
d
u
p
 w

it
h
 d

a
ta

 t
ili

n
g

Benchmarks

1-thread

32-threads

Figure 14: Speedup with data tiling over no data tiling on shared
memory multicore. Sequential execution times for floyd, lu,
cholesky, 2mm, 3mm are 225s, 494s, 297s, 93s and 109s respec-
tively.

mizing data layouts for shared-memory architectures. Lu et al [14]
proposed a data layout framework to enhance locality on NUCA-
based chip multiprocessors. They find a single “localizable” data
and computation partitioning, and the data is tiled along only one
dimension. On the other hand, we find a full-ranked computa-
tion and data mapping in a unified manner, and the data is thus
tiled along multiple dimensions. This approach is required due
to our problem being very different from that of [14]. Zhang et
al [22] proposed techniques to determine data tiling hyperplanes
and computation-to-core mappings. They too formulate a graph
partitioning problem to find the computation-to-core-mapping to
minimize communication volume. However, they do not consider
load balance and use simple heuristics to partition the graph. Both
the approaches do not address on-demand allocation and buffer
reuse and their techniques do not provide the flexibility to sup-
port any arbitrary computation mapping. Yuki et al [21] describe
a memory allocation for distributed-memory. Though it enables
weak scaling, it only works for uniform dependences and solves
the problem in a very different way to avoid the use of modulos
with respect to runtime parameters – a problem that we never face.

Jeremy et al [20] propose techniques to optimize sequences of
BLAS kernels calls for shared-memory architectures. They develop
a domain-specific language to express linear algebra operations and
their BTO (Build to Order) compiler performs optimizations such
as loop fusion, tiling etc. across sequences of BLAS calls. Our ap-
proach fits well in such domain-specific compilers as well to enable
targeting distributed memory.

7. CONCLUSIONS
We proposed techniques for data allocation and computation map-

ping when compiling affine loop nest sequences for distributed-
memory clusters. These techniques allowed us to complete missing
steps in allowing effective end-to-end distributed-memory paral-
lelization of affine loop nests. Our approach for data allocation re-
lies on a tiled view of data spaces. The scheme allocates and deallo-
cates tiles on-demand and exploits their reuse. We showed how our
approach for computation mapping is able to come up with more ef-
fective mappings than those that can be used with vendor-supplied
BLAS libraries. These mappings that were automatically deter-
mined also subsume mappings with similar properties that were
implemented and used manually in previous works. Experimen-

tal results on some sequences of BLAS calls demonstrated a mean
speedup of 1.82× over versions written with ScaLAPACK and a
maximum speedup on 4× while running on a 32-node cluster. Be-
sides enabling weak scaling for distributed memory, data tiling also
improves locality for shared-memory parallelization. Experimental
results on a 32-core shared-memory NUMA SMP system show a
mean speedup of 2.67× over code that is not data tiled.

8. REFERENCES
[1] S. P. Amarasinghe and M. S. Lam. Communication

optimization and code generation for distributed memory
machines. In PLDI, pages 126–138, 1993.

[2] J. M. Anderson and M. S. Lam. Global optimizations for
parallelism and locality on scalable parallel machines. In
ACM SIGPLAN PLDI, pages 112–125, 1993.

[3] C. Bastoul. Code generation in the polyhedral model is easier
than you think. In PACT, pages 7–16, 2004.

[4] U. Bondhugula. Compiling affine loop nests for
distributed-memory parallel architectures. In
Supercomputing (SC), page 33. ACM, 2013.

[5] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model. In ETAPS CC, 2008.

[6] B. M. Chapman, T. Fahringer, and H. P. Zima. Automatic
support for data distribution on distributed memory
multiprocessor systems. In LCPC, pages 184–199, 1993.

[7] A. Darte, J. Mellor-Crummey, R. Fowler, and
D. Chavarría-Miranda. Generalized multipartitioning of
multi-dimensional arrays for parallelizing line-sweep
computations. JPDC, 63:887–911, Sep 2003.

[8] R. Dathathri, C. Reddy, T. Ramashekar, and U. Bondhugula.
Generating efficient data movement code for heterogeneous
architectures with distributed-memory. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2013.

[9] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[10] P. Feautrier. Some efficient solutions to the affine scheduling
problem: Part I, one-dimensional time. International Journal
of Parallel Programming, 21(5):313–348, 1992.

[11] J. Garcia, E. Ayguade, and J. Labarta. A novel approach
towards automatic data distribution. In Supercomputing,
1995. Proceedings of the IEEE/ACM SC95 Conference,
pages 78–78. IEEE, 1995.

[12] M. Gupta and P. Banerjee. Paradigm: A compiler for
automatic data distribution on multicomputers. In
Proceedings of the International Conference on
Supercomputing, ICS ’93, pages 87–96. ACM, 1993.

[13] K. Kennedy and U. Kremer. Automatic data layout for
distributed-memory machines. ACM Transactions on
Programming Languages and Systems, 20(4):869–916, 1998.

[14] Q. Lu, C. Alias, U. Bondhugula, et al. Data layout
transformation for enhancing data locality on nuca chip
multiprocessors. In PACT’09, pages 348–357, 2009.

[15] J. Mellor-Crummey, V. Adve, B. Broom,
D. Chavarria-Miranda, R. Fowler, G. Jin, K. Kennedy, and
Q. Yi. Advanced optimization strategies in the rice dHPF
compiler. Concurrency: Practice and Experience, pages
741–767, 2002.

[16] METIS -Family of Graph and Hypergraph Partitioning

Softwares.
http://glaros.dtc.umn.edu/gkhome/views/metis.

[17] PLUTO: A polyhedral automatic parallelizer and locality
optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[18] Polybench. http://polybench.sourceforge.net.
[19] Scotch - Sequential and parallel graph partitioning software.

http://www.labri.fr/perso/pelegrin/scotch.
[20] J. G. Siek, I. Karlin, and E. R. Jessup. Build to order linear

algebra kernels. In In International Symposium on Parallel
and Distributed Processing 2008 (IPDPS 2008, pages 1–8,
2008.

[21] T. Yuki and S. Rajopadhye. Canonic multi-projection:
Memory allocation for distributed memory parallelization.
Technical report, Technical Report CS-11-106, Colorado
State University, 2011.

[22] Y. Zhang, W. Ding, M. Kandemir, J. Liu, and O. Jang. A data
layout optimization framework for nuca-based multicores. In
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 489–500. ACM,
2011.

