
Shared Instruction Cache Analysis in
Real-time Multi-core Systems

Kartik Nagar, Y. N. Srikant
IISc-CSA-TR-2015-1

January 2015

Abstract

Real-time systems require a safe and precise estimate of the Worst
Case Execution Time (WCET) of programs. In multi-core architec-
tures, the precision of a program’s WCET estimate is highly dependent
on the precision of its predicted shared cache behavior. Prediction of
shared cache behavior is difficult, due to the uncertain timing of in-
terfering shared cache accesses made by programs running on other
cores. Given the assignment of programs to cores, the Worst Case
Interference Placement (WCIP) technique tries to find the worst-case
timing of interfering accesses, which would cause the maximum num-
ber of cache misses on the worst case path, to determine the WCET.
In this work, we show that performing WCIP is an NP-Hard problem,
by reducing the 0-1 Knapsack problem. We then propose an approxi-
mate technique to perform WCIP, which is fast and experimentally as
precise as previously published ILP-based approach to WCIP. Shared
cache analysis performed using WCIP is very precise as compared to
other approaches, and we report an average precision improvement of
28.79 % in the WCETs obtained using approximate WCIP, over other
approaches, with almost 100x reduction in average analysis time over
ILP-based WCIP.

1 Introduction

Multi-cores are widespread in today’s computing devices, from hand-held
mobiles to servers and workstations. Using multi-cores for real time systems
has proved difficult, because real time systems require an estimate of the
maximum execution time of programs (also called the Worst Case Execution

1

Time), and obtaining precise estimates of WCET on multi-core architectures
is not easy.

While predicting the exact WCET is undecidable in general, we would
like to get as close as possible, without underestimating the actual value.
After decades of research, a standard framework for estimating WCET of
programs has emerged (see [1] for a comprehensive survey). Starting from
the binary executable whose WCET is to be determined, first the control-
flow graph (CFG) of the program is constructed and the loop bounds are
estimated. Next, the micro-architectural analysis is carried out to determine
the impact of architectural components such as caches, pipelines, etc. on the
execution time of individual instructions. Finally, the program path with the
maximum execution time (i.e, the worst-case program path) is determined,
which realizes the WCET of the program.

Caches have a major impact on the execution time, and hence, cache anal-
ysis is a crucial component of the WCET estimation framework. Multi-core
architectures typically have a cache hierarchy, with private caches assigned
to each core at lower levels, and a shared cache, which is shared between all
the cores at the highest level. Accesses which miss the shared cache have to
go to the main memory, and due to the huge difference between main mem-
ory latency and shared cache latency in current architectures, shared cache
analysis becomes very important.

The purpose of shared cache analysis is to statically identify the shared
cache hits experienced by a program, so that the shared cache latency can be
used for those accesses, thus bringing down the estimated WCET. However, if
we want to determine the shared cache behavior of a program running on one
of the cores, then we must consider the effect of the shared cache accesses gen-
erated by other cores (henceforth called interfering accesses or interferences).
This is because such interfering accesses can have a destructive impact on
the cache behavior of the program under analysis. In principle, these inter-
ferences can arrive at any time and evict the cache blocks of the program
under analysis, causing extra shared cache misses, which the program would
not have suffered in isolation.

The shared cache misses caused due to interferences will cause an increase
in the program’s execution time, which must be accounted for while deter-
mining its WCET. The WCET of a program in a multi-core setting should
be greater than the actual execution time of the program in all its runs, i.e.,
irrespective of the program input, and the timing of the interferences from
other cores. While it would be safe to assume that all shared cache accesses
cause a miss, this would introduce significant imprecision in the WCET es-
timate. Our goal is to safely predict as many shared cache hits as possible,
so that precise WCET estimates can be obtained.

2

Given the assignment of programs to cores, it is straightforward to find
the number of interferences (i.e. shared cache accesses) generated by each
core. However, an interference can cause any number of shared cache misses
between 0 and the cache associativity, depending on the timing of its ar-
rival. Hence, the same number of interferences can cause different number
of shared cache misses for the program under analysis. The worst-case ar-
rival of interferences is the arrival that causes the maximum number of shared
cache misses, and hence the maximum increase in execution time. The Worst
Case Interference Placement (WCIP) technique tries to find the worst-case
interference arrival along the worst-case path in the program [2].

Theoretically, WCIP is the most precise method to estimate the shared
cache behavior, because one must consider the possibility of a program run,
which will traverse the worst-case path and experience the worst-case arrival
of interferences from other cores, and thus have an execution time equal to the
WCET as calculated using WCIP1. In practice, the WCETs obtained using
WCIP are much lower than other techniques used for shared cache analysis,
which typically consider the effect of all interferences on every cache access
[3].

In [2], WCIP is performed by generating an Integer Linear Program (ILP),
whose optimal solution encodes the worst-case program path and the worst-
case interference placement on this path. Solving an ILP is a NP-Hard prob-
lem, and this is reflected in the high analysis time required to solve the ILP
for large programs. This raises the challenge of finding efficient techniques to
perform WCIP. In this work, we show that performing WCIP is a NP-Hard
problem, and hence there cannot exist an efficient algorithm. Specifically,
we show that finding the worst-case path in a program, in the presence of
interferences to the shared cache, is NP-Hard by reducing the 0-1 Knapsack
problem. This result shows that shared cache analysis is actually a combina-
torial optimization problem, and is very different from normal private cache
analysis.

The difficulty in WCIP arises from the difference in the execution times
and number of shared cache hits, along different program paths. A program
path with high execution time may not have enough shared cache hits to ‘use’
all the interferences, while there may be program paths with large number
of shared cache hits but lower execution times. To bypass this problem,
we propose an approximate technique for WCIP which assumes that all the
shared cache hits are present on the worst-case path (calculated assuming

1Note that because of infeasible paths, imprecision of private cache analysis, etc., it is
possible that the actual WCET of the program may be lower than the WCET obtained
using WCIP. However, this issue is orthogonal to WCIP, which itself will not introduce
any imprecision

3

no interferences). We then find an upper bound on the increase in execution
time due to interferences across all program paths. We use an abstract
interpretation based approach followed by a greedy algorithm to find this
upper bound, whose time complexity depends only on the size of the shared
cache.

We have implemented our technique in the Chronos WCET analyzer, and
tested it on Mälardalen benchmarks. The results show that the approximate
technique for WCIP is comparable to ILP-based WCIP in terms of preci-
sion of the WCET estimates. Both techniques are far superior than earlier
approaches to shared cache analysis [3], with an average precision improve-
ment of 28.79% in the WCETs obtained using WCIP. The major advantage
of approximate WCIP over ILP-based WCIP is in the analysis time, where
ILP-based WCIP fails to compute the WCET for some benchmarks in any
reasonable duration of time, while the approximate technique requires a max-
imum of 0.01 seconds across all benchmarks. We also compare the WCETs
obtained using fixed cache partitioning techniques with the WCETs obtained
using WCIP. Following are the contributions made by the paper:

� We formally prove that performing worst case interference placement
in a program is an NP-hard problem, by showing a reduction from the
0-1 Knapsack problem (in Section 3).

� We propose an approximate technique to perform worst case interfer-
ence placement, which is provably fast and is experimentally as precise
as the ILP based approach (in Section 4).

� We provide experimental results comparing the WCETs obtained by
ILP-based and approximate WCIP, with the WCETs obtained using
previous approaches to shared cache analysis. We also compare the
effectiveness of analysis-based WCIP with hardware-based approaches
such as fixed cache partitioning (in Section 6).

2 Shared Cache analysis

In this section, we provide a quick overview of cache terminilogy, and review
some of the existing works in shared cache analysis. Caches store a small
subset of main memory closer to the processor, and provide fast access to its
contents. All data transfer between the main memory and cache takes place
in equal-sized chunks called memory blocks (or cache blocks). To enable fast
lookup, caches are divided into cache sets. For an A − way set associative
cache, each cache set can contain maximum of A cache blocks. Given an

4

access to a cache block, the cache subsystem first finds the unique cache set
containing the accessed cache block, searches for it among the (at most) A
cache blocks in the cache set, and if it is not present, brings it from the
main memory (or higher level caches). A multi-level cache hierarchy has
independent caches at different levels, generally with smaller caches closer to
the processor.

Since the total number of cache blocks mapped to a cache set will usually
be much greater than the associativity (A), the cache replacement policy
decides which cache block should be evicted, if the cache set is full and a
new cache block has to be brought in. The Least Recently Used (LRU)
policy orders all cache blocks in a cache set according to their most recent
accesses, and evicts the cache block which was accessed farthest in the past.
On a memory access, caches are searched in increasing order of cache levels,
and the accessed memory block is brought into every cache level that has
been searched. We assume a standard multi-core architecture, where each
core has one (or more) private caches at lower levels and a shared cache
(shared between all cores) at the highest level.

We now summarize existing techniques for cache analysis. Must Analysis
[4] for private caches is an Abstract Interpretation based technique, which
finds those cache blocks which are guaranteed to be in the actual cache across
all executions of the program. Accesses to such cache blocks can be safely
predicted as cache hits. Most of the shared cache analysis techniques ([3], [5],
[6], [7]) build on top of Must analysis, and find shared cache accesses which
are guaranteed to hit the cache irrespective of when the interferences arrive.

To do this, the shared cache states are first determined using Must analy-
sis, assuming no interferences. Then, the shared cache states at each program
point are modified by considering the effect of all interferences generated by
other cores, and the modified states are used for predicting cache hits. These
approaches introduce a lot of imprecision, and in most cases, classify all
shared cache accesses as misses.

Hardware approaches ([8], [9], [10], [11]) focus on making the multi-core
architecture prediction-friendly by using techniques such as cache locking,
cache partitioning, etc. Such techniques make it safe to assume that no in-
terfering accesses arrive while performing the hit-miss analysis of the shared
cache, thus making it as precise as private cache analysis. However, the re-
strictions imposed may result in wastage of resources and require support
from the hardware. Further, the schedulability analysis becomes compli-
cated, and the constraints on task period and execution time imposed by the
schedulability test become more stringent [12], which may prevent task sets
from being scheduled.

There have also been efforts in shared cache interference-aware task map-

5

ping [13], which tries to find the optimal assignment of tasks to cores which
minimizes shared cache interference. However, their technique is actually
unsafe, because they assume that the worst-case path in the program does
not change due to interferences, and only use the cache hits on the WC path
to find the increase in execution time due to interferences. As we show in our
work, other paths in the program (e.g. paths with more shared cache hits)
could exhibit higher execution time in the presence of interferences. Finally,
[14] contains a detailed discussion on issues related to timing analysis, caused
due to interference to shared resources.

In [2], we proposed the WCIP approach for shared cache analysis (referred
in [2] as optimal interference placement), which tries to find an assignment
of interferences to program points, which will cause the maximum number
of shared cache misses on the worst-case path. Instead of considering the
effect of all interferences on the shared cache state at every program point,
WCIP only considers the effect of the interferences assigned at a program
point to modify the shared cache state at that point. Hence, the effect of the
same interference is not considered multiple times, and this results in a larger
number of shared cache accesses classified as hits in spite of the interferences
from other cores. Ultimately, this results in much lower WCET estimates for
multi-core architectures, which are nonetheless safe. For details on the ILP
based approach for WCIP, we refer to [2].

In this work, we make the following assumptions. First, we assume that
the maximum number of interferences that can be generated by all other
cores, during a single execution instance of the program under analysis is
known. This only requires the knowledge of the assignment of programs to
cores, since the shared cache accesses made by a program can be determined
using AI-based analysis of the private caches. If programs are periodic, then
the maximum number of instances of an interfering program, during a single
instance of the program under analysis, may need to be determined. The
cache replacement policy is assumed to be LRU and we assume a timing
anomaly-free architecture. We also assume single-threaded and independent
programs running on all the cores. We perform AI-based cache analysis at
the private cache level to obtain an upper bound on the number of shared
cache accesses, and we also perform the AI-based analysis at the shared cache
level to obtain a lower bound on the number of shared cache misses.

3 Complexity of WCIP

Given a program and the set of interferences (coming from other cores) to
each cache set, the WCIP problem is to (1) find the program path with

6

the maximum execution time in the presence of interferences and (2) to
find a distribution of interferences, on this program path, which causes the
maximum number of shared cache misses on the path. A distribution of
interferences will assign disjoint subsets of interferences at each program
point in the path. Note that in the absence of code/data sharing, cores will
never access each other’s cache blocks, and hence we would only be interested
in the number of interferences assigned at each program point, since the cache
blocks accessed by interferences will not matter.

The two sub-problems of finding the worst-case path and the worst-case
distribution of interferences are inter-dependent on each other. To find the
worst-case path in the presence of interferences, we must know the worst-
case distribution which will cause the maximum increase in the execution
time of the path. However, to find this worst-case distribution, we have to
know the entire path along which the interferences are to be distributed. A
näıve approach to WCIP would be take every complete program path from
the beginning of the program to its end, find the worst-case distribution and
hence the WCET of the path in the presence of interferences, and then select
the path with the maximum WCET.

Finding the worst-case path in a program without any interferences is not
a difficult problem. The cache behavior can be estimated without interfer-
ences using the AI-based techniques, which would lead to a precise estimate
of the WCET of each basic block in the program. Given the WCET of each
basic block, and the program CFG, finding the WCET becomes equivalent
to finding the longest path in the CFG, treating each basic block as a vertex
and its WCET as its label. This can be accomplished in time polynomial in
the number of basic blocks (for example, see [15]). Interferences will cause
shared cache misses and increase the WCET of basic blocks, and we will
show that finding the worst-case path in the presence of interferences be-
comes NP-Hard.

To focus on the problem of finding the worst-case path, we will make the
worst-case distribution problem simpler by assuming a direct-mapped shared
cache with a single cache set. Direct-mapped caches contain a single cache
block per cache set, and since we are assuming a single cache set, our entire
cache will contain only one cache block, which will be the most recently
accessed block. A cache hit will occur when the block present in the cache is
accessed by the program. An interference from another core could evict the
block in the cache and thus cause a cache miss if there is an access to the
evicted cache block, after the interference.

We define a straight-line program to be one without any loops or branches.
For our purposes, a straight-line program simply consists of a sequence of
accesses to the shared cache. For our simplified shared cache architecture,

7

WCIP in a straight-line program becomes trivial.

Lemma 1 Given a straight-line program with H number of shared cache
hits and B number of interferences coming from other cores, and assuming
a direct-mapped shared cache with one cache set, the maximum number of
shared cache misses caused due to interferences would be min(H,B).

Since at most one cache block will be present in the DM cache at a time,
an interference can only affect the next access to this cache block. Hence, B
interferences can cause at most B cache misses. If H is the number of shared
cache hits in the program, and if H ≤ B, then every cache hit will become
a miss by assigning one interference before the access. On the other hand
if H > B, then we can select any B cache hits and assign one interference
before each selected cache hit, causing a total of B misses.

a11
(b11)

a12
(b12)

a21
(b21)

a22
(b22)

an1
(bn1)

an2
(bn2)

Figure 1:

We now add one layer of complexity, and consider pro-
grams with single level of branching and no loops. An ex-
ample of such a program is given in Figure 1. The pro-
gram has n segments, where each segment is an if-then-else
branch. For our purposes, each branch of a segment is just
a sequence of shared cache accesses. ai1(respectively ai2) is
the execution time, without interferences, of the left (re-
spectively right) branch of the ith segment. This execution
time is obtained by performing normal cache analysis at all
levels, assuming no interferences. bi1(respectively bi2) is the
number of shared cache hits of the left (respectively right)
branch of the ith segment. These are the accesses which
are guaranteed to hit the shared cache, without any inter-
ferences. Assume WLOG that ∀i, ai1 ≥ ai2. Hence, the
WCET without interferences would be

∑n
i=1 ai1, obtained

by taking the left branch of each segment (since there are
no interferences, no additional cache misses will occur).

Now suppose that B interferences come from other cores, causing some
of the shared cache hits in the program to become misses. For simplicity,
assume a shared cache miss penalty of 1 cycle. Since B interferences can
cause at most B cache misses, if there are at least B cache hits among the
left branches, then the WCET with interferences would be

∑n
i=1 ai1 +B.

However, if that is not the case, i.e. if
∑n

i=1 bi1 < B, then the maximum
execution time with interferences by picking the left-hand branch in each
segment would be

∑n
i=1(ai1+ bi1). We may be able to increase this execution

time by taking the right-hand branch in some segment to use the extra unused
interferences, if it has more shared cache hits than the left-hand branch. If

8

for some i, bi2 > bi1, then by taking the right-hand branch, we would able to
increase the execution time by bi2−bi1− (ai1−ai2), by making use of bi2−bi1
extra interferences.

Notice that the WCIP problem in this case boils down to finding the
segments where the right-hand branch must be taken, i.e. finding the worst-
case path in the program. Once the worst-case path is known, finding the
distribution of interferences is trivial, as we can simply assign one interference
before each cache hit on the path, until we run out of interferences or cache
hits.

We can now see the resemblance to the 0-1 Knapsack Problem (KP), in
which there are n objects each with profit vi and weight wi and a total weight
budget of W , and the problem is to select a subset of objects whose total
weight is at most W and which maximizes the total profit. Taking object
i in KP as segment i in WCIP, selecting object i would be equivalent to
selecting the right-hand branch of segment i, which would result in a ‘profit’
of bi2 − bi1 − (ai1 − ai2), with an associated ‘weight’ of bi2 − bi1. The total
weight budget would be the extra interferences not used on the left-hand
branches, i.e. B −

∑n
i=1 bi1.

The only issue is that in WCIP, it is not necessary that all the cache hits
in a selected branch may be converted to cache misses due to interferences.
In other words, bi2− bi1− (ai1− ai2) is only the maximum profit available by
selecting the right-hand branch in segment i, and the worst-case distribution
can choose a lower profit, if it does not distribute interferences before all cache
hits on the right-hand branch. On the other hand, in 0-1 KP, if an object i is
selected, it is guaranteed to increase the profit by vi. To solve this dilemma,
we will use the fact that there always exists a worst-case distribution which
will try to convert all the cache hits to cache misses in a selected branch
(Lemma 2), to formally show the reduction. Let us first define the decision
version of the WCIP problem in the restricted setting

WCIP Problem: Given a simple branched program P with n segments
(shown in Figure 1), an interference budget B and a target execution time
T , does there exist a path selection function S : {1, . . . , n} → {1, 2}, and
assigned interferences b1, . . . , bn such that

∀i, 1 ≤ i ≤ n, bi ≤ biS(i) (1)
n

∑

i=1

bi ≤ B (2)

n
∑

i=1

aiS(i) + bi ≥ T (3)

The path selection function will choose one of the two branches in each

9

segment, and thus reflects the worst-case path, while the number of inter-
ferences distributed in each segment will decide the number of shared cache
misses caused in that segment. An interference distribution which obeys
equations (1) and (2) is called a valid distribution. The following lemma
states that given any path selection function and a valid interference distri-
bution, there exists another selection function and valid distribution, which
will result in equal or higher execution time, and which will try to distribute
interferences such that all cache hits in a selected segment will become misses.

Lemma 2 Given a program P with n segments {< (ai1, bi1), (ai2, bi2) > |i =
1, . . . , n} (∀i, ai1 ≥ ai2), an interference budget B, assume that

∑n
i=1 bi1 ≤ B.

Given a path selection function S and assigned interferences b1, . . . , bn which
form a valid distribution, there exists another path selection function Ŝ, and
valid distribution b̂1, . . . , b̂n, with the following properties:

1. If Ŝ(i) = 1, then b̂i = bi1.

2. There exists at most one j such that Ŝ(j) = 2 and b̂j < bj2.

3.
∑n

i=1 aiS(i) + bi ≤
∑n

i=1 aiŜ(i) + b̂i

Lemma 3 Given a program P with n segments {< (ai1, bi1), (ai2, bi2) > |i =
1, . . . , n} (∀i, ai1 ≥ ai2), an interference budget B, assume that

∑n
i=1 bi1 ≤ B.

Given a path selection function S and assigned interferences b1, . . . , bn which
form a valid distribution, there exists another path selection function Ŝ, and
valid distribution b̂1, . . . , b̂n, with the following properties:

1. If Ŝ(i) = 1, then b̂i = bi1.

2. There exists at most one j such that Ŝ(j) = 2 and b̂j < bj2.

3.
∑n

i=1 aiS(i) + bi ≤
∑n

i=1 aiŜ(i) + b̂i

Proof:
We will perform a series of redistribution of interferences from the initial

distribution to ensure that properties (1) and (2) are met. After each redis-
tribution, we will also ensure that the total execution time either remains
the same or it increases (i.e. property (3) remains true).

First, suppose ∃i, S(i) = 1 and bi < bi1. Let brem = bi1 − bi.
If ∀j, S(j) = 1, then we can take Ŝ(j) = 1, b̂j = bj1 for all j. This satisfies

property (1) and (2). Also, b̂i = bi1 > bi, hence the total execution time has
increased. Hence, Ŝ and b̂i satisfy all the properties of the lemma and we are
done.

10

Suppose ∃j, S(j) = 2. Then bj − bj1 > aj1 − aj2.
Let b

′

j = bj − brem.

Case - 1: If b
′

j > aj1−aj2, consider the new distribution Ŝ(k) = S(k), ∀k,

b̂i = bi1, b̂j = b
′

j , b̂k = bk for all other k.

n
∑

k=1

b̂k = bi1 + bj − brem +
∑

k 6=i,j

bk

= bi + bj +
∑

k 6=i,j

bk

=

n
∑

k=1

bk ≤ B

n
∑

k=1

(akŜ(k) + b̂k)−
n

∑

k=1

(akS(k) + bk)

= ai1 + bi1 + aj2 + bj − brem − ai1 − bi − aj2 − bj

= 0

In this case, we have redistributed the interferences such that Ŝ(i) = 1 and
b̂i = bi1, while ensuring the total execution time remains the same.

Case - 2: If b
′

j ≤ aj1 − aj2, consider Ŝ(j) = 1, Ŝ(k) = S(k) for all other

k, b̂j = bj1, b̂i = bi + (bj − bj1), b̂k = bk for all other k. Again,

n
∑

k=1

b̂k = bi + bj − bj1 + bj1 +
∑

k 6=i,j

bk

=

n
∑

k=1

bk

n
∑

k=1

(akŜ(k) + b̂k)−
n

∑

k=1

(akS(k) + bk)

= ai1 + bi + bj − bj1 + aj1 + bj1 − ai1 − bi − aj2 − bj

= aj1 − aj2 ≥ 0

In this case, by redistributing the interferences, we have Ŝj = 1, b̂j = bj1,

while b̂i > bi. By repeating the process with other j′ such that S(j′) = 2, we
can continue to increase b̂i until it reaches bi1. If there is no such j′, then we
can simply set b̂i to bi1, since

∑n
k=1 bk1 ≤ B.

11

Thus, we have shown that we can always redistribute the interferences
used on the right branch of some segment to the left branch of another
segment. It is optimal to use as many interferences as possible on the left
branches.

After performing the above transformations, we can now assume property
1. We will now give the redistribution strategies for proving property 2.

Suppose ∃i, j such that S(i) = 2, bi < bi2, S(j) = 2, bj < bj2. Then
bi − bi1 > ai1 − ai2 and bj − bj1 > aj1 − aj2. Let bremi = bi2 − bi and
bremj = bj2 − bj .

Case - 1 : If bremi ≥ bj − bj1, then let Ŝ(j) = 1, b̂j = bj1, Ŝ(i) = 2,

b̂i = bi + bj − bj1 ≤ bi + bremi = bi2, for all other k, Ŝ(k) = S(k) and b̂k = bk.

n
∑

k=1

b̂k = bi + bj − bj1 + bj1 +
∑

k 6=i,j

bk

=

n
∑

k=1

bk ≤ B

n
∑

k=1

(akŜ(k) + b̂k)−
n

∑

k=1

(akS(k) + bk)

= ai2 + bi + bj − bj1 + aj1 + bj1 − ai2 − bi − aj2 − bj

= aj1 − aj2 ≥ 0

In this case, by redistribution, we have only one segment (i) where Ŝ(i) = 2
and b̂i < bi2. Similarly, if bremj ≥ bi − bi1, a similar proof will work.

Case - 2 : Now, suppose that neither of the two conditions are true. In
particular, bremi < bj − bj1. There are two subcases to consider:

Subcase - 1 : bremi ≤ bj − bj1 − (aj1 − aj2). Hence, (bj − bremi) − bj1 >

aj1 − aj2. Let Ŝ(i) = 2, b̂i = bi2, Ŝ(j) = 2, b̂j = bj − bremi , and for all other

k, Ŝ(k) = S(k), b̂k = bk.

n
∑

k=1

b̂k = bi2 + bj − bremi +
∑

k 6=i,j

bk

=

n
∑

k=1

bk ≤ B

12

n
∑

k=1

(akŜ(k) + b̂k)−

n
∑

k=1

(akS(k) + bk)

= ai2 + bi2 + aj2 + bj − bremi − ai2 − bi − aj2 − bj

= 0

Hence, by redistribution, we now have only one segment (j) where all
cache hits are not converted to misses on the right branch.

Subcase - 2 : bremi > bj − bj1 − (aj1 − aj2). Let Ŝ(i) = 2, b̂i = bi2,

Ŝ(j) = 1, b̂j = bj1, and for all other k, Ŝ(k) = S(k), b̂k = bk.

n
∑

k=1

bk −
n

∑

k=1

b̂k = bi + bj − bi2 − bj1

= bj − bj1 − bremi > 0 (by assumption)

Hence,
∑n

k=1 b̂k <
∑n

k=1 bk ≤ B.

n
∑

k=1

(akŜ(k) + b̂k)−

n
∑

k=1

(akS(k) + bk)

= ai2 + bi2 + aj1 + bj1 − ai2 − bi − aj2 − bj

= bremi − (bj − bj1 − (aj1 − aj2)) > 0

Again, we have ensured that all cache hits are converted to misses in segments
i and j. Thus, we have showed that by redistributing the interferences, we
can always ensure that whenever the left branch is taken in a segment, all the
cache hits are converted to misses, and there is at most one segment where
the right branch is taken, but all cache hits are not converted to misses �.

Property 1 guarantees that all cache hits in left-hand branches which are
selected by Ŝ will be converted to misses. It may not be possible to guarantee
the same about the right-hand branches, because the number of cache hits on
the right-hand branches can be arbitrarily high, but property 2 guarantees
that there will be at most one right-hand branch, where all cache hits are not
converted to misses. Property 3 shows that the new distribution will yield
equal or higher execution time. We now define the decision version of the
0-1 Knapsack problem, which is known to be NP-Hard [16].

0-1 Knapsack Problem: Given a set of n items each with value vi and
weight wi (1 ≤ i ≤ n), a weight budget W and a target value V , does there

13

exist a subset P of items such that

∑

i∈P

wi ≤W (4)

∑

i∈P

vi ≥ V (5)

We assume that the values and weights are positive integers. Given an
instance of the knapsack problem, we first convert it to another knapsack
problem where the weights are greater than the values for all items. Let vm
be the maximum value among all the n items. In the new problem, item
i will have the same value vi and a new weight w

′

i = vmwi. The weight
budget will be W ′ = vmW , while the target value remains V . Since wi > 0,
vmwi ≥ vm ≥ vi for all i. It is easy to see that any solution of the original
knapsack problem will also be a solution of the modified problem, and vice
versa.

w
′

1 − v1
(0)

0

(w
′

1)

w
′

2 − v2
(0)

0

(w
′

2)

w
′

n − vn
(0)

0

(w
′

n)

Figure 2: Pro-
gram P

We now construct a simple-branched program P (shown
in Figure 2), along with the interference budget and target
execution time, in such a way the solution to the WCIP
problem in this program corresponds to the solution of the
modified knapsack problem. P has n segments, with ai1 =
w

′

i − vi, bi1 = 0, and ai2 = 0, bi2 = w
′

i, for all i. The
interference budget is B = W ′, and the target execution
time is T =

∑n
i=1(w

′

i − vi) + V . Note that ai2 can also be
taken as any constant C, in which case ai1 should be taken
as w

′

i− vi+C. All we want is that the ‘profit’ of taking the
right-side branch in segment i should be vi.

Note that
∑n

i=1(w
′

i−vi) is the execution time of the pro-
gram, if the left branch is taken in all segments. However,
no interferences can be used on the left branch, and taking
the right branch in segment i will have a profit (i.e. increase
in execution time) of vi, but associated weight (i.e. inter-
ferences used) of w

′

i. Let us prove the reduction formally:

Theorem 1 ∃P ⊆ {1, . . . , n} such that
∑

i∈P w
′

i ≤W ′ and
∑

i∈P vi ≥ V ⇔ There exists a path selection function S and a valid inter-
ference distribution b1, . . . , bn, such that P achieves the target execution time
T .

Proof:
(⇒)

14

We are given a solution to the Knapsack problem, which achieves the target
value. To obtain a solution to the WCIP problem, we simply pick the right-
hand branch in those segments i where the corresponding item i has been
selected in solution to KP. We will also assign interferences before all cache
hits in the selected right-side branches. We define S : {1, . . . , n} → {1, 2}
and bi as follows:

S(i) =

{

2 if i ∈ P

1 otherwise

bi =

{

w
′

i if i ∈ P

0 otherwise

First, we need to show that this is a valid interference distribution. Equa-
tion (1) is trivially satisfied.

n
∑

i=1

bi =
∑

i∈P

w
′

i ≤ W ′

This shows that Equation (2) is also satisfied (Note that B = W ′). We
now show that this interference distribution achieves the target execution
time T .

n
∑

i=1

aiS(i) + bi =
∑

i∈P

w
′

i +
∑

i/∈P

w
′

i − vi

=
∑

i∈P

(w
′

i − vi + vi) +
∑

i/∈P

w
′

i − vi

(adding and subtracting vi, ∀i ∈ P)

=
n

∑

i=1

(w
′

i − vi) +
∑

i∈P

vi

(rearranging terms)

≥
n

∑

i=1

(w
′

i − vi) + V = T

Thus, P achieves the target execution time under S and b1, . . . , bn. We now
prove the theorem in the other direction.

(⇐)

We are given S, b1, . . . , bn such that the target execution time is achieved
and the interference distribution is valid (i.e. it satisfies equations (1),(2),(3)).

15

Note that if S(i) = 1, then bi = 0, and by Lemma 2, we can assume there
is at most one j such that S(j) = 2 and bj < w

′

j. To obtain the solution of
KP, we will pick the item i if the right-hand branch has been taken in the
corresponding segment i. Hence P = {i|S(i) = 2}. First, we show that this
selection of items meets the target value V .

n
∑

i=1

aiS(i) + bi ≥

n
∑

i=1

(w
′

i − vi) + V

⇒
∑

i:S(i)=1

(w
′

i − vi) +
∑

i:S(i)=2

bi ≥
n

∑

i=1

(w
′

i − vi) + V

⇒
∑

i:S(i)=2

bi ≥
∑

i:S(i)=2

(w
′

i − vi) + V

⇒
∑

i:S(i)=2

vi ≥ V +
∑

i:S(i)=2

(w
′

i − bi)

Since ∀i, S(i) = 2 ⇒ bi ≤ w
′

i,
∑

i:S(i)=2 vi ≥ V . Hence, we have shown

that the target value is met. Now, we will show that
∑

i:S(i)=2w
′

i ≤W ′. We
consider two cases.

Case 1: If, ∀i, S(i) = 2⇒ bi = w
′

i, then

∑

i:S(i)=2

bi ≤W ′ ⇒
∑

i:S(i)=2

w
′

i ≤W ′.

Case 2: If ∃j, such that S(j) = 2 and bj < w
′

j (bi = w
′

i, for all i such

that S(i) = 2 and i 6= j). Note that in this case, bj > w
′

j − vj . Otherwise, if

bj ≤ w
′

j − vj , then we can modify the selection function to take the left-hand
branch, i.e. S(j) = 1, which will only increase the execution time. Now, since
for all other i, S(i) = 2⇒ bi = w

′

i ⇒
∑

i:S(i)=2 vi ≥ T and
∑

i:S(i)=2w
′

i ≤W ′.

Hence, bj > w
′

j − vj ⇒ vj > w
′

j − bj . We know that w
′

j = vmwj. If we can
show that bj is also a multiple of vm, then we would have a contradiction,
because vj would become strictly greater than some multiple of vm.

Again, in this case,
∑

i:S(i)=2 bi = W ′, because otherwise if
∑

i:S(i)=2 bi <

W ′, we can increase bj such that either bj becomes w
′

j or the sum becomes
equal to W ′. We will only be increasing the execution time, and we have
already proved the result if bj becomes equal to w

′

j (in Case 1).

16

∑

i:S(i)=2

bi = W ′ ⇒ bj = W ′ −
∑

i:S(i)=2,i 6=j

bi

⇒ bj = W ′ −
∑

i:S(i)=2,i 6=j

w
′

i

(because ∀i, S(i) = 2, i 6= j ⇒ bi = w
′

i)

⇒ bj = vmW −
∑

i:S(i)=2,i 6=j

vmwi

(W ′ = vmW, and w
′

i = vmwi)

⇒ bj = vmp (where p > 0)

But, vj > w
′

j−bj ⇒ vj > vmwj−vmp⇒ vj > vmq. This is a contradiction,
as q > 0 and vm is the maximum of all values. Hence there cannot exist j
such that S(j) = 2 and bj < w

′

j . Hence, ∀i, S(i) = 2⇒ bi = w
′

i. Hence, the
set P = {i|S(i) = 2} is a solution to the Knapsack problem �.

Although we have only looked at WCIP for simple-branched programs,
assuming a DM cache with a single cache set, for the most general set-
ting, we have to consider programs with nested branches and loops, and
set-associative caches with multiple cache sets. These additions are only
going to increase the complexity of the problem.

4 Approximate WCIP

4.1 Setup

Let G = (V,E) be the control flow graph (CFG) of the program under
analysis. V = {b1, . . . , bn} is the set of basic blocks, E is the set of edges
which represent the control transfer among the basic blocks. We perform
AI-based multi-level Must and May cache analysis [17] to obtain an initial
cache access classification (CAC) and cache hit miss classification (CHMC)
of all memory accesses. The CAC can be one of Always, Uncertain or Never.
The CHMC can be Always Hit, Always Miss or Uncertain. We consider
all program accesses with a CAC of Always or Uncertain and a CHMC of
Always Hit at the shared cache level. While our approach can be applied
to the shared cache at any level (with the restriction that all lower levels
should be private), for simplicity, we will assume a 2-level cache hierarchy,
with private L1 caches and a shared L2 cache. In the rest of the paper, when
we say a cache access, we mean an access to the L2 cache, and when we use
cache hit, we mean a memory access which hits the L2 cache.

17

Let {ai1, ai2, . . . , aiki} be the set of memory accesses of bi which hit the
L2 cache (i.e. whose CHMC is Always Hit). Let Acc and AccH be the set of
all L2 cache accesses and L2 cache hits in the program, respectively. Hence,
AccH ⊆ Acc and AccH = ∪ni=1 ∪

ki
j=1 aij . Let Age(a) be the age of the cache

block accessed by a in the L2 Must cache at the program point just before
the access. In a LRU cache, cache block in a cache set are given an age based
on the timing of their last access. Hence, the most recently accessed cache
block has an age of 1, while the least recently accessed block will have an
age of A (where A is the L2 cache associativity). We define the Eviction

Distance of an access a to be A− Age(a) + 1. The eviction distance of an
access is the minimum number of interferences required to evict the cache
block just before the access. The concept of eviction distance is similar to
the resilience of a cache block, as defined in [18].

A cache hit path of an access is a program path along which the access
will experience a cache hit [2]. The cache hit path of an access a which
references cache block m mapped to cache set s, is a program path which
begins with another instruction accessing m, ends with a, and accesses less
than A distinct cache blocks mapped to s. For our purposes, the cache hit
path π of an access will be represented by the set of shared cache accesses
on the hit path (hence π ⊆ Acc). Only those interferences that occur along
a cache hit path of an access need to be accounted for while determining
the hit-miss classification of the access. If the total number of interferences
occuring on a hit path of an access exceeds its eviction distance, then it will
suffer a cache miss along that path.

Any access to the shared L2 cache made by a program will act as an
interference to the program(s) running on other core(s). Hence, we count
all the actual accesses made by the interfering programs, i.e. the programs
running on other cores, whose CAC at L2 is Always or Uncertain, to obtain
the number of interfering accesses suffered by the program under analysis.
If the access is inside a loop of the interfering program, then we use the
maximum loop bound to count the interferences caused by the access. In this
way, we obtain the number of interferences, Bs and the number of interfering
cache block Bcb

s to every cache set s. Let H be the actual number of cache
hits of the program under analysis (obtained by counting every access in
AccH , considering its maximum loop bound if the access is in a loop).

4.2 Motivation

The source of hardness for the WCIP problem (as shown in Section 4) lies
in finding the worst case path in the presence of interferences. One way to
bypass this issue is to first find the worst case path assuming no interferences

18

(say πwc), and then determine an upper bound on the increase in execution
time due to interferences across all paths. Interferences will convert some of
the shared cache hits into misses, but we cannot simply consider the shared
cache hits present on πwc to calculate the upper bound. Instead, a safe option
would be to consider all the shared cache hits present in the program, and
then find the maximum number of misses generated by interferences.

Note that in WCIP, we find the maximum number of misses caused by
interferences among the shared cache hits present on the worst-case path cal-
culated in the presence of interferences. In the above approximation strategy,
we are effectively assuming that all the shared cache hits in the program are
present on πwc. Remember that H is the total number of shared cache hits
in the entire program. Let πInt

wc be the worst-case path in the presence of in-
terferences, and let T Int

wc and HInt be the WCET and number of shared cache
hits of πInt

wc respectively without considering the effect of interferences. Let
Twc be the WCET of πwc, again without considering effect of interferences.

Then, Twc ≥ T Int
wc , since πwc is the worst case path in the program. Also,

HInt ≤ H . Hence, the maximum number of shared cache misses caused
by interferences among HInt will be less than or equal to the maximum
number of shared cache misses caused by interferences among H . If IInt is
the maximum increase in execution time due to interferences among cache
hits in HInt and I is the maximum increase among H , then I ≥ IInt. Hence,
Twc + I ≥ T Int

wc + IInt. Note that T Int
wc + IInt is the WCET obtained using

WCIP. For approximate WCIP, we concentrate on finding Twc + I.
The worst case path and its WCET without interferences (Twc) can be

easily determined, and hence our objective now is to calculate I, for which we
need to determine the maximum number of cache misses that interferences
can cause among H . We know that the eviction distance of a cache hit is
the minimum number of interferences required to convert it to a cache miss.
Hence, if the number of interferences assigned just before a cache hit is equal
to its eviction distance, then the access can miss the cache.

It is easy to see that the optimal strategy to maximize the number of
cache misses, would be the greedy strategy of selecting cache hits in increas-
ing order of their eviction distances. If cache hits with lower eviction distance
are selected first, and interferences are assigned before them, then this would
ensure that more interferences are available for later cache hits, thus maxi-
mizing the impact of every interference. However, before using this strategy,
we must account for the overlapping effect of interferences.

19

4.3 The overlapping effect

We say that an interference affects a cache hit a, when it increases the age
of the cache block m which will eventually be accessed by a, without any
intervening accesses to m between the interference and a. Obviously, any
interference which occurs just before the cache hit a will affect it. However,
any interference which occurs on a cache hit path of a will also affect a.
Since the cache hit path can contain other cache hits, interferences which
occur before these hits can also affect the access a. The implication is that
the greedy strategy will not work, because it only considers the impact of
those interferences which are assigned just before the cache hit.

a:

m1

b:

m2

:

m3

Figure 3: Example to illustrate the
overlapping effect

As an example, consider the pro-
gram fragment shown in Figure 3,
containing instructions a, b, c which
access cache blocks m1, m2, m3 re-
spectively, all mapping to the same
cache set, and hitting the cache. As-
sume the cache associativity is 4.
Since the age of all the three cache
blocks in the Must cache will be
3, their eviction distance will be 2.
Now, any interference which occurs
just before the access a is going to
affect the accesses b and c as well. If
the sequence of accesses made by the
program is b− a− c− b− a− c− b− . . ., then assigning 2 interferences just
before the access a will result in a cache miss for the second access to b. This
shows that it is not enough to simply consider the interferences assigned just
before the cache hit, but we must also consider the impact of interferences
assigned before other cache hits.

The Overlapping Factor (OF) of a cache hit a is defined as the maxi-
mum number of cache hits that a single interference just before a can affect.
An interference before a will affect the next access to any cache block that
is present in the cache set just before a. If, just before the cache hit a, the
cache set is full (i.e. it contains A cache blocks), then an interference before
a can affect the next access to each of the A cache blocks. In the example
program shown in Figure 3, the OF of each of the three cache hits a, b and c
is 3. This is because an interference occurring before any of the three cache
hits will affect all the three.

20

h1

h2

h3

2

3

1

Figure 4:

We can use cache hit paths to calculate the OF. Only those
interferences which occur within a cache hit path of an access can
affect that access. Hence, if a cache hit h1 is present in a hit-path of
another cache hit h2, then any interference occurring before h1 will
affect h2. The overlapping factor of cache hit h will be the number
of cache hits who have a cache hit path which contains h. In our
example program, a is present in the hit path a− a of cache hit a,
b− a− b of b, and c− a− c of c. Similar observations can be made
about b and c.

Different values of OF and the eviction distance complicate
worst case distribution of interferences, because we cannot directly
use the greedy strategy of considering cache hits in increasing order
of eviction distances. For example, as shown in Figure 4, consider
the cache hits h1, h2 and h3 with eviction distances 2, 3 and 1 re-
spectively. The cache hit paths of h1 and h2, h2 and h3 overlap.
Both h1 and h2 have OF 2, while the OF of h3 is 1. With an interference
budget of 3, all the three cache hits can be converted to misses by assigning
2 interferences before h1 and 1 interference before h2. However, if we assign
interferences based on increasing eviction distances, we will first assign 1 in-
terference before h3 and then 2 interferences before h1, thus using up the
interference budget and obtaining only 2 cache misses.

Other selection strategies such as decreasing order of overlapping factors,
or increasing order of eviction distance of overlapped cache hits also do not
work. This is where we make our second approximation, by removing the
overlapping effect through an increase in the number of interferences. If
a cache hit a has an OF of o, and if z interferences occur before a, then
they will affect all the o cache hits, and the effect is equivalent to having oz
interferences and assigning z interferences individually before each cache hit.

Remember that Bs is the interference budget for cache set s. We find the
maximum overlapping factor among all cache hits in the program mapped
to s. If os is the maximum OF, then we take osBs to be the new interference
budget for cache set s. We can now safely assume no overlapping while using
the new interference budget. In other words, we can now assume that only
those interferences which occur just before a cache hit will affect it. In the
example of Figure 4, the maximum OF is 2, hence the interference budget
would become 6. Now, the eviction distance of each cache hit can be met,
thus resulting in 3 cache misses.

In general, this is safe because any distribution of interferences with the
original budget can be converted into a new distribution with the new budget
and assuming no overlap. Hence, for the worst-case distribution with the
original budget and overlap, there will also exist a distribution with the

21

Algorithm 1: Algorithm to find the maximum overlapping factor

Input: Cache hits mapped to each cache set s, Hit paths of every
cache hit

Output: Maximum overlapping factor for every cache set
1 for every cache set s do

2 os ← 0 ;
3 for every cache hit a mapped to s do

4 OFa ← 0
5 end

6 for every cache hit a mapped to s do

7 for every hit a′ present in a hit path of a do

8 OFa′ ← OFa′ + 1
9 end

10 end

11 for every cache hit a mapped to s do

12 if OFa > os then
13 os ← OFa

14 end

15 end

16 end

22

Program

CFG

Multi-level L1 and L2

a
he analysis

Ca
he hit path

analysis

Interferen
e Distribution

Algorithm

Number of hits

Overlapping fa
tor

IPET ILP

WCET of Basi
 blo
ks

without interferen
e

Maximum in
rease in

WCET due to interferen
es

WCET

Interferen
e to other
ores

Interferen
e from other
ores

Figure 5: Approximate WCIP

new budget, which will not use any overlap. We will find the worst-case
distribution with the new budget and assuming no overlap.

Algorithm 1 is used to find the maximum overlapping factor for each
cache set. It goes through every hit path of every cache hit, and finds the
overlapping factor of each cache hit, which is then used to find the maximum
OF for the cache set. Since the size and number of hit paths are bounded,
the inner for loop (lines 7-9) will run for a constant number of iterations.
Hence, the algorithm has a complexity of O(|AccH|), which will be linear
in the code size. To find cache hit paths, we use a modified version of
the Abstract Interpretation based analysis used to find cache miss paths,
proposed in [19]. The AI-based approach performs a constant number of
traversals of the program CFG (this constant depends on the maximum size
of the cache hit paths, which we set to twice the cache associativity) to find
the fixpoint. Hence, the complexity of the approach is also linear in the size
of the program.

4.4 Interference Distribution Algorithm

Since we are assuming that there is no overlapping effect, the optimal inter-
ference distribution strategy is to select cache hits in the increasing order of
their eviction distances. Figure 5 shows the overall scheme for approximate
WCIP. Given a program, we first perform the multi-level cache analysis, and
calculate the WCET of each basic block in the program, assuming no inter-
ferences. By performing the cache analysis, we can determine all the shared
cache hits in the program, as well as their eviction distances. We also obtain
information about all the shared cache accesses made by the program, which
will act as interferences to programs running on other cores.

23

We find the cache hit paths of all the cache hits, and then find the maxi-
mum overlapping factor os for each cache set s, using Algorithm 1. The cache
hit information, overlapping factor, and the interference information is used
by the inteference distribution algorithm (explained below), to obtain the
maximum increase in WCET due to cache misses caused by interferences.
This is simply added to the WCET obtained by the IPET (Implicit Path
Enumeration Technique) ILP to obtain the final WCET.

We call a cache hit having an eviction distance of k as a k− interference
cache hit (1 ≤ k ≤ A). We count all the k − interference cache hits in the
program, using the L2 must cache and loop bounds. Algorithm 2 shows our
interference distribution strategy.

Algorithm 2: Interference distribution algorithm

Input: Number of interferences Bs, Number of interfering cache
blocks Bcb

s for each cache set s, Number of k-interference cache
hits numhitsks in the program, for each cache set s
(1 ≤ k ≤ A), Overlapping factor os for each cache set, Shared
cache miss penalty cp

Output: Maximum increase in WCET due to interferences, I
1 I ← 0;
2 for every cache set s do

3 Bs ← osBs;
4 for k ← 1 to A do

5 if Bcb
s ≥ k then

6 if Bs ≤ k × numhitsks then

7 I ← I + (⌈Bs

k
⌉ × cp);

8 Bs ← 0;

9 else

10 I ← I + (numhitsks × cp);
11 Bs ← Bs − (numhitsks × k);

12 end

13 end

14 end

15 end

The algorithm assigns interferences to cache hits in increasing order of
their eviction distances, for each cache set. First, we multiply the interference
budget with the overlapping factor to get the new budget (line 3). Next,
we check if the number of distinct cache blocks accessed by interferences is
greater than k (line 5). If this is not the case, then no cache misses can caused

24

by interferences, because k− interference cache hits require interferences to
at least k distinct blocks to become misses.

Then, we check whether there are enough k − interference cache hits
to use all interferences (line 6). If yes, then all interferences are assigned (k
interferences before each cache hit), resulting in a maximum of ⌈Bs

k
⌉ misses.

The cache miss penalty is added to the WCET for each of these misses, and
the interference budget is updated to 0 (lines 7-8). If there aren’t enough k−
interference cache hits to use all interferences, then the cache miss penalty
is added for all k − interference cache hits, and the interference budget
is decreased (lines 10-11), and we continue the interference distribution in
the next iteration with (k + 1)− interference cache hits and the remaining
interferences.

4.5 Algorithm analysis

For a shared cache with associativity A and number of cache sets S, Al-
gorithm 2 has a time complexity of O(SA). Combined with Algorithm 1,
the total complexity of our approach is linear in the program size and the
shared cache size. The algorithm introduces imprecision, on account of the
two approximations made to simplify the analysis. First, it assumes that all
cache hits of the program are on the worst case path without interferences.
However, it is possible that this worst case path may have very few cache
hits, and non-worst-case paths with many shared cache hits may have small
execution time without interferences. Second, we multiplied the original in-
terference budget with the maximum overlapping factor os, with the inherent
assumption that every interference to set s affects os cache hits, which may
not be true.

In general, the algorithm will compute a maximum WCET increase of
(
∑

all sets s osBs)cp (if there are enough cache hits to use all interferences).
An important property of the algorithm is that the maximum increase in
execution time due to interferences is directly proportional to the number
of interferences. This ensures that if the cache interference is low, then the
increase in WCET due to cache interference will also be small. All previous
approaches to shared cache analysis do not have this property. Also, the in-
crease in execution time due to interferences is a multi-dimensional, piecewise
linear function of the number of interferences. Specifically, for some cache
set s, if we plot the increase in WCET versus the number of interferences,
then we will have a line with slope cp until numhits1s interferences, then a
line with slope cp

2
until numhits1s + 2numhits2s interferences, and so on.

Since we cannot find the worst-case path in the presence of interferences
efficiently, we must make the worst-case assumptions about it, which trans-

25

lates to the worst-case assumptions about the number of shared cache hits,
maximum OF and eviction distance. As far as the approximations regarding
the maximum OF, this value can be expected to be small (generally less than
the cache associativity), because an interference at a program point will only
affect the accesses to the cache blocks which are guaranteed to be present at
that program point. In our experiments, the OF for most of the benchmarks
was 1, and it never exceeded the cache associativity.

Instead of considering all the shared cache hits in the program, we could
also find the maximum number of cache hits that could happen on a program
path. For this, we can use the IPET ILP, modifying the objective function
to consider the number of cache hits in a basic block, instead of its execution
time. In our experiments, this did not have any impact on the precision
of WCIP. Note that to find the maximum overlapping factor, we must still
consider all the cache hits in the program.

Handling Code Sharing : We can simply ignore the effect of code
sharing during our analysis, since this only affects the precision of the anal-
ysis. In the presence of sharing, interfering cache blocks may already have
been brought into the cache by the program under analysis, in which case
they may not cause eviction of other cache blocks. Consider instruction a,
which accesses cache block m mapped to cache set s, and let π be a cache
hit path of the instruction. Let Mπ be the set of cache blocks accessed in
π. Let Ms be the set of cache blocks accessed by the interfering program,
and mapped to cache set s (hence, Bcb

s = |Mc|). Interfering accesses which
access cache blocks in Ms∩M

π will never cause eviction of m, because these
cache blocks will also be accessed by instructions on the hit path, and hence
their impact on m would have already been considered (during private cache
analysis). Hence, we calculate the set Ms \M

π, and we ignore the hit path
π of m if |Ms \M

π| is less than the eviction distance of m. If this happens
for all hit paths of an access, then we can safely conclude that the access will
never experience a miss due to interferences. Otherwise, the hit paths will
be ignored while determining the overlapping factor (in Algorithm 1).

4.6 Finding Cache hit paths

Apart from their use in calculating the Overlapping factor, Cache hit paths
are also extensively used in the ILP-based approach for WCIP. Finding cache
hit paths of accesses outside any loop is straightforward, as we can simply
traverse the program in the reverse direction starting from the access, until
we reach an access to the same cache block. However, for accesses inside loop,
we may have to take the back edge and traverse the loop multiple times, and
in general, it is not clear how many times one should do that, to ensure that

26

all cache hit paths have been discovered. Hit paths for accesses inside loops
can span multiple iterations of the loop.

For example, consider again the program fragment in Figure 3. To deter-
mine HP (1), we only have to traverse the back edge once, but to determine
HPs (2) and (3), we have to traverse it twice, and for HPs (4) and (5), three
times. Hence, we need a systematic method to find all the hit paths of a
cache access.

We propose an Abstract Interpretation based approach, which builds the
hit paths of all shared cache hits in the program until a fix-point is reached.
This program analysis is carried out in the reverse direction. Since we only
need HPs of those accesses which are guaranteed shared cache hits (without
interferences), we will only concentrate on such accesses (which can be de-
termined using normal AI-based cache analysis). The general idea is that
we traverse backward in the CFG starting from the access and keep track
of the cache blocks encountered along different paths. Eventually, another
instruction accessing the same cache block will be encountered, and the hit
paths can be completed. Since we only consider guaranteed cache hits, all
the program paths leading to the access must end with cache hit paths of
the access.

Let AccH be the set of all guaranteed shared cache hits in the program,
and let Acc be the set of all shared cache accesses (AccH ⊆ Acc). While the
cache hit path was defined to be a sequence of accesses following program
order, the sequence itself is not important when hit paths are used for WCIP.
Hence, we will only maintain the set of accesses in every hit path. We also
use a special symbol ⊣ to indicate that the hit path has been completed, i.e.,
the start instruction of the hit path has been encountered. Thus, for every
hit path π, π ∈ 2Acc∪{⊣}.

A cache hit can have multiple hit paths, and hence we maintain a set of
hit paths for each cache hit. Our abstract lattice is the set of all functions
F = {f |f : AccH → 22

Acc∪{⊣}
}. For f1, f2 ∈ F , we say that f1 � f2 iff

∀h ∈ AccH , f1(h) ⊆ f2(h). This is the standard power-set formulation of
abstract lattice, with the join being defined as the point-wise union. Hence,
(f1 ⊔ f2)(h) = f1(h) ∪ f2(h).

a: m

Q

P

Figure 6:

We now define the transfer function for a shared cache access
made by the program. The transfer function for the rest of
the instructions will be the identity function. Let cb(a) and
cs(a) denote the cache block and the cache set accessed by a,
respectively. CAC(a) denotes the cache access classification of
a at the shared cache level, and can be Always (if the access
is guaranteed to reach the shared cache), Uncertain or Never.
As shown in Figure 6, suppose shared cache access a accesses

27

cache block m mapped to cache set s. For fP ∈ F , the transfer
function TPQ for this access is defined as TPQ(fP) = fQ, where

fQ(h) =























































































{{a}} ∪ {π ∪ {⊣}|π ∈ fP (h)}

if a = h,

{π ∪ {a,⊣}|π ∈ fP (h)∧ ⊣/∈ π}

∪{π|π ∈ fP (h)∧ ⊣∈ π}

if cb(h) = cb(a) and CAC(a) = A,

{π ∪ {a}|π ∈ fP (h)∧ ⊣/∈ π}

∪{π|π ∈ fP (h)∧ ⊣∈ π}

if cb(h) 6= cb(a) and cs(h) = cs(a)

and CAC(a) = A or U,

fP (h)

otherwise

The transfer function operates separately on each hit path of every cache
hit. The presence of a path π in fP (h) indicates that π is a path from the
access a to cache hit h, and it is a sub path of some cache hit path of h.

First, we consider the hit paths of the access a itself (if a ∈ AccH). We
add the path {a}, to begin the collection of hit paths of a, while all existing
paths of a are completed by adding ⊣. An existing path of a will be present
when a is inside a loop, and it has already been encountered once during an
earlier AI iteration.

In the second case, we consider the paths of those instructions h which
access the same cache block cb(a). If the CAC of a is Always, then a is the
instruction guaranteed to bring cb(a) into the cache, which will eventually
by accessed by h, causing h to be a cache hit. Hence, any existing paths of h
which do not contain ⊣ are completed, while existing paths of h which have
already been completed are retained.

In the third case, we consider the paths of those instructions h which
access a different cache block cb(h), mapped to the same cache set cs(a). In
this case, cache block cb(a) will conflict with cb(h) and therefore the access
a is added to any existing path of h, which has not been completed, while
all completed hit paths are retained. Finally, paths of instructions which do
not access the cache set cs(a) are not modified.

It is easy to see that the transfer function is monotonic, since it operates
individually on each hit path of every cache hit. It either adds a new path,
or adds new accesses to an existing path, but this depends solely on the
properties of the access or the path itself. Formally, if f1 � f2, then f1(h) ⊆

28

f2(h). Since all hit paths in f1(h) are also present in f2(h), after applying
the transfer function, the transformed hit paths in TPQ(f1)(h) will also be
present in TPQ(f2)(h). Moreover, the abstract lattice F is finite, hence,
Kildall’s algorithm can be used to determine the fixpoint of the analysis. All
the completed cache hit paths of accesses in H will be gathered at the start
of the program in the fixpoint solution.

5 Interaction with the shared bus

In most multi-core architectures, accesses to the shared cache have to go
through the shared bus, which collects access requests from all cores and
sends them to the shared cache. If requests from two different cores arrive at
the same time, then one core must wait, because the shared cache can only
fulfill one access request at a time. For predictability, it is desirable that the
delay suffered due to this interference be bounded statically. One of the most
commonly used arbitration policies to ensure bounded delays is the TDMA
based round-robin policy. In this policy, each core is assigned a fixed slot
of time, and all access requests arriving during this slot will be immediately
forwarded to the shared cache (provided those requests can be fulfilled in the
same slot). All slots are arranged in a fixed, static schedule which repeats
itself. If a core generates an access request outside of its slot, then it must
wait for its next slot. Since the size of the slots as well as the schedule are
known, the delay can be accurately bounded.

Assuming that the shared cache can only fulfill one access request at a
time, and that access requests cannot be prempted (i.e. once a memory block
is requested, the cache must satisfy the request before working on the next
request), the length of a slot assigned to a core must be greater than the
main memory latency, so that a request can be fulfilled in the same slot.
An obvious bound on the maximum bus delay would be the maximum time
between two slots assigned to the same core, obtained by assuming that the
access request arrives just after the slot assigned to the core has finished.
Using this upper bound for every shared cache access, however, could result
in over-approximation, and hence, previous works ([20, 21]) have proposed a
more precise timing analysis, by using accurate bounds on the exact timing
of each shared cache access.

The time at which a shared cache access happens depends on the hit-
miss behavior of previous accesses, and hence, approaches for TDMA-based
shared bus analysis require the safe hit-miss classification for every individ-
ual access to the shared cache. In our approach, we do not provide a safe
hit-miss classification for every access to the shared cache, but instead only

29

provide upper bound on the number of shared cache misses. Providing guar-
antees for every shared cache access is very difficult, since that would require
considering the worst-case interference arrival individually for every access,
resulting in high over-approximation of the number of misses. By consider-
ing the global worst-case interference arrival, we can guarantee substantially
higher number of cache hits. However, we cannot exactly pinpoint where the
hits and misses are going to happen during the program execution.

In this section, we show that knowing the maximum number of shared
cache misses caused due to interferences is enough to find the maximum
shared bus delay that these misses will cause. Hence, our approach for shared
cache analysis can be safely integrated with TDMA-based shared bus analy-
sis techniques ([20, 21]) to accurately bound the shared bus delay. Initially,
the shared cache behavior of a program in isolation (which will provide pre-
cise hit-miss classification for individual accesses) would be used to find the
WCET, taking into account the shared bus delays (for example, using the
techniques described in [20, 21]). Then, we find the maximum number of
shared cache misses caused due to interferences, using approximate WCIP.
We can show that every shared cache miss can only cause a maximum bus
delay equal to the twice the TDMA period (which is the sum of the length
of slots assigned to each core). Hence, the maximum bus delay caused due
to interferences would also be directly proportional to the number of shared
cache misses, and can be found without pinpointing where the misses occur
during execution.

Let πInt
wc be the worst-case path in the presence of interferences. Let I be

the maximum number of shared cache misses in the entire program caused
by interferences (this number can determined using approximate WCIP). If
IInt is the maximum number of shared cache misses caused by interferences
on the path πInt

wc , then clearly, IInt ≤ I. Let BInt be the increase in the
shared bus delay on the path πInt

wc which happens due to the shared cache
misses caused by interferences.

Let there be nc cores, and let sl be the slot length of each core in the
TDMA schedule. For simplicity, we assume that the length of each slot is the
same, and each core is assigned exactly one slot in the schedule. Hence, the
TDMA period will be ncsl. We will show that BInt ≤ 2ncslI

Int. Since IInt ≤
I, 2ncslI would be a safe upper bound on the maximum increase in shared
bus delay. Let s1, s2, . . . sN be the sequence of shared cache accesses made
during the execution of the worst case path πInt

wc . Moreover, let si1 , si2, . . . sil
be the accesses in this sequence, which were initially shared cache hits, but
became misses due to interferences. Note that l = IInt, the maximum number
of misses on the worst-case path.

Upto si1 , there are no shared cache misses caused by interferences, and

30

hence no extra bus delay will be caused. The access si1 is the first access to
experience a miss due to interferences, which will result in an access to the
main memory and hence extra cache miss penalty cp. Let βi1 be the actual
time at which the access si1 takes place, and oi1 = βi1mod(ncsl) be the offset
in the TDMA period.

In the worst-case, this offset can occur just before the slot assigned to
the core finishes, in such a way that the original cache hit could be served
within the slot, but the cache miss cannot be served within the same slot.
Formally, if [sl(p − 1), slp) was the slot of the core issuing the request, and
γi1 was the original time required for the cache hit (γi1 + cp is the new time
for the cache miss), then the worst-case happens when slp − oi1 ≥ γi1, but
slp−oi1 < γi1 + cp. In this case, the core must wait for the next slot assigned
to it, resulting in a bus delay of at most ncsl, which would not have been
encountered in the run without interferences. Note for all other offsets of the
access si1, no extra bus delay would happen due to the cache miss, and the
maximum difference between the execution times would be just the cache
miss penalty.

Because of the cache miss suffered by si1, the time of the next shared
bus access si1+1 will also change. Here, we use the offset relocation lemma
proposed in [20], which states if there are two executions of the same path,
with one execution starting at offset o and another starting at a different
offset o′ in the TDMA period, then assuming identical behavior for every
other micro-architectural component except the shared bus, the two execu-
tions will differ by at most ncsl cycles. In our case, the offset of si1+1 will
change because of the miss to si1 , from the original offset when si1 was a hit.
However, this will cause a maximum increase of ncsl in the execution time
of the path starting from si1+1.

Hence, the cache miss to si1 can cause a maximum of increase of 2ncsl due
to shared bus delays. Each miss sij will cause a similar increase, and hence
the total increase in shared bus delay will be upper bounded by 2ncslI

Int.

6 Experimental Evaluation

We use the open-source WCET analyzer Chronos [22] for our experiments.
Chronos is built on top of the SimpleScalar simulation framework, and re-
quires benchmarks compiled for the simplescalar PISA architecture. Since
we are focusing on the impact of shared instruction caches on the WCET,
we assume a perfect data cache and also ignore the effect of the processor
pipeline or the shared bus. We use 27 benchmarks from the Mälardalen

31

WCET benchmark suite2. We use lp solve to solve the generated ILPs, and
our experiments were performed on a 4-core Intel i5 CPU with 4 GB memory.
We assume a 2-core architecture with a 2-level cache hierarchy.

For shared instruction cache analysis, we implemented three different
techniques : (1) [3]’s approach, which considers the effect of all interferences
on all shared cache hits, (this technique is also used for shared cache analysis
in multi-core Chronos [5]),(2) ILP-based approach for WCIP, as proposed in
[2] and (3) the approximate technique for WCIP, proposed in this paper. We
compare the precision of WCET obtained using all three techniques.

The code size of the benchmarks ranges from 0.2 KB to 60 KB, with an
average size of 23.5 KB. For the initial set of experiments, we assume a 1
KB 4-way L1 I-cache, and a 4 KB 8-way L2 I-cache, with block size of 32
bytes. Later, we will also show the impact of changing the L2 cache size on
the precision of the estimated WCET. To compute WCET of a benchmark
on a 2-core architecture, we assume that the benchmark runs on one core
and the benchmark nsichneu runs on the other core. For all benchmarks
except jfdctint, nsichneu is the worst-case adversary, i.e. the benchmark
which causes the maximum shared cache interference.

With the above assumptions, we calculated the WCET using all the three
techniques, and found that WCIP (both the ILP-based and approximate
approach) gave lower WCETs for 11 of the 27 benchmarks as compared
to Hardy et. al.’s approach. The WCETs were same for the rest of the
benchmarks. Figure 7 shows the precision improvement of WCET (in %)
obtained using the two WCIP approaches over Hardy et. al.’s approach.
(The precision improvement is calculated as WCETH−WCETO

WCETH
, where WCETH

is obtained using Hardy et. al.’s approach, and WCETO is obtained using
WCIP).

The precision improvement in WCET using the ILP-based WCIP and
approximate WCIP is equal for almost all benchmarks. Moreover, the pre-
cision improvement using approximate WCIP is actually slightly higher in
some benchmarks. The reason is that the ILP itself introduces some impre-
cision while handling shared cache hits inside loops. The average precision
improvement over the 11 benchmarks for ILP-based WCIP is 28.6 %, and
for approximate WCIP, it is 29 %.

The real advantage of approximate WCIP over ILP-based WCIP is in
the analysis time required to obtain the WCET. The complexity of the ILP
increases with the number of shared cache hits in the program, while the
complexity of approximate WCIP is independent of the number of cache hits.
The average analysis time for ILP-based WCIP for the 11 benchmarks was

2WCET Projects/Benchmarks. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

32

adpcm expint lms cover prime bsort100 fft ndes qurt sqrt jfdctint
0

10

20

30

40

50

60

70

80

Benchmarks

P
re

ci
si

on
 im

pr
ov

em
en

t o
f W

C
E

T
 (

in
 %

)

ILP based WCIP
Approximate WCIP

Figure 7: Precision improvement of WCET obtained using (1) ILP-based
WCIP and (2) Approximate WCIP over Hardy et al.’s approach [3] for a 4
KB L2 cache

0.82 seconds (with maximum of 4.58s for ndes), while the average analysis
time for approximate WCIP was 0.002 seconds.

6.1 Hits on the WC path and the maximum OF

To understand why approximate WCIP performs so well, we measured the
impact of the two assumptions made by approximate WCIP. The first as-
sumption is that all the shared cache hits of the program are present on
the worst-case path. We measured the number of shared cache hits on the
worst-case path (obtained assuming no interferences), and the total number
of shared cache hits in the program. We found that among the 11 bench-
marks, an average of 95.6 % of the total number of shared cache hits were
present on the WC-path (with minimum of 70 % and maximum of 100 %).
This shows that the first assumption will likely not have a major impact on
the precision of approximate WCIP.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

Number of interferences/Number of cache hits

P
er

ce
nt

ag
e

in
cr

ea
se

 in
 W

C
E

T

adpcm
bsort100
cover
expint
fft
jfdctinit
lms
ndes
prime
qurt
sqrt

The number of interfer-
ences caused by nsichneu
expressed as a percentage of
the total number of cache
hits in a benchmark was 56.5
%, averaged across all bench-
marks (ranging from 1.6 %

33

for jfdctint to more than
100 % for fft, ndes, qurt).
The average eviction distance (across all shared cache hits) across all bench-
marks was 7.6, (ranging from 6.1 to 8), which means that an average of
7.6 interferences were required to cause a single cache miss across all bench-
marks. The second assumption made by approximate WCIP is to remove the
overlapping effect, by multiplying the original budget of interferences with
the maximum Overlapping Factor (OF). We found that the maximum OF
across all cache sets was 1 for 9 out of the 11 benchmarks (it was 4 for ndes
and 7 for jfdctint). This shows that removing the overlapping effect does
not cause a huge increase in the number of interferences.

Another advantage of approximate WCIP is that we can express the in-
crease in WCET due to interferences as a piecewise-linear function of the
number of interferences. Figure 6.1 shows the increase in WCET (as com-
pared to WCET obtained assuming no interferences) corresponding to dif-
ferent number of interferences (expressed as the ratio of the number of inter-
ferences to number of cache hits in the program), for 11 benchmarks. While
there would be a separate graph for each cache set, here we take the total
number of interferences across all cache sets on the x-axis. The figure shows
that the increase in WCET is less than 50 % for all benchmarks if the number
of interferences do not exceed the number of cache hits. Moreover, for ma-
jority of the benchmarks, the increase in WCET is small for higher number
of interferences as well.

6.2 Changing the cache size

We also experimented with two other L2-cache configurations, a 2 KB L2
cache (half the original size) and a 8 KB L2 cache (double the original size).
Figure 8 shows the precision improvement in WCET obtained using ILP-
based and approximate WCIP, over Hardy et al.’s approach, for both the
cache configurations.

For the 2 KB L2 cache, 7 out of the 11 benchmarks showed precision im-
provement. Again, both the ILP-based and approximate WCIP give similar
results, and the average precision improvement over the 7 benchmarks for
both the approaches is 36.6 %. Note that the average precision improvement
for the same 7 benchmarks for a 4 KB L2 cache was 42.6 %. Hence, the pre-
cision improvement has decreased, which is as expected, since the smaller L2
cache will result in lower number of cache hits, thus decreasing the reliance
of the WCET on L2 cache analysis.

For the 8 KB L2 cache, all benchmarks (except sqrt) showed slighly
higher precision improvement (than the 4 KB L2 cache), and the average

34

adpcm expint lms cover prime ndes jfdctint
0

10

20

30

40

50

60

70

Benchmarks
(a)

P
re

ci
si

on
 im

pr
ov

em
en

t o
f W

C
E

T
 (

in
 %

)

adpcm expint lms cover prime bsort100 fft ndes qurt sqrt jfdctint
0

10

20

30

40

50

60

70

80

Benchmarks
(b)

P
re

ci
si

on
 im

pr
ov

em
en

t o
f W

C
E

T
 (

in
 %

)

ILP based WCIP
Approximate WCIP

ILP based WCIP
Approximate WCIP

Figure 8: Precision improvement of the WCET for two different cache con-
figurations (a) 2 KB L2 cache (b) 8 KB L2 cache

35

precision improvement for approximate WCIP over the 11 benchmarks was
36.29 %. However, for ILP-based WCIP, the ILP solver was not able to solve
the generated ILPs for 3 benchmarks (ndes, qurt and jfdctint) within 24
hours. This has happened because of the higher number of L2 cache hits, and
the subsequent increase in the complexity of the ILP. For all benchmarks,
approximate WCIP took less than 1 second to find the WCET, with high
precision improvement in the 3 benchmarks for which ILP-based WCIP fails.
This illustrates the advantage of using approximate WCIP over ILP-based
WCIP.

6.3 Comparison with Simulated WCET

We also compare the estimated WCETs obtained using the three techniques,
with the WCET obtained using simulation. To obtain the simulated WCET,
we use the modified version of Simplescalar framework [23], used for valida-
tion in Multi-core chronos [5]. The modified version supports simulation of
shared cache and shared bus, among other architectural components. For
our purposes, we only simulate the effect of the shared cache, and assume
zero shared bus delay and no pipeline hazards.

As has been noted by [5], it is difficult to simulate the exact interleaving
for accesses which will result in the worst-case scenario for shared caches.
Hence, the simulated WCET may highly under-estimate the actual WCET
of the program. It is also difficult to obtain the exact worst-case input for
some of the benchmarks, such as qurt and ndes, which involve branching
based on complex mathematical calculations.

Figure 9 depicts theWCET estimation ratio, calculated as Estimated WCET
Simulated WCET

,
for 11 benchmarks. We assume a 1 KB L1 cache and 4 KB L2 cache (same as
in the first experiment). We first find the simulated and estimated WCETs
assuming a private L2 cache, to determine the impact of infeasible paths,
private cache analysis, etc. on the overestimation of the estimated WCET.
Then, we assume the same L2 cache shared between two cores, with the
benchmark nsichneu running on the other core, and find the simulated and
estimated WCETs, and the overapproximation ratio. The estimated WCETs
are determined using the three shared cache analysis techniques. Figure 9
shows the WCET overestimation ratio of the 11 benchmarks for all the four
cases.

Except for expint, the overestimation ratio for all the other benchmarks,
in the case where the shared L2 cache is analyzed using WCIP, is almost the
same as the overestimation ratio for private L2 cache. This shows that shared
cache analysis using WCIP does not introduce large amounts of imprecision in
the estimated WCETs. The average overestimation ratio for private L2 cache

36

adpcm expint lms cover prime bsort100 fft ndes qurt sqrt jfdctint
0

1

2

3

4

5

6

7

8

9

Benchmarks

W
C

E
T

 o
ve

re
st

im
at

io
n

ra
tio

Private L2 cache
Shared L2 cache, analyzed using ILP−based WCIP
Shared L2 cache, analyzed using Approximate WCIP
Shared L2 cache, analyzed using Hardy et.al.’s technique

Figure 9: WCET overestimation ratio as compared with simulated WCET,
for (1) private L2 cache, (2) shared L2 cache analyzed using ILP-based WCIP,
(3) shared L2 cache analyzed using approximate WCIP and (4) shared L2
cache analyzed using Hardy et. al.’s approach

is 1.78, while for shared L2 cache analysis using ILP and approximate WCIP,
it is 1.99 and 1.98 respectively. On the other hand, Hardy et. al.’s analysis
introduces large amounts of imprecision, and the average overestimation ratio
is 3.25.

6.4 Cache partitioning

Cache partitioning is a hardware-based approach to simplify shared cache
analysis in multi-core architectures. In cache partitioning, each core is as-
signed a private portion of the shared cache, which will not be accessed by
any other core. This ensures that there will be no interferences to account
for during shared cache analysis, and hence private cache analysis techniques
can be directly applied for the shared cache. The disadvantage is that a core
will not be able to use the entire shared cache, and hence it may suffer more
shared cache misses (both capacity and conflict misses).

Here, we limit our attention to fixed partitioning, and compare theWCETs
obtained by using partitioned shared cache, to the WCETs obtained using
WCIP in an un-partitioned shared cache. There are two ways in which fixed
partitioning can be implemented: (1) Vertical partitioning (also called colum-
nization [9]), where each core is assigned a subset of ways in all cache sets,
and (2) Horizontal partitioning (also called bankization), where each core is

37

Figure 10: Graph showing the percentage increase in WCET obtained using
(1) Approximate WCIP, (2) Vertical cache partitioning, (3) Horizontal cache
partitioning and (4) All shared cache accesses as misses

assigned a subset of cache sets. For our 2-core architecture, we divided the
cache equally between both the cores.

For vertical partitioning experiments, we decrease the shared cache as-
sociativity from 8 to 4, while for horizontal partitioning experiments, we
decrease the number of cache sets from 16 to 8. For approximate WCIP,
we set the adversary program as nsichneu. Figure 10 shows the percentage
increase in the WCET for 11 benchmarks obtained using approximate WCIP
and the two cache partitioning techniques, and assuming that all shared cache
accesses as misses, as compared with WCET of the benchmarks running in
isolation with an un-partitioned shared L2 cache.

The percentage increase in WCET is calculated as
WCETshared−WCETorig

WCETorig
,

where WCETorig is the WCET of the benchmark running on single-core ar-
chitecture with the same (unpartitioned) cache hierarchy, while WCETshared

is obtained using either approximate WCIP or the two cache partitioning
techniques or assuming that all shared cache accesses miss the cache. The
point of comparing with WCETorig is that the lower the percentage increase,
the lower the imprecision introduced by shared cache analysis to the WCET.

First, notice that using vertical cache partitioning does not result in any

38

increase in the WCET for all benchmarks except jfdctint. The reason is that
most of these benchmarks do not access more than 4 cache blocks per cache
set in the shared cache, and hence, their cache performance is not affected
by decreasing the cache associativity to 4. jfdctint accesses at least 6 cache
blocks in every cache set, and the percentage increase in its WCET due to
vertical partitioning is greater than approximate WCIP.

Horizontal partitioning, on the other hand, is highly ineffective, as it intro-
duces greater imprecision than both the other techniques for all benchmarks
except ndes. The average increase in the WCET across the 11 benchmarks
for approximate WCIP is 9.6 %, while for horizontal partitioning, it is 47.7
%. Also, note the high increase in WCET for most benchmarks, when it is
assumed that all shared cache accesses miss the cache. The average increase
in WCET in this case is 78.3 %, which highlights the importance of shared
cache analysis in accurate WCET estimation.

From the above results, it would seem that using normal cache analysis
with vertical partitioning is more effective than using WCIP with an un-
partitioned shared cache. However, note that with WCIP, the WCET also
depends on amount of interference caused by programs running on other
cores, and for the above experiment, we used the worst case adversary. By
selecting programs which generate less shared cache interference, the WCET
can be controlled using WCIP, but with cache partitioning, there will be no
impact on the WCET. With vertical partitioning, we are effectively assuming
that there is an adversary program which generates a constant amount of
shared cache interference (in this case, 4 interferences for every shared cache
access in the program under analysis). Moreover, in the instance where the
number of cache blocks accessed per cache set goes beyond 4 (for jfdctint),
vertical partitioning introduces greater imprecision than WCIP.

So far, cache partitioning/locking have been used aggressively to guaran-
tee zero shared cache interference, so that private cache analysis techniques
can be directly applied to find the WCET. However, this requires providing
guaranteed cache space (generally equal to the working set) to a task before
it starts execution (for example, as proposed in [12]), and locking this cache
space for the entire execution, even though the task may not need it. We have
shown that cache analysis can, in fact, cope with limited amounts of cache
interference and can still be used to estimate fairly accurate WCETs. In gen-
eral, we believe that a relaxed form of cache locking/partitioning could be
used (for example, by allowing tasks to share partitions) to provide non-zero
but small guarantees on the shared cache interference, and these guarantees
can then be used to obtain precise WCET estimates.

39

7 Conclusion and Future Work

Estimating the WCET of programs running on multi-core architectures is an
important step towards using multi-cores in real-time systems. Shared cache
analysis plays a crucial role in obtaining precise WCET estimates on multi-
cores, and Worst case interference placement (WCIP) is one of the most
precise techniques used to perform shared cache analysis. In this work, we
show that performing WCIP is NP-Hard, even for simple programs without
branches or loops and direct-mapped shared caches. We also propose an
approximate technique for WCIP that bypasses the hard problem of finding
the worst case path in the presence of interferences. While ILP-based WCIP
is NP-Hard, approximate WCIP has a time complexity linear in the size of
the shared cache, thus guaranteeing fast analysis time irrespective of program
size.

Experimentally, we find that approximate WCIP is as precise as ILP-
based WCIP across all benchmarks, with a substantial reduction in analysis
time. We also compare the effectiveness of shared cache analysis using WCIP
against fixed cache partitioning, and find that while horizontal partitioning
results in very high WCET estimates, vertical partitioning can actually per-
form better than WCIP, but WCIP gives more control on the WCET by
selecting appropriate programs to run on other cores.

Precise and fast shared cache analysis opens up several interesting av-
enues for future work. For example, the increase in WCET due to shared
cache interferences is a piecewise linear function of the number of interfer-
ences (after removing the overlapping effect), and this gives a good handle
on controlling the WCET while maximizing utilization during scheduling.
Moreover, the WCET of a program, in the presence of shared caches, can
be determined independently of the programs running on other cores, by
assuming upper bounds on the amount of interference. It does not matter
which programs run on the other cores, as long as they do not exceed the up-
per bound. Finding appropriate upper bounds on interference to maximize
utilization and schedulability of task sets is another interesting problem.

References

[1] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguire, Daniel Grund,
Jrg Herter, Jan Reineke, Bjrn Wachter, and Stephan Wilhelm. Static
timing analysis for hard real-time systems. In Verification, Model Check-
ing, and Abstract Interpretation, pages 3–22. 2010.

40

[2] Kartik Nagar and Y N Srikant. Precise shared cache analysis using
optimal interference placement. In Real Time and Embedded Technology
and Applications Symposium, 2014.

[3] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to
tighten WCET estimates for multi-core processors with shared instruc-
tion caches. In Real Time Systems Symposium, 2009.

[4] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache
behavior prediction for real-time systems. Real-Time Syst., 17(2-3):131–
181, December 1999.

[5] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon
Kelter, Marwedel Peter, and Falk Heiko. A unified WCET analysis
framework for multi-core platforms. In Real Time and Embedded Tech-
nology and Applications Symposium, 2012.

[6] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise
refinement of cache timing analysis via model checking. In Real Time
Systems Symposium, 2011.

[7] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoud-
hury. Timing analysis of concurrent programs running on shared cache
multi-cores. In Real Time Systems Symposium, 2009.

[8] Vivy Suhendra and Tulika Mitra. Exploring locking and partitioning
for predictable shared caches on multi-cores. In Design Automation
Conference, 2008.

[9] Marco Paolieri, Eduardo Quiñones, Franciso J. Cazorla, Guillem Bernat,
and Mateo Valero. Hardware support for WCET analysis of hard real-
time multicore systems. In International Symposium on Computer Ar-
chitecture, 2009.

[10] Man-ki Yoon, Jung-Eun Kim, and Sha Lui. Optimizing tunable WCET
with shared resource allocation and arbitration in hard real-time multi-
core systems. In Real Time Systems Symposium, 2011.

[11] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James
H. Anderson. Making shared caches more predictable on multicore plat-
forms. In Euromicro Conference on Real-Time Systems, 2013.

[12] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling
and analysis for multicores. In EMSOFT, 2009.

41

[13] Huping Ding, Yun Liang, and T. Mitra. Shared cache aware task map-
ping for wcrt minimization. In Design Automation Conference (ASP-
DAC), 2013 18th Asia and South Pacific, pages 735–740, Jan 2013.

[14] Gabriel Fernandez et al. Contention in Multicore Hardware Shared Re-
sources: Understanding of the State of the Art. In International Work-
shop on Worst-Case Execution Time Analysis, pages 31–42, 2014.

[15] Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks. Precise and
efficient parametric path analysis. In Proceedings of the ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, 2011.

[16] Silvano Martello and Paolo Toth. Knapsack Problems : Algorithms and
Computer Implementations. John Wiley and Sons, 1990.

[17] Damien Hardy and Isabelle Puaut. Wcet analysis of multi-level non-
inclusive set-associative instruction caches. In Real-Time Systems Sym-
posium, 2008.

[18] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis:
Tightening the crpd bound for set-associative caches. In Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 153–162, 2010.

[19] Kartik Nagar and Y.N. Srikant. Path sensitive cache analysis using cache
miss paths. In Verification, Model Checking, and Abstract Interpretation,
pages 43–60. Springer Berlin Heidelberg, 2015.

[20] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay,
and Abhik Roychoudhury. Static analysis of multi-core tdma resource
arbitration delays. Real-Time Systems, 50(2):185–229, 2014.

[21] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Mod-
eling shared cache and bus in multi-cores for timing analysis. In Inter-
national Workshop on Software and Compilers for Embedded Systems,
2010.

[22] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudury.
Chronos: A timing analyzer for embedded software. Science of Com-
puter Programming, 69(1-3):56–67, 2007. http://www.comp.nus.edu.

sg/~rpembed/chronos.

42

[23] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for
computer system modeling. Computer, 35(2):59–67, Feb 2002.

43

