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ABSTRACT
Stream programming based on the synchronous data flow
(SDF) model naturally exposes data, task and pipeline par-
allelism. Statically scheduling stream programs for homoge-
neous architectures has been an area of extensive research.
With graphic processing units (GPUs) now emerging as gen-
eral purpose co-processors, scheduling and distribution of
these stream programs onto heterogeneous architectures (hav-
ing both GPUs and CPUs) provides for challenging research.
Exploiting this abundant parallelism in hardware, and pro-
viding a scalable solution is a hard problem.

In this paper we describe a coarse-grained software pipelined
scheduling algorithm for stream programs which statically
schedules a stream graph onto heterogeneous architectures.
We formulate the problem of partitioning the work between
the CPU cores and the GPU as a model-checking problem.
The partitioning process takes into account the costs of the
required buffer layout transformations associated with the
partitioning and the distribution of the stream graph. The
solution trace result from the model checking provides a map
for the distribution of actors across different processors/-
cores. This solution is then divided into stages, and then
a coarse grained software-pipelined code is generated. We
use CUDA streams to map these programs synergistically
onto the CPU and GPUs. We use a performance model for
data transfers to determine the optimal number of CUDA
streams on GPUs. Our software-pipelined schedule yields a
speedup of upto 55.86X and a geometric mean speedup of
9.62X over a single threaded CPU.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Metrics—Data-flow Lan-
guages, StreamIt ; D.3.4 [Programming Languages]: Met-
ricsCompilers, Processors

General Terms
Experimentation, Languages, Algorithms, Performance

Keywords
Software Pipelining, Model Checking, Stream Programming,
Partitioning, GPU Programming, CUDA

1. INTRODUCTION
Stream programs based on the synchronous data-flow model

(SDF)[13] are a class of programs which are represented as
graphs of independent actors interacting through a FIFO
communication channel, with a requirement that the num-
ber of data items produced or consumed by each actor is
known a-priori.

Stream programs expose parallelism in multiple forms.
Data parallelism exists when an actor is stateless and can
thus be replicated. Data parallelism provides load-balanced
and abundant parallelism (as long as input data is available).
A stateful actor cannot be replicated and poses a limit to
the scalability of parallelization, as the work of that actor
cannot be divided. The most load-intensive stateful actor
becomes a bottleneck. Task and pipeline parallelism are the
other forms of parallelism that stream programs also ex-
poses. Exploiting all three forms of parallelism from stream
programs poses challenges to scheduling and extraction of
optimal performance from the application.

Applications such as audio, video, digital signal process-
ing, and data analysis can be naturally expressed using stream
programs; these are the applications which will be in the fore
as computing moves towards data-centric applications and
to the mobile and embedded space. Stream programs with
explicit and regular communication are a natural fit for ex-
ploiting the coarse-grained parallelism suitable for multicore
and heterogeneous (CPU and/or GPU combined) architec-
tures. Streaming applications thus have spawned a num-
ber of streaming languages such as, StreamIt[17], Brook[4]
Lime[1], etc.

The current trend in many-core architectures with hetero-
geneous processing capabilities with a goal to obtain max-
imum performance from the system has lead to interest-
ing research challenges in managing and running programs
on these machines. The heterogeneity incorporated into
the system encompasses computing cores of all dimensions:
CPU to handle conventional workloads, and massive number
crunching GPUs for an embarrassingly parallel application.
Combining these two architectures together to run in syn-
ergy needs a sophisticated compiler and a lot of program-
ming effort and time. Current state-of-the-art approaches
to map stream programs onto these architectures use inte-
ger linear programming to obtain an optimal schedule. The
extremely large execution time of commercial ILP solvers
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for this application makes these approaches highly imprac-
tical for production compilers[14]. Model-checking has been
shown to give a better performance as compared to ILP
methods[14].

This paper makes the following contributions:

1. A model-checking based integrated fission and parti-
tioning method to efficiently map actors in a StreamIt
program onto a heterogeneous system that is simpler
than that of [14].

2. A profile-based approach to decide the optimal number
of streams on GPUs required to implement a coarse
grained software-pipelined stream program.

3. An algorithm to derive a coarse grained software-pipelined
schedule for StreamIt programs that uses streams to
perform concurrent kernel execution on GPUs. To the
best of our knowledge, this is the first effort to use this
feature for stream languages.

We have implemented our scheme in the StreamIt com-
piler and we achieve a speedup of upto 55.86X and a geo-
metric mean speedup of 9.62X over a single threaded CPU
on a set of streaming benchmark applications.

2. RELATED WORK
Synchronous dataflow graphs have been studied exten-

sively in the literature[13], with the focus on design of lan-
guages to express stream graphs[17], which exploit the abun-
dant parallelism exposed by these graphs. StreamIt[17] has
been proposed to address the difficulty of programming in-
volved in DSP applications. Gordon et.al[10] exploit the
parallelism available in StreamIT on the RAW architecture,
where each actor runs as a separate thread and is deployed
on a separate core. The inter-thread communication was
managed using a buffer, and data transfers were carried
out in batch mode, instead of transferring one element at
a time. This implementation exploited parallelism in the
stream graph exclusively with stateless filters, and stateful
filters in the stream graph disabled all parallelisation.

Kudlur and Mahlke[12] built ILP formulations minimiz-
ing the initiation interval(II) (makespan) on IBM Cell plat-
forms. Their work consists of two major phases. First, an
ILP formulation is given for the integrated fission and actor
assignment for the CellBE architecture, which balances the
work load onto the processors. Secondly, a modulo schedul-
ing algorithm is presented which pipelines the execution of
the stream graph onto the Cell. It is not trivial to adapt
this approach to an NVIDIA CPU-GPU combination and
solving the ILP is expensive.

Udupa et al. [19] also formulate an ILP problem for gen-
erating a coarse-grained software-pipelined schedule for the
stream graph and use a technique similar to that of Kudlur
et.al.[12]. Udupa et al. [19] generate code for a combination
of NVIDIA GPUs and multi-core CPU. They also propose
a heuristics- based algorithm for partitioning actors onto
processors that does not take the communication cost into
account. They perform shuffling and deshuffling operations
to coalesce all memory accesses to the GPU which translates
to better execution times on heterogeneous architectures. In
[18], Udupa et al. use ILP to generate a software-pipelined
schedule exclusively for GPUs. However, neither of these
works use the facility of streams to execute multiple kernels
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Figure 1: SDF Stream Graph

on the GPU. Our work targets architectures with both CPU
and GPU and can generate code for all the combinations: ex-
clusively CPU or GPU and CPU-GPU combination, which
neither of the above works can.

Malik et. al.[14] perform an extensive quantitative eval-
uation comparing the heuristic solutions of several exist-
ing works on stream graphs, and propose a model-checking
based approach to obtain the optimal makespan for stream
graphs. They also compare the time taken to obtain the
partitioning of actors onto processors with an ILP based ap-
proach and conclude that model checking provides an op-
timal solution taking 44% less time than ILP based ap-
proaches. They stop short of generating code and do not
deal with machine related issues. Our CTL(Computation
Tree Logic) model is simpler than that of Malik et. al.[14],
because we do not incorporate communication into it. We
produce lesser number of automata as well.

Farhad et al. [8] propose a heuristic algorithm for par-
titioning an SDF graph onto multicore homogeneous plat-
forms. Carpenter et al. [5] target load-balancing filters on
the architecture and their algorithm provides a suboptimal
result. None of the works above can handle loops and peek-
ing filters in a stream graph, which we do.

3. PRELIMINARIES

3.1 Stream Programming Model
A stream graph is an abstract representation of a program

in the dataflow model, which is defined asG = {V,E}, where
V = {v1, ..., vn} is the set of actors/filters, and E ⊆ V ×V is
the set of FIFO communication channels between actors. A
channel (vi, vj) ∈ E buffers tokens (data elements) which are
passed from the output of vi to the input of vj . Synchronous
dataflow (SDF) restricts the model by fixing the number of
input and output tokens of a filter vi.

A periodic schedule is a finite sequence of invocations of
actors, in which each actor is invoked at least once. A peri-
odic schedule is computed at compile time and it produces
no net change in the system i.e. the number of tokens on
each edge of the stream graph is the same before and after
executing the schedule. This state of a stream graph which
can be executed ad-infinitum without any further increase
in memory is called the steady state.

A periodic schedule is a positive integer vector η ∈ Nn

called the natural granularity whose elements correspond to
actors in the stream graph. Element ηi,∀i ∈ 1, .., n is equal
to the minimum number of iterations of actor i in order to
obtain a steady state.

We explain our approach using a simple SDF graph shown
in Figure 1. The nodes in the graph are called actors (filters
in StreamIt). Actor Q continuously pushes 2 units of data
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into the stream. The Splitter S1 consumes 6 units of data
and splits copies for the filters S2 and F3 (4 and 2 resp.) in
the stream. The data stream is subsequently sent to differ-
ent processes running in parallel (F1, F2 with F3 ). F1, F2,
and F4 are stateless filters, that is, every invocation of these
filters is independent of any other previous invocation. F3
is a stateful filter. The end result of these parallel running
actors then gets aggregated and is sent to T for further pro-
cessing. The communication channels between the actors,
shown as edges in the graph, are First-In First-Out (FIFO)
channels. Each edge is annotated with the number of tokens
produced and consumed by the connected actors.

The actors are coloured white, gray, and black to represent
stateless, identity, and stateful filters . The natural granular-
ity for the example in Figure 1 is η = {3, 1, 1, 2, 2, 1, 1, 2, 1, 1}
for filters {Q, S1, S2, F1, F2, J2, F3, F4, J1, T } respectively.

3.2 NVIDIA GPUs and CUDA streams
Our compilation target is a heterogeneous combination of

cores with different ISA(instruction Set Architecture) and
address space, including both multicore CPUs and NVIDIA
GPUs. We generate pthreads for multi-core systems and
CUDA for NVIDIA GPUs [7].

Broadly, all GPUs consists of n streaming multiproces-
sors (SMs), each of which consists of m scalar units (SUs).
Within SM’s, the SU’s execute in a lock-step fashion. The
basic schedulable entity on GPUs is the warp, which is a
contiguous group of 32 threads, and each warp has it own
address. A thread in a warp can be identified by its threadid
and the memory it accesses is at an offset from the warp’s
base address. Sets of such warp form a block. A GPU kernel
consists of multiple blocks, organised as grids. Each block is
executed on exactly one SM. We omit the details of GPUs,
as we are not restricted by a specific GPU architecture and
our approach is portable to any of system having NVIDIA
GPUs.

In order to overlap computation and communication, CUDA
permits execution of programs in several stages, called streams
[9]. CUDA defines a stream as a sequence of operations
that are performed in order on the device. Typically, such
a sequence contains one memory copy from host to device,
which transfers input data; one kernel launch, which uses
this input data; and one memory copy from device to host,
which transfers results. Also, streams let the programmers
launch multiple kernels onto GPUs, which facilitates execu-
tion of multiple actors onto GPUs in parallel. To the best
of our knowledge, ours is the first effort to use streams in a
StreamIT compiler.

3.3 Communication Overhead
A stream graph clearly establishes the precedence between

producer and consumer actors, and thus needs this depen-
dency to be preserved during the execution of stream pro-
grams. When a producer actor and the consumer actor
are mapped onto different processors, the data has to be
communicated to the consumer. I our implementation on
the heterogeneous architecture, actors are mapped onto dis-
joint address spaces, which consist of both CPU and GPU
memory space. The communication of data should thus be
through an explicit DMA transfer. If these transfers are not
avoided, or not carefully overlapped with useful work, the
communication overhead will dominate the execution times
of stream programs.
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Figure 2: Overview of compilation process, target-
ing stream programs on heterogenous architecture

3.4 Model Checking
Given a state machine and properties specified as tem-

poral logic formulae, model checking aims to formally ver-
ify whether these properties are satisfied on the machine[6].
CTL formulae can be used for specifying path properties and
state properties independently with path and state formula
respectively.

We create the automata from the stream graph along with
the cost associated with the assignment of an actor to a
processing core on CPU or GPUs. The constraint (specified
in CTL) is to find a reachable path with minimum cost in the
model. This minimum cost reachable path is used to derive
a schedule and to generate efficient code for heterogeneous
architectures.

4. SCHEDULING STREAM GRAPH USING
MODEL CHECKING

4.1 Overview of Compilation Process
Figure 2 shows the various phases involved in our com-

pilation process for generating software pipelined code for
heterogeneous architectures. The diagram is annotated with
numbered labels to illustrate the flow. We present an overview
of the steps in the compilation process below.

1. An actor is selected and annotated for profiling and its
machine code is generated using the modified StreamIt
compiler[17]. Modifications were carried out in-house.
The annotated actor is run and its computation time
on CPU and GPU cores are collected. This step is
repeated for all the actors.

2. The average communication time between the CPU
and the GPU is measured by running simple programs.

3. Using the results from the previous steps, the optimal
number of GPU streams is computed. Stateful filters
are marked to be scheduled on the CPU cores.

4. The computation automata are built for each actor.
The actions for the automata are appropriately set us-
ing the computation cost and the costs for coalescing
data accesses on GPUs.
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5. The automata are given to a model-checker to perform
the least cost reachability analysis on the paths of the
model.

6. The result from the model checker is used to detr-
ermine the stages required to build a modulo scheduled
pipelined code.

Section 4.2 describes modules 2 and 3. Section 4.3 describes
modules 4 and 5. Module 6 is described in section 4.5, and
section 4.6 deals with code generation for CPU cores and
GPU.

4.2 Stream Program and Architecture Con-
figuration

The architecture in consideration as described earlier con-
sists of both multi-core CPU and an NVIDIA GPU. For ex-
planation we chose a system with two CPU cores (M1 and
M2) and one GPU (G1), in which each processing unit can
communicate with all others. The CPU cores act as the
master from where the communication is initiated and co-
ordinated.

4.2.1 Optimal number of CUDA streams
We derive the number of streams to be created on the

GPUs for a streaming application based on the performance
model by GóMez-Luna et. al.[9]. We use the following equa-
tions[9] where, tK represents the kernel execution time, thd
stands for the data transfer time from host to device and tdh
the data transfer time from device to host. Transfer times
depend on the number of data items to be transmitted and
on the characteristics of the bus on which the data is trans-
ferred. tsc is the time required to create a stream, and is
estimated for each GPU by profiling.

The optimal number of streams when the data transfer

time is dominant is given by nStreams =

√
tK
tsc
. The opti-

mal number of streams, when the kernel execution time is

dominant is given by nStreams =

√
thd
tsc

.

tsc in our case varies from 0.02 to 0.06, and we use a
value based on the profiled results on the GPU. This optimal
number of streams serves as the number of processor that
we model in our architecture graph for the GPU, instead of
assuming 1000’s of cores which makes scheduling infeasible.

4.2.2 Profile Execution and Configuration Selection
It is important to determine the resource usage and opti-

mal execution configuration for a given stream program on
both the CPU and the GPU. On the GPU this configura-
tion is specified by the execution time of actors, number of
streams, the number of threads per block and the number
of thread-blocks per stream, and is achieved by the profil-
ing the code with the help of the NVIDIA nvcc compiler.
On the CPU, the cost of execution of actors and the cost
of data transfer to and from GPU is obtained by profiling
(transfer cost is obtained on a representative fixed size data
and then appropriately calculated for each transfer). We use
this profile data at the integrated actor fission and processor
assignment stage to build our model and formulate a CTL
reachability problem.

4.3 Integrated Actor fission and Processor As-
signment

Let graph M(P,C) represent the heterogeneous execution
architecture, where P = {p1, ..., ph} are the processors on
the system, and C ⊆ P × P is the set of communication
links between the processors.

A parallel periodic schedule, schedules the execution of ac-
tors on a parallel architecture and has a finite sequence of
actor invocations for each processor. Synchronization be-
tween processors is necessary to begin subsequent iterations
of the periodic schedule of stream graph G. The time taken
by the path with the highest execution cost in the stream
graph (with parallel execution of actors) is defined as the
makespan π(G,M).

The objective of the this Section is to find a parallel sched-
ule with an allocation for every vertex vi ∈ V where i ∈
{1..|V |} on some processor pj ∈ P , where j ∈ {1..h} which
minimises the makespan π(G,M) for the stream graph.

We use Uppaal[2] to represent our stream graph as au-
tomata, and utilise the reachability property of CTL to
achieve our objective of finding the minimum makespan [14].
Uppal notations for location and communication between
automata are used. A node marked ”U” means it is an ur-
gent location i.e., the transition from the location has to be
taken as soon as the guard is true. Asynchronous communi-
cation among automata is represented using Milner’s CCS[3]
style handshake communication. This is used to represent
parallel transition of automata in our example and is not to
be confused with any synchronisation in the stream graph.

4.3.1 Building Computation Models from the Stream
Graph

We build the automata in a way similar to that of Ma-
lik et. al.[14], but our model is simpler than theirs due to
the fact that we do not include communication as a part
of the model, but choose to handle it at code generation
time. This reduces the number of automata generated, and
thereby reduces the time for model-checking.

Figure 3(a) shows an example automaton for the filter Q
scheduled on CPU processor M2. The label (location name
in Uppaal) QM2 indicates the the filter and its processor
assignment. The edge of the automaton describes the firing
conditions and the action taken.

The transition Figure 3(a) is guarded by the condition
QM2==1. On taking a transition, a global variable cost is
incremented by the computation time of Q on CPU2, which
in this case is 3*2, where 2 and 3 are the computation cost
and the natural granularity of Q respectively. At the end,
the actions also sets its guard condition to false (QM2=0),
and set the next filter guard condition to true (S1M2=1) to
enable further transitions. Many automata are possible for
each actor because each actor may be placed on any core of
the CPU or the GPU. For example, S1 can give rise to S1M1,
S1M2, and S1G1 (see Figure 3). The source actor (here Q)
is always placed onto the CPU core which is decided by the
programmer. All such automata are built for each actor in
V .

4.3.2 Modelling Task Parallelism
The automata in the previous sections represent sequen-

tial execution of the stream graph, where only one of the
automata is free to make a transition based on its guard,
and when done, it sets its own guard false and enables the
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Figure 3: Computation Automata
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Figure 4: Modelling Task Parallelism

The three actors F1, F2, and F3 in Figure 1 can possibly
run in parallel provided there are no resource constraints.
F4 can be run only after F3 . Let us (for simplicity) assume
that F1, F2 being identity filter are fused together as F12,
which is a very common optimisation for stream graphs.

Figure 4 shows an example network built in Uppaal by
combining the basic automata representing the allocation
of F12, F3, and F4, on CPU1, GPU1, and CPU2, respec-
tively. The first automaton (F12G1) communicates with
the first transition of the second automaton (F3M1) via
channel channel1, (all communications modelled here be-
tween automata are rendezvous communications). This ren-
dezvous communication causes the two transitions to take
place together (thus allowing parallel transition of the two
automata), in the process transferring the execution cost of
F12 on GPU1 (cost1 = c1) to the other automaton. Upon
completion of this rendezvous, the actions sets the guard
for the second transition (t tran) high. This allows the sec-
ond transition of the second automaton to rendezvous with
the third automaton via channel2. The maximum of the
received values of cost1 and cost2, the execution cost, is
transferred to the third automaton. F3 is a stateful actor
and cannot be run in parallel with any filter in its pipeline.

Q

S1

F3

F12
2

J1 T

F12
1

F12
3

dup join

dup

join

F4
1

F4
3

F4
2

Figure 5: Modelling data Parallelism
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F41F42F43M2 F41F42F43’M2

F41F42F43

== 1
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Figure 6: Optimal data parallelism exploitation

In other words, the two transitions of F3 (see Figure 4) could
not have taken place in parallel.

4.3.3 Modelling Data Parallelism with Integrated Fis-
sion

Stateless filters can be replicated to utilize idle processor
resources, which further increases the data parallelism avail-
able in the stream graph due to split-joins. Figure 5 shows
replication of the stateless F12 and F4 filters three times,
one for each processor. This technique allows utilization of
all the three processors. But such simple replication scheme
may lead to communication overhead. We use Algorithm 1
to replicate stateless filters judiciously by building all pos-
sible fused automata for the replicated filters so that the
optimal judicious fusion of actors is obtained. Due to fusion
of automata, the overall model would require less resources
and time on execution, because only one of them would have
been selected based on their guards). Identity actors are
handled as special cases as no extra communication channel
for them would be required on fusion.

Our algorithm produces lesser number of automata than
that of Malik. et. al [14]. This is due to the exclusion of
communication cost in our model which reduces the number
of actors in the graph with replications. Figure 6 shows the
generated automata for actor F4 which is replicated into
F41, F42 and F43 naively and then generating automata
for all their possible fused combinations. Malik. et. al [14]
algorithm would have generated F41F42 and F42F43, where
we clearly see that F42F43 is similar in properties to F41F42,
and thus we do not generate any such extra automata.

4.3.4 State Space and Reachability Property
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Algorithm 1 Building fused replicated filters automaton
states
Input: Execution Architecture M , Modified Stream Graph

G′

Output: A set S of fused replicated filters automaton states
for each processor . Generates minimum number of
automata instead of all possible permutations.

1: S ← φ
2: i← 0
3: SJ ← the set of all split joins in G′ with replicated

filters
4: for all si ∈ SJ do
5: B ← branches in SJ
6: s← φ
7: if |B| ≥ 2 then . more than two branches
8: for all bj ∈ B do
9: for all pj ∈ P : P ∈M do

10: . merging states and add processor name
as label to a new state

11: s← newstate(v ∈ bj , s, pj)
12: S ← S ∪ {s}
13: end for
14: end for
15: end if
16: end for

S1M1, 

S1G1,S1M2

S1’M1, F3M1, 

F12M2, 

F12G1, …

F3’M1, F12’M2, 

F12’G1, F4G1 

…

F4’G1, J1M2, 

…

J1’M2, TM2 

…
T’M2 …

Figure 7: State transitions in UPPAAL

We use the Uppaal model checker to find the optimal
makespan of the stream graph. All the constructed au-
tomata are input into Uppaal and a reachability property
E <> (FinalState and cost < ∞) is asked to be verified.
The result is that the property is satisfied. The trace gen-
erated from Uppaal gives the allocation within the states
and the schedule via transitions. An example partial trace
from state transitions in uppaal is shown in Figure 7. Here,
splitter S1 can be possibly allocated on any of the three pro-
cessing units M1, M2 or G1. However, from the transition
it is clear that S1 should be allocated on M1 only, so as to
enable the transition from S1M1 to S1’M1 to happen. The
second state in Figure 7 highlights that F3 can be executed
in parallel with F12, and that F12 can be allocated on either
M2 or G1. However, the transition to the next state shows
that F12 should be allocated on G1 only. Lets assume that
Uppal found a trace with cost C1 based on the property.

We reiterate through this model-checking process with the
new reachability property E <> (FinalState and cost <
C1), and try to find a trace whose cost is always less than
C1. If no such trace can be found, then C1 is the least
cost trace. Our approach converges to a solution in 8 or less
number of iterations.

4.3.5 Coalescing GPU Accesses
To effectively utilise the high memory bandwidth avail-

able on GPUs, the memory accesses by the running kernel
must be contiguous. Thus coalescing the access to GPU
memory together with the appropriate buffer layout consid-
erably increases the performance of the code executing on
GPUs [20] [12] [18]. Efficient usage of the available mem-
ory bandwidth requires that simultaneous accesses to the
device memory by the threads of a warp be to contiguous
addresses, with the first warp addressing the first memory
bank. Formally, thread N of a warp must access an address
of the form WarpBaseAddress + N, with WarpBaseAddress
= NewAddress modulo Number of Banks. Such accesses by
all the threads can then be coalesced into a single access.

If two actors are scheduled as producer on the CPU and as
consumer on the GPU, we add the corresponding shuffling
cost. If the consumer is on the CPU and producer on the
GPU, we add the deshuffling cost which reverses the coalesc-
ing done for GPUs memory access. The overall cost is added
on the edge of the consumer actor automaton. In brief shuf-
fling operation coalesces the memory access when the data
is to be transferred from CPU to GPU. Deshuffling reverses
the Shuffle operation. Thus, our model incorporates all the
necessary costs for optimal partitioning of actors onto the
processing units.

4.4 Stream Graph with Feedback Loops
Stream graph with feedback loops introduce backward de-

pendencies in the stream graph. Udupa et.al [19] do not
handle feedback loops. The algorithm of Malik et.al [14] will
also be unable to exploit the data parallelism with feedback
loops because their algorithm for actor fusion searches for
forward split-joins whereas feedback loops in StreamIt have
join before a split. Our model handles feedback loops in
the stream graph easily. Figure 8 shows an example stream
graph with a feedback loop.

Figure 8(a) and 8(b) show a StreamIt program for fi-
bonacci series generation using feedback loop, and its cor-
responding stream graph respectively. Though the code is
inefficient, it demonstrates the handling of a feedback loop
in stream graphs with our approach.

We demonstrate the assignment obtained for the stream
graph on two processors M1 and M2. Figure 8(c) shows the
computation automata for the actors in the stream graph.
Figure 8(d) shows how our approach can easily generate task
parallel automata even when the join precedes the split in
the stream graph. In this example, we assume allocation
on two processors. For more than two processors, our Algo-
rithm 1 obtains fused copies for the actors.

The trace as obtained from the model checker is shown in
Figure 8(e), and the corresponding allocation of actors of the
stream graph onto the processors is shown in Figure 8(f).

Here we have shown all the automata for the example
and it is easy to see how the model checker has the option to
choose from the all the possible automata configurations and
obtain a least cost reachable path in the model. Later stages
in code generation are described in the following sections.

4.5 Stage Assignment
The processor assignment obtained in the previous section

does not specify how they overlap in time. To honour data
dependencies the execution of the actors corresponding to
a single iteration of the stream graph is grouped in stages.
This technique helps us avoid communication costs in mod-
elling the partitioning problem We use predicated staging to
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void -> int feedbackloop fibonacci {
     join roundrobin (0, 1);
     body int -> int filter {
         work pop 1 push 1 peek 2 {
              push (peek (0) + peek (1));
              pop();
         } 
     };
     loop Identity<int>;
     split duplicate;
     enqueue (0);
     enqueue (1);
}

(a) StreamIt code for fibonacci series
with feedback loops

rr(0,1) dupfib

ID

join split

(b) Stream graph for feedback
loop fibonacci code
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(c) Computation automata for feedback loop ex-
ample
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(d) Task parallel automata
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(e) Trace obtained from model
checker
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(f) Corresponding processor as-
signment

Figure 8: Feedback loop example
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Figure 9: Processor and Stage Assignment of Actors

assign filters to streams so as to setup a pipeline[15] simi-
lar to modulo scheduling. We do not need to traverse the
graph in any topological ordering as needed by the previous
approaches[19][12], since we already have a trace of possible
state transition from the model checker.

Based on the trace and its processor assignments, the fol-
lowing rule (from [19]) is used to assign stage numbers to ac-
tors and to add code for the appropriate shuffle and reshuffle
operations of data when actors are placed across processors.
For the actors ai and aj where ai is the producer and aj
the consumer, the stage number is assigned by one of the
following rules:

1. if ai is assigned to the CPU and aj is assigned to the
GPU or vice versa, then stage(aj) >= stage(ai)+2.

2. If both ai and aj are assigned to the CPU or to the
GPU, then stage(aj) >= stage(ai) + 1.

3. if the edge connecting ai and aj requires a shuffle or
deshuffle operation, the the stage of aj as obtained
from the above rules is further incremented by one.

Rule 1 enables insertion of a DMA operation in the inter-
mediate stage and makes sure that actors across processors
have stage number separated by at least two. Rule 2 ensures
that the producer-consumer dependency between the actors
is reflected by their stage numbering. And, Rule 3 enables
inserting an extra intermediate operation along with DMA
transfer if required to shuffle or deshuffle data. Figures 9(a)
and 9(b) show an example of stage assignment and DMA
code insertion for a single iteration of the example stream
graph.

It should be noted that our stage assignment algorithm
does not fail even if there is a loop in the stream graph, as we
do not rely on any topological sorting on the stream graph to
determine the producer-consumer dependence among actors.

4.6 Code Generation
Based on processor allocation, our modified StreamIt com-

piler generates C as well as CUDA code for the parallel ver-
sion of the stream program. We schedule streams on the
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void work() {

int stage[N] = {0};

stage[0] = 1;

for (i=0; i<max_iter+N-1; i++) {

if (stage[N-1]) {

for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(inputDevPtr + i * size,

hostPtr + i * size,

size, cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < number_of_streams; ++i)

actor1<<<num_blocks / number_of_streams,

num_threads, 0,

stream[i]>>>(outputDevPtr + i * size,

inputDevPtr + i * size, size);

}if (stage[N-2]) {

}

...

if (stage[0]) {

}

//wait_for_dma_completion

for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(hostPtr + i * size,

outputDevPtr + i * size,

size, cudaMemcpyDeviceToHost, stream[i]);

// start epilogue

if (i == max_iter-1) stage[0] = 0;

// Shift-left staging predicate

for(j=N-1; j>=1; j-- )

stage[j]=stage[j-1];

cudaThreadSynchronize();

Figure 10: Modulo scheduled CUDA stream calls
from the Host CPU Code

GPU (CUDA streams) which is called from the main C pro-
gram on the host (CPU). A sample modulo schedule with
CUDA stream calls in the code for a single actor in a stream
is shown in Figure 4.6. The number of streams is obtained
as explained in Section 4.2.1. Here the assumption is that
the actor code has been scheduled on all the streams on the
GPU, and that the data structures and variables in the code
have been appropriately managed so that a stable stream
could be scheduled onto the GPU, executing concurrently
with the CPU code. The array stage functions similar to
the staging predicate[15] of the modulo scheduling, and its
size (N) is the maximum number of stages. The main loop
starts with only the first stage active. The if conditions that
test different elements of stage ensure only actors assigned
to a particular stage are executed. The last part of the loop
shifts the elements of the array stage to the left, which has
the effect of filling up the software pipeline. When all the
iterations are done, the pipeline is drained by shifting a 0 in
the last element of the stage array.

The code in the active stages are the kernel calls for the
corresponding work function of the actor in the stream graph.
The DMA operations are shown by the cudaMemcpyAsync
function in the code, and these calls as the names suggest,
are non-blocking. Thus all the DMA operations are put in
queue before any computation is started, which provides for
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Figure 11: Modulo scheduling running on 3 proces-
sors

a maximal overlap of DMA with the work functions of the
actor. Barrier synchronization is executed to ensure that the
current iteration is finished on all the streams on the GPU,
before the next iteration begins.

Conceptually Figure 11 shows the timeline of execution
of code on three processors, and any of them can be either
CPU or GPU. The steady state execution (as shown) starts
from the fifth iteration in Figure 11, where all the computa-
tion and the DMA transfers are simultaneously active. All
the previous four phases form the prologue of the modulo
scheduled software pipeline. All the corresponding DMA
transfers are activated before any actor starts execution on
the processors. This overlap of computation and communi-
cations allows us to avoid communication costs in our model
built in Section 4.

5. EXPERIMENTAL EVALUATION
We have implemented our approach as an extension to the

StreamIt compiler version 2.1.1[17]. Our compiler generates
both C with pthreads and CUDA code for multicores and
GPUs respectively. The code on GPUs are compiled with
NVIDIA nvcc compiler with the CUDA 5.5 toolchain. The
results reported in this section were performed on a machine
with 2.4 Ghz 12 core Xeon E5646 CPU with 16 GB Ram and
a NVIDIA TESLA 2075 GPU, where each GPU has 448
CUDA cores (14 Multiprocessors × 32 CUDA Cores/MP).

The StreamIt benchmarks used for our experiments is de-
scribed in Table 1. Most of these benchmarks are from signal
processing domain. Most of the StreamIt benchmarks do not
scale well beyond 8 cores. [16] provides a comprehensive de-
tails of the benchmarks and their characteristics. We imple-
mented the heuristics-based syngergistic software pipelining
of Udupa et.al [19] and the approach of Malik et.al.[14] with
all the communication costs incorporated into the model,
on our target (heterogeneous architecture) for comparison
with our method described in Section 4. The algorithm of
[19] did not work for a system with only CPU or GPU in
it. We modified the algorithm to obtain a partitioning for
just multi-cores to compare with our results. Malik et.al.
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Table 1: Characteristics of the Benchmarks
Benchmarks Actors Description

Total Stateful Peeking
Bit 82 0 0 Batcher’s

Bitonic Sort
BitR 452 2 0 Bitonic Sort

recursive imple-
mentation

CV 54 2 34 Vocoder Imple-
mentation

DCT 22 18 16 Discrete Cosine
Transform

DES 375 180 1 DES Cryptogra-
phy algorithm

FFT-C 26 14 0 Fast Fourier
Transform
Coarse grained

FFT-F 99 0 0 Fast Fourier
Transform Fine
grained

FB 53 34 16 Filter Bank for
multirate signal
processing

FM-R 67 23 22 Software FM
Radio with
Equalizer

MM 52 2 0 Block Matrix
Multiplication

MPEG 39 7 0 Subset of
MPEG2 De-
coder (backend)

TDE 55 27 2 Time Delay
Equalization
phase from
Ground moving
Target indicator

[14] does not produce any code for any architecture as they
are only interested in obtaining an optimal makespan. We
extended the work of [14] as well, with a code generator to
compare against our results.

Stateful filters are always placed on the CPU cores, as
they introduce dependency between iterations. CPUs are
well suited to handle such dependent iterations.

We abbreviate our method as MC-SWP to denote model
checking based software pipelining of stream programs. Other
implementations are represented by their authors’ names in
the results. All our comparisons of speedup are against a
single-threaded CPU code generated by the cluster backend
of the StreamIt compiler compiled with gcc.

5.1 Comparing makespan
Table 2 shows the makespan values for benchmarks used

in our experiments. The architectural configuration to ob-
tain makespan was was assuming 4 CPU cores and 8 GPU
Streams. We do not take individual GPUs into considera-
tion as explained in Section 4.2.1, and rather take streams
as the computational resource in building our CTL-based
model. The heuristic partitioning approach of Udupa et.al
[19] is not a model-checking based approach, and it gives

Table 2: Makespan
Benchmarks Makespan (ns)

MC-SWP Malik et.al. Udupa et.al.
Biti 72570 77202 84292
BitR 105262 116958 147102
CV 8587960 8853568 10373877
DCT 1524609 1621925 1787428
DES 371921 413246 464369
FFT-C 317839 327669 413723
FFT-F 394579 419765 454031
FB 636420 707133 801904
FM-R 199727 205905 222543
MM 1197292 1273715 1455675
MPEG 1675072 1861191 2033879
TDE 14065412 14500425 16111583
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Figure 13: Speedup on CPU + GPU architecture
normalised to single StreamIt CPU.

us an II(Initiation Interval) for software pipelining. We use
the makespan as our II in our modulo scheduled software
pipelined code generator.

The makespan obtained by Malik’s approach is optimal,
as it takes both the computation and communication costs
into account, whereas our approach does not include com-
munication costs into the model. Our approach has a lower
makespan than that of the optimal makespan, whereas, Udupa’s
heuristics give a larger makespan, indicating degradation in
the execution time even for one iteration. A makespan lower
than the optimal one does not imply incorrect code, because
a barrier is executed at the end of every iteration of the soft-
ware pipeline.

5.2 Comparison of MC-SWP with Optimal and
Heuristics-based Partitioning

Figure 12 shows the speedup obtained with the bench-
marks using Udupa’s heuristics, Malik’s approach, and our
scheme. Our scheme results in a maximum speedup of 8.25X
and a geometric mean speedup of 4.67X over all the bench-
marks for 8 cores, wheres Udupa’s scheme achieves a max-
imum speedup of 7.77X and a geometric mean speedup of
2.93X over all the benchmarks for 8 cores.

Malik’s scheme with our code generation phase has upto
8.17X speedup and a geometric mean speedup of 4.68X over
all benchmarks for 8 cores. This shows that an efficient
code generation strategy can offset some of the constraints
ignored while building a model for obtaining an optimal
makespan, and thus a simpler model can provide the same
speedup at runtime.
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Figure 12: Speedup on 2, 4, and 8 cores CPU normalised to single StreamIt CPU.

Figure 13 shows the speedup comparison on systems with
both CPU and GPU together. Since Malik’s approach pro-
duces a result similar to ours, we do not show the results
with Malik’s approach. Here again our scheme is better than
Udupa’s, resulting in a maximum speedup of 55.86X and a
geometric mean speedup of 9.62X over all the benchmarks
for 4 CPU cores and 8 GPU streams (see the sections 5.3 and
5.4). Udupa’s scheme provides upto 49.32X speedup and a
geometric mean speedup of 6.76X over all the benchmarks
for 8 cores.

5.3 Comparison of MC-SWP with Stream Graph
on GPUs without Streams

Figure 14 shows the speedup for five benchmarks when
the stream on GPUs are not used to schedule the code. Not
using streams places several restrictions on code-generation.
Without streams, only one kernel can be in flight on the
GPU, thus underutilzing the GPU resources as there are not
enough computations in one actor to use the GPU resources
to its optimum level.

To make a fair comparison we enabled coalescing and
de-coalescing for data transfer to and from GPUs respec-
tively. The remaining schedulable actors were run on the
CPU following SAS(Single Appearance Schedule)[11]. To
have enough work for each actor while running on GPUs we
made the whole stream graph run for 10,000 iterations, and
thus each kernel was operating on 10, 000×ηk data elements
for actor k in the stream graph.

This comparison clearly makes the case for using streams
on GPUs in order to enable concurrent kernel execution
on GPUs and to enable effective coarse grained software
pipelining of stream graphs on heterogeneous architectures.

5.4 Discussion
Some of the benchmarks such as Bit and BitR perform

poorly with a speedup of 2.10 and 4.10 (resp.) on the CPU-
GPU combined execution architecture because these appli-
cations are extremely bandwidth-sensitive. We see no gain
with Malik’s optimal strategy as well.

Our model does not have constraints regarding genera-
tion of code for any specific architecture, as the model is
portable and usable across architectures. Incorporating the
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Figure 14: Speedup comparison without
streams(serial) and MC-SWP.

appropriate costs into the model could take care of most of
the architectures.

Streams on GPUs are as important as other computation
factors to achieve the best performance. The code genera-
tion technique of Udupa[19] does not use streams and hence
only one kernel executes on the GPU at a time. We have
used our code generator with their heuristics in the compar-
isons in section 5.2. Otherwise, their speedup would have
been much lower. Our work is the first one to use streams
optimally on GPUs to exploit all the parallelism exposed by
the stream graphs.

It is to be noted that Malik et. al has no code gener-
ation stage and their comparison is only on the quality of
the makespan. But, we show that using optimal makespans
without good code generation strategies may not always re-
sult in optimal performance.

6. CONCLUSIONS
Stream programming models naturally expose the paral-

lelism in applications to the programmers, and a system to
map these onto heterogeneous architectures have still not
been fully explored. In this paper we present a model-
checking based framework for statically scheduling stream
programs on heterogenous architecture having both CPU
and GPUs. We produce a schedule which provides an ef-
ficient mapping onto these architectures and fully utilises
the available resources. We use CUDA streams on NVIDIA
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GPUs, where the optimal number of streams is decided using
a profile-based approach.

To best of our knowledge our approach is the first one
which utilises model-checking in a compiler that schedules
and generates code for heterogeneous architectures. Our
approach provides a speedup of upto 55.86X and a geomet-
ric mean speedup of 9.62X over a single threaded CPU on
StreamIt benchmarks.

7. REFERENCES
[1] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah.

Lime: a java-compatible and synthesizable language
for heterogeneous architectures. In OOPSLA ’10, New
York, NY, USA, 2010.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on uppaal. In M. Bernardo and F. Corradini, editors,
Formal Methods for the Design of Real-Time Systems:
4th International School on Formal Methods for the
Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

[3] S. Brookes. Deconstructing ccs and csp asynchronous
communication, fairness, and full abstraction, April
2000.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hardware.
In SIGGRAPH, 2004.

[5] P. M. Carpenter, A. Ramirez, and E. Ayguade.
Mapping stream programs onto heterogeneous
multiprocessor systems. In CASES ’09: Proceedings of
the 2009 international conference on Compilers,
architecture, and synthesis for embedded systems,
pages 57–66, New York, NY, USA, 2009. ACM.

[6] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, MA, USA,
1999.

[7] CUDA. Cuda toolkit documentation,
http://docs.nvidia.com/cuda/index.html.

[8] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz.
Orchestration by approximation: Mapping stream
programs onto multicore architectures. In Proceedings
of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 357–368,
New York, NY, USA, 2011. ACM.
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