
PolyMage: Automatic Optimization
for Image Processing Pipelines

IISc-CSA-TR-2015-3

Ravi Teja Mullapudi
Department of Computer Science

and Automation,
Indian Institute of Science
Bangalore 560012, INDIA

ravi.mullapudi@csa.iisc.ernet.in

Vinay Vasista
Department of Computer Science

and Automation,
Indian Institute of Science
Bangalore 560012, INDIA

vinay.vasista@csa.iisc.ernet.in

Uday Bondhugula
Department of Computer Science

and Automation,
Indian Institute of Science
Bangalore 560012, INDIA
uday@csa.iisc.ernet.in

Abstract
This paper presents the design and implementation of Poly-
Mage, a domain-specific language and compiler for image
processing pipelines. An image processing pipeline can be
viewed as a graph of interconnected stages which process
images successively. Each stage typically performs one of
point-wise, stencil, reduction or data-dependent operations
on image pixels. Individual stages in a pipeline typically ex-
hibit abundant data parallelism that can be exploited with
relative ease. However, the stages also require high mem-
ory bandwidth preventing effective utilization of parallelism
available on modern architectures. For applications that de-
mand high performance, the traditional options are to use
optimized libraries like OpenCV or to optimize manually.
While using libraries precludes optimization across library
routines, manual optimization accounting for both paral-
lelism and locality is very tedious.

The focus of our system, PolyMage, is on automatically
generating high-performance implementations of image pro-
cessing pipelines expressed in a high-level declarative lan-
guage. Our optimization approach primarily relies on the
transformation and code generation capabilities of the poly-
hedral compiler framework. To the best of our knowledge,
this is the first model-driven compiler for image processing
pipelines that performs complex fusion, tiling, and storage
optimization automatically. Experimental results on a mod-
ern multicore system show that the performance achieved
by our automatic approach is up to 1.81× better than that
achieved through manual tuning in Halide, a state-of-the-art
language and compiler for image processing pipelines. For
a camera raw image processing pipeline, our performance is
comparable to that of a hand-tuned implementation.

Keywords Domain-specific language; image processing;
polyhedral optimization; locality; parallelism; tiling; multi-
cores; vectorization

1. Introduction
Image processing is pervasive, spanning several areas in-
cluding computational photography, computer vision, med-
ical imaging, and astronomy. Applications in these areas
range from enhancing the capabilities of digital cameras
and emerging devices like Google Glass [18], autonomous
driving cars, to Magnetic Resonance Imaging (MRI) and
analyzing astronomical data. Processing and analyzing the
data generated from imaging systems often demands high
performance. This need is due to: (a) the sheer volume of
data compounded by high resolution and frame rates, (b) in-
creasing complexity of algorithms used to process the data,
and (c) potential real-time requirements of interactive and
mission-critical applications. The emergence and evolution
of multicore architectures, GPUs, FPGAs, single instruction
multiple data (SIMD) instruction sets through MMX, SSE,
and AVX, are examples of advances on the hardware front
that have benefited the image processing domain. Coping up
with the increased demand in performance requires software
to effectively utilize multiple cores, SIMD parallelism and
caches.

A wide range of algorithms for processing image data can
be viewed as pipelines consisting of several interconnected
processing stages. Each pipeline can be represented as a di-
rected acyclic graph, with the stages as nodes and producer-
consumer relationships between the stages as edges. Pipeline
structure can vary from a few stages, with only point-wise
operations, to tens of stages having a combination of point-
wise, stencil, sampling and data dependent access patterns.
Individual stages in a pipeline typically exhibit abundant
data parallelism that can be exploited with relative ease.
However, the stages also require high memory bandwidth
necessitating locality optimization for achieving high per-
formance. Manually exploiting parallelism and locality on
modern architectures for complex pipelines is a daunting
task. Libraries such as OpenCV [32], CImg [12] and MAT-

LAB image processing toolboxes only provide tuned imple-
mentations for a limited set of algorithms on specific archi-
tectures. Even when optimized implementations of the indi-
vidual routines required for a task are available, the inabil-
ity to optimize across them prevents achieving high perfor-
mance.

A promising way to address the tension between ease of
programming and high performance is to provide a high-
level domain-specific language (DSL) to express algorithms,
and use an optimizing compiler to map them to a target ar-
chitecture. Such an approach has been used successfully in
the context of several DSLs [15, 28, 39]. For image process-
ing, languages like CoreImage [35] and functional image
synthesis [16] have focused on creating easy-to-use abstrac-
tions with minimal compiler optimization. Halide [36, 37]
a recent domain-specific language and compiler for image
processing pipelines focuses on both productivity and per-
formance. However, the Halide compiler requires a schedule
specification to generate an implementation. Determining an
effective schedule requires manual effort and expertise, or
relying on extensive and prolonged autotuning over a vast
space of schedules.

In this paper, we describe our framework, PolyMage,
comprising a DSL, an optimizer, and an autotuner, for gener-
ating high performance implementations of image process-
ing pipelines. We first briefly describe the input language
in Section 2; it also serves the purpose of describing the
class of image processing computations we currently handle.
We then describe our automatic optimization framework, our
main contribution, in Section 3. The key optimization tech-
niques that we present are:

• a method for overlapped tiling tailored for heterogeneous
image processing stages,
• a heuristic, modeling the trade-off between locality and

redundant computation, for partitioning a pipeline into
groups of stages that are later fused together with over-
lapping tiles,
• storage optimization and code generation for general-

purpose multicores accounting for SIMD parallelism,
• and an autotuning mechanism for exploring a small pa-

rameter space resulting from our model-driven approach.

Section 4 details our experimental evaluation on a 16-core
Intel Xeon (Sandybridge) server. We use a set of seven ap-
plications of varying structure and complexity to demon-
strate the effectiveness of our approach when compared to
highly-tuned schedules manually specified using Halide and
implementations using the OpenCV library. In cases where
feasible, we show that the schedule determined by our sys-
tem when specified using Halide provides improved perfor-
mance. In Section 5 we discuss related work, and conclu-
sions are presented in Section 6.

2. Language Specification
In this section, we give a brief overview of our DSL and also
provide a description of the computation patterns that can be
expressed with it.

The design of our language is inspired by Halide [36],
and allows a user to intuitively express common computation
patterns that emerge in image processing. These patterns in-
clude point-wise operations, stencils, upsampling and down-
sampling, histograms, and time-iterated methods. Table 1
shows the data access patterns corresponding to some of
these operations. The language abstracts an image as a func-
tion on a multi-dimensional integer grid, i.e., it maps a multi-
dimensional integer coordinate to an intensity value. Using
this abstraction, new images can be constructed as expres-
sions involving other images, thus enabling implicit expres-
sion of producer-consumer relationships that are a charac-
teristic of image processing pipelines. Rather than building
a standalone language, we chose to embed our language in
Python.

Operation Example
Point-wise f(x, y) = g(x, y)

Stencil f(x, y) =
+1∑

σx=−1

+1∑
σy=−1

g(x+ σx, y + σy)

Upsample f(x, y) =
+1∑

σx=−1

+1∑
σy=−1

g((x+ σx)/2, (y + σy)/2)

Downsample f(x, y) =
+1∑

σx=−1

+1∑
σy=−1

g(2x+ σx, 2y + σy)

Histogram f(g(x)) + = 1

Time-iterated f(t, x, y) = g(f(t− 1, x, y))

Table 1. Typical computation patterns in image processing

The specification of Harris corner detection [25] algo-
rithm in our PolyMage DSL is shown in Figure 1. Parame-
ters like width, height, and other constants, which are inputs
to the pipeline, can be declared using the Parameter con-
struct as shown in Line 1. The input data to the pipeline is
declared using the Image construct, as in Line 2, by spec-
ifying both its data type and its extent along each dimen-
sion. Extents are restricted to expressions involving param-
eters and constants. Function is a central construct in the
language, and is used to declare a function mapping a multi-
dimensional integer domain to a scalar value. The domain
of a function is a list of variables followed by their ranges.
Variable is used to declare integer variables which serve
as labels for function dimensions. The range of a variable is
declared using the Interval construct. An interval is de-
fined by a lower bound, an upper bound, and a step value.
Lower and upper bounds are restricted to affine expressions
involving constants and parameters. Lines 4 and 5 show how
variables and intervals are created.

For a function, the expressions which define it over the
domain need to be specified. A function can be defined in a
piece-wise manner using a list of cases. Each Case construct
takes a condition and an expression as arguments. Piece-wise

1 R, C = Parameter(Int), Parameter(Int)
2 I = Image(Float , [R+2, C+2])
3
4 x, y = Variable (), Variable ()
5 row , col = Interval (0,R+1,1), Interval (0,C+1,1)
6
7 c = Condition(x,’>=’ ,1) & Condition(x,’<=’,R) &
8 Condition(y,’>=’ ,1) & Condition(y,’<=’,C)
9

10 cb = Condition(x,’>=’ ,2) & Condition(x,’<=’,R-1) &
11 Condition(y,’>=’ ,2) & Condition(y,’<=’,C-1)
12
13 Iy = Function(varDom = ([x,y],[row ,col]),Float)
14 Iy.defn = [Case(c, Stencil(I(x,y), 1.0/12 ,
15 [[-1, -2, -1],
16 [0, 0, 0],
17 [1, 2, 1]])]
18
19 Ix = Function(varDom = ([x,y],[row ,col]),Float)
20 Ix.defn = [Case(c, Stencil(I(x,y), 1.0/12 ,
21 [[-1, 0, 1],
22 [-2, 0, 2],
23 [-1, 0, 1]])]
24
25 Ixx = Function(varDom = ([x,y],[row ,col]),Float)
26 Ixx.defn = [Case(c, Ix(x,y) * Ix(x,y))]
27
28 Iyy = Function(varDom = ([x,y],[row ,col]),Float)
29 Iyy.defn = [Case(c, Iy(x,y) * Iy(x,y))]
30
31 Ixy = Function(varDom = ([x,y],[row ,col]),Float)
32 Ixy.defn = [Case(c, Ix(x,y) * Iy(x,y))]
33
34 Sxx = Function(varDom = ([x,y],[row ,col]),Float)
35 Syy = Function(varDom = ([x,y],[row ,col]),Float)
36 Sxy = Function(varDom = ([x,y],[row ,col]),Float)
37 for pair in [(Sxx , Ixx), (Syy , Iyy), (Sxy , Ixy)]:
38 pair [0]. defn = [Case(cb , Stencil(pair[1], 1,
39 [[1, 1, 1],
40 [1, 1, 1],
41 [1, 1, 1]])]
42
43 det = Function(varDom = ([x,y],[row ,col]),Float)
44 d = Sxx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
45 det.defn = [Case(cb , d)]
46
47 trace = Function(varDom = ([x,y],[row ,col]),Float)
48 trace.defn = [Case(cb , Sxx(x,y) + Syy(x,y))]
49
50 harris = Function(varDom = ([x,y],[row ,col]),Float)
51 coarsity = det(x,y) - .04 * trace(x,y) * trace(x,y)
52 harris.defn = [Case(cb , coarsity)]

Figure 1. PolyMage specification for Harris corner detec-
tion

definitions allow for expressing custom boundary condi-
tions, interleaving, and other complex patterns. Condition
can be used to specify constraints involving variables, func-
tion values, and parameters as shown in lines 7 and 10. Two
conditions can be combined to form a disjunction or a con-
junction using the operators | and & respectively. All the
cases defining a function are expected to be mutually ex-
clusive; otherwise, the function definition is considered am-
biguous. The Case construct is optional for functions that
are defined by a single expression over the entire domain.
Expressions defining a function can involve its domain vari-
ables, parameters, and other function values. The Stencil

construct is a compact way to specify a spatial filtering oper-
ation; it can also be expressed using simple arithmetic opera-
tions. Lines 37 and 38 show how the host language Python is
used for meta-programming, enabling compact specification

Iin

Ix Iy

Ixx Ixy Iyy

Sxx SyySxy

det trace

harris

Figure 2. Harris corner detection pipeline as a graph of
stages

of complex pipelines. Function definitions allow referencing
image values under the function being defined – this allows
expression of important patterns like time-iterated computa-
tions and summed area tables [14].

The language allows expressing histograms and other
reduction operations using a specialization of the function
construct called Reduction. The reduction construct has
two domains:

• a variable domain which much like the function’s vari-
able domain defines the extent of the reduction and
• a reduction domain on which the reduction is performed.

Each value of the reduction function can optionally be ini-
tialized to a constant with zero being the default. Figure 3
shows an reduction used to compute a histogram by counting
the number of pixels of each intensity value, ranging from 0-
255, in the image I.

1 R, C = Parameter(Int), Parameter(Int)
2 I = Image(UChar , [R, C])
3 x, y = Variable (), Variable ()
4
5 row , col = Interval (0, R, 1), Interval (0, C, 1)
6 bins = Interval (0, 255, 1)
7 hist = Reduction(redDom = ([x,y], [row ,col]),
8 varDom = ([x], [bins]), Int ,
9 Initial = 0)

10 hist.defn = Reduce(hist(I(x,y)), 1, Sum)

Figure 3. Grayscale histogram

Overall, our language allows intuitive and compact ex-
pression of image processing pipelines at the algorithm
level. The number of lines of code required to specify such
pipelines in our DSL is significantly less than that in an
equivalent naive C/C++ implementation.

3. Pipeline Compiler
This section describes how our compiler translates pipelines
specified in the PolyMage DSL into high-performance im-
plementations. The sequence of compiler phases is shown in
Figure 4. We first describe the front-end, which constructs
a polyhedral representation of pipelines, performs static
bounds checking and inlining. We then discuss the ratio-
nale behind our choice of tiling technique, which forms the
core of our optimization, and describe a new approach for
constructing overlapped tiles for a group of heterogeneous
pipeline stages. Next, we detail the model-driven heuristic
to decompose the pipeline into groups. Finally, we discuss
the code generation and autotuning approach.

The PolyMage compiler takes the pipeline specification
and the names of live-out functions as input. Pipelines are
represented as a directed acyclic graph (DAG), where each
stage (a function or an accumulator) in the user specification
is mapped to a node, and the producer-consumer relations
among the stages are captured by the edges between nodes.
In the rest of the discussion, we use the terms function and
stage interchangeably to refer to a stage in the pipeline.
The pipeline graph is automatically extracted from the input
specification; Figure 2 shows the pipeline graph for Harris
corner detection discussed earlier. Cycles in the pipeline
graph result in an invalid specification. After extracting the
pipeline graph, the compiler statically checks if the values
of a function used in defining other functions are within its
domain. Function accesses which are affine combinations
of variables and parameters are the only accesses analyzed.
References to values outside the domain of a function are
considered invalid and reported to the user.

Inlining substitutes producer function definitions into
consumer functions. In the Harris corner detection example,
the function Ix can be substituted into both the consumers
Ixx and Ixy, resulting in Ix being evaluated twice. Inlining
functions trades-off redundant computation for improved lo-
cality. For point-wise functions, Ixx, Ixy, Iyy, det, and
trace in Figure 1, inlining is an obvious choice since it in-
troduces minimal or no redundant computation. However,
for stencil or sampling operations as consumer functions,
the redundant computation introduced by inlining can be
quite significant. Therefore, we restrict our inlining to cases
where the consumer functions are point-wise functions, and
rely on our schedule transformations to enhance locality for
the other operations.

3.1 Polyhedral Representation of Pipelines
The polyhedral model is a mathematical framework well-
suited to represent and transform loop nests. Image process-
ing computations have regular dependence patterns which
are amenable to polyhedral analysis. The strengths of the
polyhedral model are in enabling complex transformations,
precise dependence analysis, and code generation to real-
ize the complex transformations. The PolyMage language

allows a user to express pipelines naturally while capturing
the essential details required to extract a polyhedral repre-
sentation. A function domain in the language directly maps
to a parametric integer set. The domain of harris function
in Figure 1 is represented by the following integer set:

harrisdom = { (x, y) | x ≥ 2 ∧ x ≤ R− 1 ∧
y ≥ 2 ∧ y ≤ C − 1 }.

A geometric view of pipeline functions is shown in Figure 5.
The functions f1, f2, and fout are represented on the vertical
axis, and the individual points in each function’s domain are
shown along the horizontal axis. We omit the bounds on the
domain of a function when they are evident from the context,
or not relevant to the discussion.

Schedules in the polyhedral framework can be repre-
sented as parametric relations from one integer set to an-
other. The domain of the relation corresponds to a function
domain, and the range to a multi-dimensional time stamp,
whose lexicographic ordering gives a schedule for evaluat-
ing the function. The following shows a scheduling relation
and the corresponding evaluation order for the harris func-
tion in the corner detection example:

harrissched = {(x, y)→ (y, x) | x ≥ 2 ∧ x ≤ R− 1 ∧
y ≥ 2 ∧ y ≤ C − 1 }

for y in [2 ... C-1]:

for x in [2 ... R-1]:

harris(x, y)

A schedule can alternatively be described using hyperplanes,
which provide better geometric intuition when dealing with
tiling transformations. A hyperplane is an n − 1 dimen-
sional affine subspace of an n-dimensional space. It maps
an n-dimensional vector, which corresponds to a point in a
pipeline function’s domain, to a scalar value. When viewed
as a scheduling hyperplane, the scalar value is the time
stamp at which the function value will be evaluated. A k-
dimensional schedule is defined by k scalars, each given
by the hyperplane corresponding to the dimension. Equa-
tion 1 describes a scheduling hyperplane for a function f .
If ~if = (x, y) is a point in the function’s domain, ~h is the
normal to the hyperplane, and h0 is the translation or the
constant shift component, then

φ(~if) = ~h· ~if + h0. (1)

The scheduling hyperplanes corresponding to the relation
harrissched, representing a 2-dimensional schedule, are ~h1
= [0 1] and ~h2 = [1 0] with no translation (h0 = 0).

After extracting the domain for a function, the compiler
builds an initial schedule by using both the pipeline graph
and the domain order in the function definition. The leading
dimension of the initial schedule for a function is given by
its level in a topological sort of the pipeline graph, and the
remaining ones are given by its domain variables. The initial
schedules for the functions Ix, Ixx, and Sxx in Figure 1 are
as follows:

DSL Spec
Build stage graph
Static bounds check
Inlining

Polyhedral representation
Initial schedule

Alignment
Scaling
Grouping

Schedule transformation
Storage optimization Code generation

Figure 4. Phases of the PolyMage compiler

Ixsched = {(x, y)→ (0, x, y) | x ≥ 1 ∧ x ≤ R ∧
y ≥ 1 ∧ y ≤ C }

Ixxsched = {(x, y)→ (1, x, y) | x ≥ 1 ∧ x ≤ R ∧
y ≥ 1 ∧ y ≤ C }

Sxxsched = {(x, y)→ (2, x, y) | x ≥ 2 ∧ x ≤ R− 1 ∧
y ≥ 2 ∧ y ≤ C − 1 }.

The compiler uses the initial schedule, which is implicit
from the pipeline specification, and derives dependence in-
formation from it.

Dependences between consumer and producer functions,
which are determined by analyzing the function defini-
tions, are captured using dependence vectors. Initial func-
tion schedules give the time stamps at which function values
are produced and consumed. The dependence vectors are
computed by subtracting the time stamp at which a value
is produced from the time stamp at which it is consumed.
For example, the function Sxx at (2, x, y) consumes the val-
ues of Ixx produced at (1, x − 1, y − 1), (1, x + 1, y − 1),
(1, x − 1, y + 1) and (1, x + 1, y + 1): this is captured by
the dependence vectors (1, 1, 1), (1,−1, 1), (1, 1,−1) and
(1,−1,−1). Figures 5 and 6 show functions, schedules, and
corresponding dependence vectors.

3.2 Transformation Criteria
While optimizing schedules for functions in a pipeline, one
needs to account for the key factors of parallelism and lo-
cality. These factors have been studied well in the context
of time-iterated stencils, which are closely related to stencil
functions in image processing pipelines. Several tiling tech-
niques have been developed for time-iterated stencils to al-
low for a high degree of concurrent execution while preserv-
ing locality. Among these techniques, parallelogram [8, 44],
split [26], overlapped [27, 29], diamond [5], and hexago-
nal [21] tiling use the polyhedral model. Figure 5 shows
overlapped, split, and parallelogram tiling for a group of
pipeline functions. Each of the tiling strategies provide dif-
ferent trade-offs with respect to parallelism, locality, redun-
dant computation and ease of storage optimization.

Parallelogram tiling improves locality but only allows for
wavefront parallelism, which effectively reduces to sequen-
tial execution of the tiles due to the small number of func-
tions relative to the spatial tile size. This can be seen in Fig-
ure 5 where the second parallelogram tile is dependent on
the first. Split tiling evaluates functions in two phases. The
tiles with a larger base (upward pointing) are scheduled in
the first phase, and the remaining ones (downward pointing)
are scheduled next. All tiles in a single phase can be pro-
cessed in parallel. Tiles in the second phase consume values
produced at the boundaries of tiles in the first phase (encir-

cled in the figure); hence, these values have to be kept live for
consumption in the second phase. Overlapped tiling recom-
putes function values which are in the intersecting region of
two neighboring tiles. Since the required values are recom-
puted within each tile, all the tiles can be executed in parallel
without any communication across tile boundaries. This key
difference allows for aggressive storage optimization mak-
ing overlapped tiling a more suitable choice for image pro-
cessing pipelines.

Tiling shown in Figure 5 is across several functions rather
than multiple time iterations of the same function. Functions
that describe complex pipelines are heterogeneous in nature
as they potentially involve stencil, sampling and data depen-
dent references to function values. Current techniques for
overlapped tiling [27, 29] are designed only for time-iterated
stencil dependence patterns and cannot be directly applied
in our context. We now discuss the schedule transformations
required to enable overlapped tiling for a group of heteroge-
neous functions.

3.3 Alignment and Scaling of Functions
Constructing overlapped tiles for a group of functions is only
possible when the dependences can be captured by constant
vectors, as shown in Figures 5 and 6. In general, a group of
heterogeneous functions can have different dimensions and
complex access patterns, requiring alignment and scaling
transformations to make the dependence vectors constant.
Consider the following example which shows a color to gray
scale conversion.

gray(x,y) = 0.299×I(2,x,y) + 0.587×I(1,x,y) +

0.114×I(0,x,y)

I represents a color image where the first dimension cor-
responds to the color channel c, and the others to the spa-
tial coordinates x and y. The initial schedules for gray and
I are (x, y)→(1, x, y, 0) and (c, x, y)→(0, c, x, y) respec-
tively. According to the initial schedule, the value I(0,x,y)
required to compute gray(x,y) at (1, x, y, 0) is produced
at (0, 0, x, y), resulting in the non-constant dependence vec-
tor (1, x, y − x,−y). However, if the schedule for gray is
transformed to (x, y)→(1, 0, x, y), the dependence vector
becomes (1, 0, 0, 0).

For the functions in Figure 6, value dependences are not
near-neighbor like in stencils; evaluating fout(x) and g(x)
requires the values f↑(x/2) and f(2x− 1) respectively. Un-
der the initial schedule of these functions, both dependences
cannot be captured by constant dependence vectors. Depen-
dences of this form are characteristic of up-sampling and
down-sampling operations. These dependences can be made

x

f1

f2

fout

Overlapped Split Parallelogram

Function Schedule Dependence Vectors

fout(x) = f2(x− 1)· f2(x+ 1) (x)→ (2, x) (1, 1), (1,−1)

f2(x) = f1(x− 1) + f1(x+ 1) (x)→ (1, x) (1, 1), (1,−1)

f1(x) = fin(x) (x)→ (0, x)

Overlapped Split Parallelogram

Parallelism X X ×

Locality X X X

Redundancy X × ×

Figure 5. Functions fused using overlapped, split and parallelogram tiling (left to right). Live-outs at tile boundaries are
circled. Function definitions are on the bottom left. Characteristics of the tiling techniques are on the bottom right.

x

φl
φr

f

g

h

f↑

fout

h

oτ

Function Schedule
fout(x) = f↑(x/2) (x)→ (4, x)

f↑(x) = h(x/2)·h(x/2 + 1) (x)→ (3, 2x)

h(x) = g(2x− 1)· g(2x+ 1) (x)→ (2, 4x)

g(x) = f(2x− 1)· f(2x+ 1) (x)→ (1, 2x)

f(x) = fin(x) (x)→ (0, x)

Figure 6. Anatomy of an overlapped tile for a group of heterogeneous functions. The functions and their scaled schedules are
shown on the right. A tight tile shape is computed by analyzing dependence vectors between the stages. Extended region shows
overlap with over-approximation. Horizontal boxes within the tile show scratchpad allocations.

near-neighbor by scaling the function schedules appropri-
ately, as shown in Figure 6. The compiler determines the
schedule alignment and scaling factors for each function in
the group. This is done by analyzing the accesses to other
function values in the function definitions. It may not always
be possible to align and scale schedules to make the value
dependence vectors constant, for instance, for the functions
f(x, y) = g(x, y) + g(y, x) and f(x) = g(x/2) + g(x/4).
Our grouping heuristic, which is presented in Section 3.5,
takes the scaling and alignment factors into account while
partitioning the pipeline into groups. Only functions whose
schedules can be scaled and aligned to make the depen-
dences near-neighbor are grouped together. We now present
the method to construct overlapped tiles for a group of func-
tions.

3.4 Generating Schedules for Overlapped Tiling
Tiling is only relevant for a group of functions whose de-
pendence vectors are constant in at least one dimension after
scaling and alignment transformations. The compiler con-
structs schedules for overlapped tiling of functions, one di-
mension after another. For each dimension, the shape of an
overlapped tile is determined by analyzing the dependence

vectors. The tile shape is given by the left and right bound-
ing hyperplanes denoted by φl and φr respectively. For the
tile shape to be valid, the cone formed by φl and φr from
any of the live-out values should contain all the values re-
quired to compute it. Figure 6 shows hyperplanes which de-
fine a valid tile shape. A naive approach to determine the tile
shape is to assume that every dependence vector exists uni-
formly at every point in the space. This over-approximates
the dependence cone increasing the redundant computation
by a significant amount, as shown in Figure 6. It is desirable
to minimize the redundant computation by determining the
tightest slope possible for φl and φr.

Our compiler accounts for the heterogeneity of the func-
tions, and determines the tile shape by examining the de-
pendence vectors between two levels in isolation from the
other dependence vectors. Level refers to the level in a topo-
logical sort of the pipeline DAG formed by the functions in
the group, it is also the first dimension in every function’s
initial schedule. To determine φl for a particular dimension,
only the dependence vectors with non-negative components
in that dimension are considered. Similarly, only the vec-
tors with non-positive components are considered for φr. In
Figure 6, the thick arrows shown at the left tile boundary

are the maximum non-negative dependence vectors at each
level. Similarly, the minimum non-positive vectors at each
level are shown at the right tile boundary.

The procedure for computing the slopes starts by analyz-
ing dependences between the live-out function at the top and
the previous level, fout and f↑ in Figure 6. It sets the initial
slopes for φl and φr to accommodate the maximum non-
negative and minimum non-positive dependence vectors, re-
spectively, between the live-out level and the previous level.
Once the initial slopes are set, the procedure moves to the
next lower level and checks if the current hyperplanes con-
tain all the dependence vectors between the current and the
next level. In the case that the current slopes do not accom-
modate all the dependence vectors, they are adjusted to do
so. This procedure is repeated till it reaches level zero, and
the final slopes for φl and φr are computed.

Once φl and φr are determined, the overlapped tile sched-
ule for each function fk in the group is constructed as fol-
lows. Let the scaled and aligned schedule for a function fk
in the group be (~ik)→ (~sk). For a tile, let h be the tile height
which is one less than number of levels in the group, l and
r be the slopes corresponding to φl and φr respectively. The
amount of overlap for a dimension, denoted by o, is given
by:

o = h· (|l|+ |r|).

With traditional tiling where both the lower and the upper
bounding faces are parallel to each other and given by a
single hyperplane, φ, the tiling constraints [2, 45] are given
by:

τ ·T ≤ φ(~sk) ≤ τ · (T + 1)− 1,

where T is a newly added dimension corresponding to the
iterator on the tile space, and τ is the tile size. For an over-
lapped tile with φl and φr as its lower and upper bounding
faces respectively, the constraints are now given by the con-
junction:

τ ·T ≤ φl(~sk) ≤ τ · (T + 1) + o− 1 ∧
τ ·T ≤ φr(~sk) ≤ τ · (T + 1) + o− 1. (2)

Note that o, h and τ are known at code generation time.
The schedule for fk is updated to (~ik) → (T, ~sk), and
the constraints in Equation (2) are added to the schedule
relation. Since the overlapped tile is for the entire group of
stages, the schedules for all the functions in the group are
modified similarly.

3.5 Grouping
Our algorithm to group stages is shown as Algorithm 1. The
algorithm takes the directed acyclic graph, (S, E), where S
is the set of stages or functions and E, the set of edges, as
input. Initially, each function in the pipeline is in a separate
group. The tile sizes, an overlap threshold and the approxi-
mate estimates of all pipeline parameters, are also part of the

input. Typically, the user has an idea of the range of image
dimensions on which the processing algorithm will be ap-
plied. The generated pipeline is optimized for the parameter
values around the estimates. However, the implementation
is valid for all parameter sizes. Generating an optimized im-
plementation for all possible parameter values is often not
feasible. The grouping algorithm uses the estimates to avoid
considering functions of very small size for merging. At any
point, the groups in G are disjoint and their union is the set
of all stages, S.

The grouping algorithm iteratively merges groups until
no further merging is possible. For every iteration, it finds all
groups that have only a single child or successor group, with
respect to the pipeline graph (line 6). These candidate groups
are sorted (line 7) in the decreasing order of their sizes de-
termined from the parameter estimates. Next, the algorithm
iterates over the sorted groups to check for merging opportu-
nities. An iteration finishes when either a child is merged or
there is no opportunity to merge, in which case the algorithm
terminates.

Lines 10, 11, and 12 show the criteria used for a prof-
itable merge. The first criterion is that it should be possible to
make the dependence vector components constant by align-
ing and scaling the functions in child and parent groups. Oth-
erwise, overlapped tiling cannot be performed on the group
and merging the groups is not desirable. The second crite-
rion is the amount of redundant computation that would be
introduced. The algorithm merges groups only when the size
of overlapping region, as a fraction of the tile size, is less
than the overlap threshold. The size of the overlapping re-
gion along a dimension is independent of the tile size along
that dimension, and is determined only by the slopes of the
bounding hyperplanes and the group size. Recall that the
slope itself was determined by dependences among func-
tions in the group, as shown in Figure 6. The tile size in ef-
fect restricts group sizes. This is exploited by our auto-tuner
to explore a range of implementations with a very small pa-
rameter space, as described later in Section 3.8.

Algorithm 1 is greedy, but fast and effective. A character-
istic of the algorithm is that it groups maximally in a greedy
fashion subject to the constraints on redundant computation,
scaling and alignment. The pipeline graphs we consider have
a single sink node (stage), which is the final output of the
pipeline. Therefore, there exists at least one node with a sin-
gle child group, i.e., the parent(s) of the sink node. When the
sink node and its parents are grouped together, they form the
new sink node. Now, the new sink node will be the only child
of it’s parents. By repeatedly merging the sink node with its
parents, the entire DAG can be grouped together if the over-
lap and alignment criteria permit. Hence, the algorithm, (1)
tends to maximize reuse as it only groups stages connected
by producer-consumer relationships and (2) prevents merg-
ing of groups only when the overlap threshold and align-
ment criteria do not permit such a merge. Once the groups

Algorithm 1: Iterative grouping of stages
Input : DAG of stages, (S,E); parameter estimates, P ; tile

sizes, T ; overlap threshold, othresh
/* Initially, each stage is in a separate group */

1 G← ∅
2 for s ∈ S do
3 G← G ∪ {s}
4 repeat
5 converge← true

6 cand set← getGroupsWithSingleChild(G, E)
7 ord list← sortGroupsBySize(cand set, P)
8 for each g in ord list do
9 child = getChildGroup(g, E)

10 if hasConstantDependenceVectors(g, child) then
11 or ← estimateRelativeOverlap(g, child, T)
12 if or < othresh then
13 merge← g ∪ child

14 G← G− g − child

15 G← G ∪ merge

16 converge← false

17 break
18 until converge = true

19 return G

are formed, overlapped tiling for each group is performed
as described in Section 3.4. The algorithm is not provably
optimal in minimizing the number of groups or maximiz-
ing any pre-defined notion of reuse. However, our experi-
ments demonstrate that it is effective in practice when com-
bined with auto-tuning in a restricted space. As an example,
the grouping obtained for the Pyramid Blending pipeline is
shown in Figure 8.

Validity A grouping is valid if there is no cycle between
the groups with reference to the pipeline DAG. Since algo-
rithm 1 merges a group with its single child into itself, it does
not create cycles.

Termination Every iteration of the repeat-until loop that
does not lead to termination, reduces the cardinality of G by
one. The algorithm thus terminates in |S| − 1 iterations in
the worst case.

3.6 Storage Mapping
Functions that are outputs of the pipeline need to be stored in
memory after they are computed, and we allocate arrays to
store values of both output and intermediate functions. Ar-
ray layout for the output functions is dictated by the domain
order in their definitions and cannot be altered. However,
the data layout for intermediate functions closely follows
the schedule transformations applied to them, thus consid-
ering them in an integrated manner. For example, a function
f(x, y) whose schedule is given by (x, y) → (y, x) will be
stored in a 2-dimensional array with y and x as the outer and
inner dimensions respectively.

void pipe_harris(int C, int R, float* I,

float *& harris)

{

/* Live out allocation */

harris = (float *) (malloc(sizeof(float)*

(2+R)*(2+C)));

#pragma omp parallel for

for (int Ti = -1; Ti <= R/32; Ti+=1){

/* Scratchpads */

float Ix [36][260];

float Iy [36][260];

float Syy [36][260];

float Sxy [36][260];

float Sxx [36][260];

for (int Tj = -1; Tj <= C/256; Tj +=1) {

int lbi = max(1, 32*Ti);

int ubi = min(R, 32*Ti + 35);

for (int i = lbi; i <= ubi; i+=1) {

int lbj = max(1, 256*Tj);

int ubj = min(C, 256*Tj + 259);

#pragma ivdep

for (int j=lbj; j<=ubj; j+=1) {

Iy[-32*Ti+i][-256*Tj+j] = ...;

Ix[-32*Ti+i][-256*Tj+j] = ...;

}

}

lbi = max(2, 32*Ti + 1);

ubi = min(R - 1, 32*Ti + 34);

for (int i = lbi; i <= ubi; i+=1) {

int lbj = max(2, 256*Tj + 1);

int ubj = min(C-1, 256*Tj + 258);

#pragma ivdep

for (int j=lbj; j<=ubj; j+=1) {

Syy[-32*Ti+i][-256*Tj+j] = ...;

Sxy[-32*Ti+i][-256*Tj+j] = ...;

Sxx[-32*Ti+i][-256*Tj+j] = ...;

}

}

if (Tj >= 0 && Ti >= 0) {

lbi = 32 * Ti + 2;

ubi = min(R - 1, 32*Ti + 33);

for (int i = lbi; i <= ubi; i+=1) {

int lbj = 256*Tj + 2;

int ubj = min(C-1, 256*Tj +257);

#pragma ivdep

for (int j=lbj; j<=ubj; j+=1)

harris[i*(R+2)+j] = ...;

}

}

}

}

}

Figure 7. Generated code for Harris corner detection

For a group of functions that are tiled, the values of the
intermediate functions are used only within the tile. This
can be seen in Figure 6, in the case of intermediate func-
tions f , g, h and f↑. These intermediate values can be dis-
carded after computing the live-out values at the top of a tile.
Therefore, the intermediate functions need not be allocated
as full buffers, instead they can be stored in small scratch-
pads which are private to each tile. Horizontal boxes in Fig-
ure 6 indicate such scratchpad allocations. All tiles which
are executed sequentially by a single thread can reuse the

↓ x

↓ x

↓ y

↓ y

↓ x

↓ x

↓ y

↓ y

↓ x

↓ x

↓ y

↓ y

↑ x

↑ y

L

X

↑+

↑ x

↑ y

L

↑ x

↑ x

↑ y

L

X

↑+

↑ x

↑ y

L

↑ x

↑ x

↑ y

L

X

↑+

↑ x

↑ y

L

M

↓ y↓ x

↓ y↓ x

↓ y↓ x

X

↑ x

Figure 8. Pyramid Blending pipeline with four pyramid levels. The grouping generated by our compiler is shown by the
dashed boxes, all the stages in one group are enclosed by a dashed box. Inputs to the pipeline are the two images on the top
right, each with one of the halves out of focus, and a mask image M. The image on the bottom right is the blended output where
both halves of the image are in focus. (Image courtesy Kyros Kutulakos)

same set of scratchpads. The only full allocations required
are for the live-out functions in a group. For tile sizes which
are small relative to the size of the functions, the reduction
in storage is quite significant, leading to better locality.

In order to perform scratchpad allocation for intermediate
functions, their accesses have to be remapped to the scratch-
pads. The compiler generates index expressions into scratch-
pads relative to the origin of each tile: in Figure 6, the origin
is the left bottom corner of the tile shown. Relative index-
ing generates simple indexing expressions for scratchpads
allowing for easier code generation and vectorization. The
generated code shown in Figure 7 shows the indexing ex-
pressions for scratchpad allocations. Without storage reduc-
tion, the tiling transformations are not very effective due to
the streaming nature of image processing pipelines. The re-
duction of memory footprint coupled with a schedule opti-
mized for parallelism and locality results in a dramatic im-
provement in performance.

3.7 Code Generation
After partitioning the pipeline into groups, building over-
lapped tiled schedules and optimizing storage, the compiler
generates a C++ function implementing the pipeline. Fig-
ure 7 shows the code generated for Harris corner detection
specification (Figure 1). The integer set library (isl) [42] is
used to generate loops to scan each group of functions as
per the ordering implied by our schedules. The outermost

parallel dimension for each group is marked parallel using
OpenMP pragmas. Scratchpad allocations are placed at the
start of the parallel loop’s body. For the code in Figure 7,
scratchpads are allocated in the Ti loop. Our alignment and
scaling method always ensures that the innermost loop iter-
ator has a unit stride. The compiler also avoids branching in
the innermost loops by splitting function domains and un-
rolling loops. Unit stride loops are annotated using ivdep

pragmas which inform the downstream C++ compiler of the
absence of any vector dependences. From our experiments,
we found the Intel C++ compiler’s cost model for vectoriza-
tion to be very effective, and we relied on it to decide which
loops to vectorize and in what way.

3.8 Autotuning
Our grouping heuristic (Section 3.5) and overlapped tiling
(Section 3.4) use fixed tile sizes and overlap threshold to
generate an implementation of the pipeline. It is tedious for
a user to infer the right choice of parameters that lead to the
best performance. Given that the solution space is narrowed
down only to tile size choices, we use an autotuning mecha-
nism to infer the right ones. The grouping heuristic we pro-
posed takes a tile size configuration, and determines a group-
ing structure considering the overlap. This model-driven ap-
proach reduces the search space to one of a very tractable
size. The parameter space we explore comprises seven tile
sizes – 8, 16, 32, 64, 128, 256, 512, for each dimension, and

200 250 300 350 400 450
20

40

60

Execution time on 1 core (ms)

E
x
ec
u
ti
on

ti
m
e
on

16
co
re
s
(m

s)

(a) Pyramid Blending

60 80 100 120 140 160 180
5

10

15

Execution time on 1 core (ms)

E
x
ec
u
ti
on

ti
m
e
on

16
co
re
s
(m

s)

(b) Camera Pipeline

100 120 140 160 180 200 220

20

30

40

Execution time on 1 core (ms)

E
x
ec
u
ti
on

ti
m
e
on

16
co
re
s
(m

s)

(c) Multiscale Interpolation

Figure 9. Autotuning results (note: origin of the plots is not (0,0); it has been shifted for better illustration)

three threshold values, 0.2, 0.4, 0.5, for othresh. Even for a
pipeline that has four dimensions that can be tiled, the size
of the parameter space is 74× 3 configurations. We however
note that even the complex pipelines in our benchmarks have
only 2 dimensions that can be tiled, and the parameter space
we consider for them is thus 72 × 3 = 147. Figure 9 shows
the single and 16-thread performance for various configura-
tions explored by the auto-tuner for three of our benchmarks.
For all the benchmarks we considered, the autotuner took
under 30 minutes to explore the parameter space.

4. Experimental Evaluation
Setup: All experiments were conducted on an Intel Xeon E5-
2680 based on the Sandybridge microarchitecture. The ma-
chine is a dual-socket NUMA with an 8-core Xeon E5 2680
processor in each socket and 64 GB of non-ECC RAM, run-
ning Linux 3.8.0-38 (64-bit). Each Xeon E5 2680 runs at
2.7 GHz and with a 32 KB L1 cache/core, 512 KB L2 cache/-
core, and a shared 20 MB L3 cache. The Sandybridge in-
cludes the 256-bit Advanced Vector Extensions (AVX). The
experiments were conducted with hyperthreading disabled.
All codes generated by PolyMage were compiled with Intel
C/C++ compiler 14.0.1 with flags “-O3 -xhost”. The Halide
version [23] used for benchmarking uses LLVM 3.4 as its
backend, and the OpenCV version used was 2.4.9. The Poly-
Mage performance numbers were taken with 6 runs; the first
warm up run was discarded, and the average of the other five
is reported.

We use seven image processing application benchmarks
which vary widely in structure and complexity. The number
of stages and the lines of PolyMage code for each of these
applications is shown in Table 2. We evaluate our results
relative to other implementations of the same benchmarks
in the following ways.
• We compare with the highly tuned schedules available

in the Halide repository for the applications evaluated
by Ragan-Kelley et al. [37]. We tuned those schedules

further for our target machine by varying tile sizes, vector
lengths and unroll factors, and we call these H-tuned.
• We evaluate schedules generated by our compiler in

conjunction with Halide. This is done by specifying a
schedule, referred to as H-matched, that closely matches
our best schedule for the benchmark. Coming up with a
matching Halide schedule is not practically feasible for
all the applications considered. It is too tedious in cases
where the pipelines have a large number of stages – since
schedules generated by our compiler are complex.
• We used the OpenTuner [3] framework and the associ-

ated Halide autotuner to generate schedules for all the
benchmarks, by running the autotuner for 12 hours on
each application.
• We also compare with OpenCV implementations for ap-

plications which could be written solely using optimized
OpenCV library routines available.

An expert hand-tuned version is publicly available for cam-
era pipeline, but other expert versions evaluated by Ragan-
Kelley et al. [37] are either proprietary or not publicly avail-
able. In such cases, our comparison relative to H-tuned can
be used to place PolyMage in relation to hand-tuned ver-
sions.

Table 2 shows absolute execution times for the imple-
mentations generated by PolyMage that are fully optimized
for 16 cores, their speedup over H-tuned and schedules gen-
erated by OpenTuner. Speedups on applications not from
Halide’s repository are marked with *. The table also pro-
vides the number of stages in each benchmark, lines of code
in PolyMage, and execution times for OpenCV versions with
optimized library routines. Figure 10 shows performance
comparing various configurations of PolyMage and Halide
to provide insight into the benefits of grouping, tiling, and
vectorization separately. The baseline is the sequential ver-
sion generated by PolyMage without schedule transforma-
tions and vectorization: this is the same as PolyMage (base)
for 1 thread.

Execution times (ms) PolyMage speedup

Benchmark Stages Lines Image size PolyMage (opt + vec) OpenCV (16 cores) over

1 core 4 cores 16 cores (1 core) OpenTuner H-tuned

Unsharp Mask 4 16 2048×2048×3 42.21 11.43 3.95 84.44 1.39× *1.63×
Bilateral Grid [11] 7 43 2560× 1536 89.76 27.30 8.47 - 1.09× 0.89×
Harris Corner [25] 11 43 6400× 6400 233.79 68.03 18.69 810.24 2.61× *2.59×
Camera Pipeline 32 86 2528× 1920 67.87 19.95 5.86 - 10.05× 1.04×
Pyramid Blending [10] 44 71 2048×2048×3 196.99 57.84 21.91 197.28 27.61× *4.61×
Multiscale Interpolate 49 41 2560×1536×3 101.70 34.73 18.18 - 12.72× 1.81×
Local Laplacian [4] 99 107 2560×1536×3 274.50 76.60 32.35 - 9.41× 1.54×

Table 2. Columns from left to right: Application, number of pipeline stages, lines of code in PolyMage, input size, execution
times in milliseconds of PolyMage (opt+vec) and OpenCV (those for Halide can be derived from Figure 10 and this table),
speedup of PolyMage (opt+vec) over auto-tuned (OpenTuner) and hand-tuned Halide schedules (16 thread execution in all
three cases).

Multiscale Interpolation interpolates pixel values at
multiple scales. The H-tuned schedule does loop reordering,
vectorization, tiling, and parallelization but no fusion. Our
best schedule performs non-trivial grouping of the pipeline
stages and outperforms H-tuned by 2×. Specifying our best
schedule using Halide (H-matched) completely bridged the
2× gap in performance between H-tuned and PolyMage
(opt+vec). Also, the H-matched schedule provided better
vectorization gains than the H-tuned one.

Harris Corner Detection [25] is a widely used method
to detect interest points in an image. The feature or interest
points are used in various computer vision tasks. A full de-
scription of the algorithm in our DSL is shown in Figure 1.
The best schedule generated by PolyMage inlines all point-
wise operations, and groups all stencil functions together.
The speedup of the tiled and vectorized implementation is
46.78× over the baseline. An interesting point to note is that,
without the tiling transformation, vectorization improves the
single thread performance only by 1.12×. This shows the
importance of locality transformations to effectively utilize
vector parallelism. H-tuned schedule uses a different group-
ing and performs reasonably well. H-matched schedule uses
the same grouping and inlining as our schedule, and per-
forms much better than H-tuned. The performance gap be-
tween H-matched (tuned+vec) and PolyMage (opt+vec) is
due to icc generating better vectorized code than Halide.
This can be observed from the single thread vectorization
speedups.

Pyramid Blending [10] blends two images into one us-
ing a mask and constructing a Laplacian pyramid. The com-
plex grouping performed by PolyMage is shown in Figure 8.
Writing a similar schedule in Halide (H-matched) for such a
complex grouping is a non-trivial task. The H-tuned sched-
ule is provided by us along the lines of the tuned sched-
ule available for the Local Laplacian Filter benchmark. The
H-matched schedule provides a clear performance improve-
ment over H-tuned.

Bilateral Grid [11, 34] is a structure used for comput-
ing a fast approximation of the bilateral filter. The bench-
mark constructs a bilateral grid, and then uses it to perform
edge-aware smoothing on the input image. The pipeline is a
histogram operation followed by stencil and sampling op-
erations. Our compiler fuses all the stencil and sampling
stages into one group, and the histogram into another. H-
tuned schedule is quite different as it fuses the histogram
computation with one of the stencil operations. Our current
implementation does not attempt to fuse reduction opera-
tions. However, the schedule we generate is quite compet-
itive to H-tuned.

Camera Pipeline processes raw images captured by the
camera into a color image. The pipeline stages have stencil-
like, interleaved, and data-dependent access patterns. Our
best schedule fuses all stages except small lookup table com-
putations into a single group. Performance of the PolyMage
optimized code is slightly better than H-tuned, and matches
that of an expert tuned version labeled ‘FCam’ [1] in Fig-
ure 10e.

Local Laplacian Filter [4, 33] enhances the local con-
trast in an image. It is the most complex of our benchmarks,
involving both sampling and data-dependent operations. The
best schedule PolyMage generates is very complex and is te-
dious to manually express in Halide. We only compare with
the H-tuned schedule which does not group any of the stages
but exploits parallelism and vectorization.

Unsharp Mask is a simple pipeline used to sharpen im-
age edges, and comprises a series of stencil operations. The
H-tuned schedule we use is very similar to our best schedule.

Summary For applications from the Halide repository,
PolyMage obtains a mean (geometric) speedup of 1.27×
over H-tuned while running on 16 cores. The corresponding
speedup over manually tuned Halide schedules for all the
seven applications is 1.75×. When compared with Halide
schedules automatically tuned with OpenTuner, PolyMage

1 2 4 8 16
0

2

4

6

8

10

12

14

2
.2
4

4
.0
3

6
.5
7

9
.8
2

1
2
.5
4

1
.2
8 2

.3
8

3
.9
3

6
.1
8

9
.4
3

1
.4
6 2

.5
7

4
.0
7

5
.7 5
.8
8

1

1
.8

2
.9
4

4
.4
2

5
.8
2

2
.1
4

3
.4
4

5
.9
4

7
.2
5

6
.9
3

1
.7
7

2
.9
9

5
.2
9

7
.1
3

6
.9
2

1
.2
8

2
.4
3

4
.1

7
.1

1
2
.1
1

0
.8
8 1
.6
8

3
.1
9

5
.4
7

8
.5

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

Halide(matched+vec)

Halide(matched)

(a) Multiscale Interpolation

1 2 4 8 16
0

10

20

30

40

50

3
.7
4 7
.3
5

1
2
.8
5

2
4
.0
2

4
6
.7
8

1
.1
2

2
.2
4

4
.0
3 7
.6
4

1
5
.1
8

2
.4
7

4
.3
1 7
.8
3

1
2
.2
2 1
6
.2
2

1 1
.9
4

3
.4
7 6
.1
8

1
0
.3

1
.6
4

3
.1
7 6
.0
8

1
0
.1
7

1
8
.0
7

0
.9
3

1
.8
4

3
.5
1 6
.0
5

1
0
.3

1
.8
7

3
.7
3 7

.4
3

1
3
.6
5

2
5
.3
5

0
.7
3

1
.4
5

2
.9
1 5
.3
1

9
.8
8

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

Halide(matched+vec)

Halide(matched)

(b) Harris Corner Detection

1 2 4 8 16
0

2

4

6

8

10

12

14

16

1
.6
6

3
.2

5
.6
6

9
.9
6

1
4
.9
5

1
.2
6 2
.4
2

4
.2
9

7
.4
9

1
3
.3
7

1
.1
3 2
.0
2

3
.2
5

4
.7
1

5
.3
1

1

1
.8
2 2

.9
9

4
.5
5 5
.3
5

0
.5
6

1

1
.8
3 2
.7
1

3
.2
4

0
.6
6

1
.1
6 2
.0
8 2
.9
8

3
.4
3

1
.2
4 2
.1
2

3
.7

5
.7
2

7

0
.7
6 1
.4
5 2

.6
4

4
.3
1

5
.9
8

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

Halide(matched+vec)

Halide(matched)

(c) Pyramid Blending

1 2 4 8 16
0

2

4

6

8

10

12

14

1
.1
5 2
.1
7

3
.7
7

6
.5
5

1
2
.1
6

0
.8
2 1
.6
1 2

.7
3

4
.7
4

8
.9
9

1
.6
5

3
.1
7

3
.4
2

3
.5
6

3
.7
2

1

1
.9
7

2
.1
5

2
.2
8

2
.4
2

1
.6

2
.9
2

5
.4

8
.5
5

1
3
.6
8

1
.1
3 2
.1
1

4
.0
3

6
.7
2

1
0
.3
7

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

(d) Bilateral Grid

1 2 4 8 16
0

5

10

15

20

25

30

35

2
.7
9

5
.4
9

9
.5

1
8
.1
6

3
2
.3
7

0
.7
9

1
.5
7

2
.7
4 5
.2
6

1
0
.2
8

2
.9
5

5
.6
2

9
.5
8

1
3
.2
2

2
4
.2

1

1
.9
8 3
.6
1

6
.5

1
2
.1
6

4
.8
2 7
.3

1
2
.3
2

2
1
.2
6

3
1
.2
8

1
.4 2
.5
9 4
.7
1

7
.5
6

1
4
.1
5

2
.4
2 4
.8
3

9
.5
5

1
7
.4
9

3
3
.7
5

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

FCam

(e) Camera Pipeline

1 2 4 8 16
0

2

4

6

8

10

12

14

1
.6
2

3
.4
1

5
.8

9
.4
1

1
3
.7
3

1
.0
2 1
.9
9

3
.4
8

6
.1

1
0
.8
1

1
.5
8

2
.9
3

4
.7
1

6
.4
1

8
.7
4

1

1
.9
2

3
.3

5
.2
3

7
.3
9

1
.0
4 1
.9
9

3
.6
8

6
.1
8

8
.9
3

0
.5
5

1
.0
7 2
.0
8

3
.6
1

5
.7
1

Number of cores

S
p
ee
d
u
p
ov
er

P
o
ly
M
a
g
e
b
a
se

(1
co
re
)

PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

(f) Local Laplacian Filter

Figure 10. Speedups relative to PolyMage (base) on a single thread. For PolyMage, ‘opt’ includes all optimizations other than
enabling icc auto-vectorization. ‘base’ implies all scalar optimizations including stage inlining, but not grouping, tiling, and
storage optimizations. Absolute execution times can be determined in conjunction with Table 2.

is 5.39× faster on average. We believe that automatically
obtaining this level of parallel performance while requiring
the programmer to only provide a high-level specification
of the computation is a significant result. Determining and
applying a similar sequence of transformations manually is
often either very tedious or infeasible (cf. Figure 8). For
camera pipeline, our 86 line input code was transformed to
732 lines of C++ code, and performs only 10% slower than
an expert-tuned version (FCam).

5. Related Work
In this section, we discuss related work from image process-
ing pipeline compilation, stencil computation optimization
and past polyhedral optimization efforts.

Halide is a recent domain-specific language for image pro-
cessing pipelines [36] that decouples the algorithm and
schedule specification. The Halide DSL allows the user to
experiment with a wide variety of schedules without chang-
ing the algorithm specification, facilitating rapid experimen-
tation. However, providing a good schedule often requires
a lot of effort, prior knowledge, and expertise in manual
optimization. Autotuning based on genetic search [37] was
used in conjunction with Halide to explore the vast space of
schedules. However, this method converges on good sched-
ules very slowly, taking hours to days, and requires seed
schedules for fast convergence. This approach is no longer
maintained or available with Halide ([3], section 4.2).

A more recent approach for autotuning Halide programs
is based on the OpenTuner [3] framework. Although more
robust, the underlying approach still relies on combining
several search techniques to stochastically explore the sched-
ule space. This is only effective for small pipelines due to
the exponential increase in the schedule space with pipeline
size. Though the schedule space is vast, only a small subset
of the space matters in practice. Our model-driven approach
allows us to target such a subset and find schedules that
outperform highly tuned schedules specified using Halide.
Additionally, we employ a flexible transformation and code
generation machinery that allows us to model a richer variety
of transformations. For example, expressing parallelogram
or split tiling [22] is currently not feasible with the Halide
scheduling language.

Stencil optimization efforts have extensively focused on
improving locality and parallelism for time-iterated sten-
cil computations, resulting in parallelogram [8, 43, 44],
diamond [5], split [22], and hybrid hexagonal [21] tiling
techniques. The latter three techniques allow for concur-
rent start of tiles along a boundary, and are particularly
effective in maximizing parallelism. These techniques ex-
ploit temporal locality across time steps without introducing
any redundant computation. However, storage reduction and
reuse using private scratchpads, a crucial optimization for

image processing pipelines, is very difficult with these ap-
proaches due to the complex scratchpad indexing and man-
agement (and thus code generation) required. Overlapped
tiling [27, 29, 46] is attractive in this context due to the
dismissal of dependence between neighboring tiles – this
greatly simplifies scratchpad allocation, indexing, and man-
agement. In addition, dependences between stages of an im-
age processing pipeline are of a heterogeneous nature, and
more complex than those in time-iterated stencils. Our tech-
nique to construct overlapped tiles takes this heterogeneity
into account, and minimizes overlap further in comparison
to prior polyhedral approaches [27, 29].

Polyhedral compilation frameworks, since the works of
Bastoul [6], Cohen et al [13, 17], and Hall et al. [24, 41]
have taken a decoupled view of computation (as a set of it-
eration domains) and schedules (as multi-dimensional affine
functions). Schedules could be transformed and complex
ones composed without worrying about domains. However,
most subsequent works remained general-purpose, both in
the techniques to determine schedules, and in the extraction
of initial representation from input. Among existing fusion
heuristics in the polyhedral framework [7, 30, 31], there is
none suitable for image processing pipelines. The heuris-
tics do not consider overlapped tiling of the fused groups
as a possibility. In our context, we observe that the interac-
tions between fusion, tile sizes and the overlap threshold are
very important to capture for optimization. Using a domain-
specific approach here is thus clearly the pragmatic one.

Other prior work on image processing languages [16, 35,
38] has focused more on the language, programmability and
expressiveness aspects while proposing simple and limited
optimization. There is a large body of work on compila-
tion of stream languages [9, 19, 20, 40]. However, these
works do not consider the space of optimizations that we
do, in particular, the tradeoff between redundant computa-
tion and locality. Most work on stream programs dealt with
one-dimensional streams while image processing pipelines
involve two or higher dimensional data entities. The polyhe-
dral framework makes it convenient to deal with such higher
dimensional spaces.

6. Conclusions
We presented the design and implementation of a domain-
specific language along with its optimizing code generator,
for a class of image processing pipelines. Our system, Poly-
Mage, takes a high-level specification as input, and auto-
matically transforms it into a high-performance parallel im-
plementation. Such an automation was possible due to the
effectiveness of our model-driven approach to fuse image
processing stages, and our tiling strategy and memory op-
timizations for the fused stages. Experimental results on a
modern multicore system with complex image processing

pipelines show that the performance achieved by our au-
tomatic approach is up to 1.81× better than that achieved
through tuned schedules with Halide, another state-of-the-
art DSL and compiler for image processing pipelines. For
a camera raw image processing pipeline, the performance
of code generated by PolyMage is comparable to that of an
expert-tuned version. We believe that our work is a signif-
icant advance in improving programmability while deliver-
ing high performance automatically for an important class of
image processing computations.

Acknowledgments
We gratefully acknowledge the authors of Halide for devel-
oping and actively maintaining Halide as an open-source
project. We are very thankful to the anonymous reviewers
of ASPLOS for their constructive comments. We thank In-
tel Labs, Bangalore for donation of software and equipment
with which the experiments presented in this paper were
conducted. We also thank Google India for supporting Ravi
Teja Mullapudi’s travel to ASPLOS’15.

References
[1] Andrew Adams, Eino-Ville Talvala, Sung Hee Park, David E.

Jacobs, Boris Ajdin, Natasha Gelfand, Jennifer Dolson,
Daniel Vaquero, Jongmin Baek, Marius Tico, Hendrik P. A.
Lensch, Wojciech Matusik, Kari Pulli, Mark Horowitz, and
Marc Levoy. The Frankencamera: An Experimental Platform
for Computational Photography. In ACM Transactions on
Graphics, pages 29:1–29:12, 2010.

[2] Corinne Ancourt and Francois Irigoin. Scanning polyhedra
with do loops. In ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, pages 39–50, 1991.

[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly,
and Saman Amarasinghe. Opentuner: An extensible frame-
work for program autotuning. In International conference
on Parallel Architectures and Compilation Techniques, pages
303–316, 2014.

[4] M. Aubry, S. Paris, S. Hasinoff, J. Kautz, and F. Durand.
Fast local laplacian filters: Theory and applications. ACM
Transactions on Graphics, 2014.

[5] Vinayaka Bandishti, Irshad Pananilath, and Uday Bond-
hugula. Tiling stencil computations to maximize parallelism.
In International conference for High Performance Computing,
Networking, Storage, and Analysis, pages 40:1–40:11, 2012.

[6] Cédric Bastoul. Code generation in the polyhedral model is
easier than you think. In International conference on Parallel
Architectures and Compilation Techniques, pages 7–16, 2004.

[7] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Laksh-
minarayanan Renganarayanan. A model for fusion and code
motion in an automatic parallelizing compiler. In Interna-
tional conference on Parallel Architectures and Compilation
Techniques, pages 343–352, 2010.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sa-
dayappan. A practical automatic polyhedral parallelizer and

locality optimizer. In ACM SIGPLAN conference on Program-
ming Languages Design and Implementation, pages 101–113,
2008.

[9] Ian Buck, Tim Foley, Daniel Reiter Horn, Jeremy Sugerman,
Kayvon Fatahalian, Mike Houston, and Pat Hanrahan. Brook
for GPUs: stream computing on graphics hardware. In ACM
Transactions on Graphics, 2004.

[10] Peter J. Burt and Edward H. Adelson. A multiresolution spline
with application to image mosaics. ACM Transactions on
Graphics, 2(4):217–236, 1983.

[11] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time
edge-aware image processing with the bilateral grid. In ACM
Transactions on Graphics, 2007.

[12] The CImg Library: C++ Template Image Processing Toolkit.
http://cimg.sourceforge.net/.

[13] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler,
Olivier Temam, and Nicolas Vasilache. Facilitating the search
for compositions of program transformations. In International
conference on Supercomputing, pages 151–160, 2005.

[14] Franklin C. Crow. Summed-area tables for texture mapping.
In Annual conference on Computer Graphics and Interactive
Techniques, pages 207–212, 1984.

[15] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen
Oakley, Montserrat Medina, Mike Barrientos, Erich Elsen,
Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan
Alonso, and Pat Hanrahan. Liszt: A domain specific language
for building portable mesh-based pde solvers. In International
conference for High Performance Computing, Networking,
Storage, and Analysis, pages 9:1–9:12, 2011.

[16] Conal Elliott. Functional image synthesis. In Proceedings of
Bridges, 2001.

[17] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Co-
hen, David Parello, Marc Sigler, and Olivier Temam. Semi-
automatic composition of loop transformations. International
Journal of Parallel Programming, 34(3):261–317, 2006.

[18] Google Glass. http://www.google.com/glass.

[19] Michael I. Gordon, William Thies, and Saman P. Amaras-
inghe. Exploiting coarse-grained task, data, and pipeline par-
allelism in stream programs. In International conference on
Architectural Support for Programming Languages and Op-
erating Systems, pages 151–162, 2006.

[20] Michael I. Gordon, William Thies, Michal Karczmarek,
Jasper Lin, Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy
Wong, Henry Hoffmann, David Maze, and Saman P. Amaras-
inghe. A stream compiler for communication-exposed archi-
tectures. In International conference on Architectural Support
for Programming Languages and Operating Systems, pages
291–303, 2002.

[21] Tobias Grosser, Albert Cohen, Justin Holewinski, P Sadayap-
pan, and Sven Verdoolaege. Hybrid hexagonal/classical tiling
for GPUs. In International symposium on Code Generation
and Optimization, page 66, 2014.

[22] Tobias Grosser, Albert Cohen, Paul HJ Kelly, J Ramanujam,
P Sadayappan, and Sven Verdoolaege. Split tiling for GPUs:
automatic parallelization using trapezoidal tiles. In Proceed-

ings of the 6th Workshop on General Purpose Processor Us-
ing Graphics Processing Units, pages 24–31, 2013.

[23] Halide git version. https://github.com/halide/Halide
Commit: 8a9a0f7153a6701b6d76a706dc08bbd12ba41396.

[24] Mary W. Hall, Jacqueline Chame, Chun Chen, Jaewook Shin,
Gabe Rudy, and Malik Murtaza Khan. Loop transformation
recipes for code generation and auto-tuning. In International
workshop on Languages and Compilers for Parallel Comput-
ing, pages 50–64, 2009.

[25] Chris Harris and Mike Stephens. A combined corner and edge
detector. In Fourth Alvey Vision Conference, pages 147–151,
1988.

[26] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël
Pouchet, J. Ramanujam, and P. Sadayappan. A stencil com-
piler for short-vector simd architectures. In International con-
ference on Supercomputing, pages 13–24, 2013.

[27] Justin Holewinski, Louis-Noël Pouchet, and P Sadayappan.
High-performance code generation for stencil computations
on GPU architectures. In International conference on Super-
computing, pages 311–320, 2012.

[28] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Oluko-
tun. Green-marl: A dsl for easy and efficient graph analy-
sis. In International conference on Architectural Support for
Programming Languages and Operating Systems, pages 349–
362, 2012.

[29] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan. Effective Au-
tomatic Parallelization of Stencil Computations. In ACM SIG-
PLAN conference on Programming Languages Design and
Implementation, 2007.

[30] A. Leung, N.T. Vasilache, B. Meister, and R.A. Lethin. Meth-
ods and apparatus for joint parallelism and locality optimiza-
tion in source code compilation, June 3 2010. WO Patent App.
PCT/US2009/057,194.

[31] Sanyam Mehta, Pei-Hung Lin, and Pen-Chung Yew. Revis-
iting loop fusion in the polyhedral framework. In ACM SIG-
PLAN symposium on Principles and Practice of Parallel Pro-
gramming, pages 233–246, 2014.

[32] OpenCV: Open Source Computer Vision. http://opencv.org.

[33] Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local
laplacian filters: Edge-aware image processing with a lapla-
cian pyramid. In ACM Transactions on Graphics, pages 68:1–
68:12, 2011.

[34] Sylvain Paris, Pierre Kornprobst, JackTumblin Tumblin, and
Frédo Durand. Bilateral filtering: Theory and applications.

Foundations and Trends R© in Computer Graphics and Vision,
4(1):1–75, 2009.

[35] CoreImage. Apple Core Image programming guide.

[36] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc
Levoy, Saman Amarasinghe, and Frédo Durand. Decou-
pling algorithms from schedules for easy optimization of im-
age processing pipelines. ACM Transactions on Graphics,
31(4):32:1–32:12, 2012.

[37] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams,
Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In
ACM SIGPLAN conference on Programming Languages De-
sign and Implementation, pages 519–530, 2013.

[38] Michael A. Shantzis. A model for efficient and flexible image
computing. In ACM Transactions on Graphics, pages 147–
154, 1994.

[39] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages. ACM Transactions on Em-
bedded Computing, 13(4s):134:1–134:25, 2014.

[40] William Thies, Michal Karczmarek, and Saman P. Amaras-
inghe. Streamit: A language for streaming applications. In In-
ternational conference on Compiler Construction, pages 179–
196, 2002.

[41] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall,
and Jeffrey K. Hollingsworth. A scalable auto-tuning frame-
work for compiler optimization. In International Parallel and
Distributed Processing Symposium, pages 1–12, 2009.

[42] Sven Verdoolaege. isl: An integer set library for the polyhe-
dral model. In International Congress Conference on Mathe-
matical Software, volume 6327, pages 299–302. 2010.

[43] M. Wolf. More iteration space tiling. In International confer-
ence for High Performance Computing, Networking, Storage,
and Analysis, pages 655–664, 1989.

[44] D. Wonnacott. Using time skewing to eliminate idle time due
to memory bandwidth and network limitations. In Interna-
tional Parallel and Distributed Processing Symposium, pages
171 –180, 2000.

[45] Jingling Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[46] Xing Zhou, Jean-Pierre Giacalone, Marı́a Jesús Garzarán,
Robert H. Kuhn, Yang Ni, and David Padua. Hierarchical
overlapped tiling. In International symposium on Code Gen-
eration and Optimization, pages 207–218, 2012.

