A theory of refinement for ADT’s with
functional interfaces

Sumesh Divakaran!, Deepak D’Souza!, Prahladavaradan Sampath?,
Nigamanth Sridhar®, and Jim Woodcock?*

! Indian Institute of Science, Bangalore, {sumeshd,deepakd}@csa.iisc.ernet.in
2 MathWorks India, prahlad.sampath@gmail.com
3 (leveland State University, n.sridhari@csuohio.edu
4 University of York, jim.woodcock@york.ac.uk

Abstract. We propose a theory of refinement for Abstract Data Types
(ADTs) that interact with client programs via function calls. Our notion
of refinement is in the spirit of Z/VDM. We provide a simulation-based
refinement condition similar to that of He et al.’s “upward simulation”,
and argue that it is both sound and complete for deterministic ADTs.
Our theory also facilitates compositional reasoning about complex im-
plementations that may use several layers of sub-ADTs.

1 Introduction

Refinement-based methodologies constitute a powerful and well-developed ap-
proach for verifying functional correctness of software systems. In a correct-by-
construction approach using step-wise refinement, one begins with an abstract
specification of the system’s functionality and successively refines it via some
intermediate models, to a concrete implementation in an imperative language.
Similarly, in a post-facto proof of correctness, one begins with a concrete imple-
mentation, specifies its functionality abstractly, and proves via successive refine-
ments, that the implementation refines the abstract specification.

One of the advantages of a refinement-based approach is that it provides a
standalone abstract specification (say .A) of the implementation (say C), with
the guarantee that certain properties proved about a client program P that uses
A as a library (which we refer to as “P with A” and denote by “P[A]”) also
carry over for P with C (i.e. P[C]). Thus, to verify that P|C] satisfies a certain
property, it may be sufficient to check that P[A] satisfies the property. The latter
check involves reasoning about a simpler component (namely .A) and can reduce
the work of a prover by an order of magnitude [11]. A refinement-based proof is
also modular and transparent, since it breaks up the task of reasoning about a
complex implementation into smaller, more manageable, tasks.

There are a variety of notions of refinement for abstract data types proposed
in the literature: VDM [4,9], Z [3,16, 7], Event-B [1], and behavioural subtyping
[13], to name some representative ones. Each of these notions is characterised
by a definition of refinement, the properties carried over for client programs,

and finally logically phrased refinement conditions which are typically based on
simulation relations and constitute sufficient conditions for refinement. Some no-
tions are defined directly in terms of simulation relations (Event-B, behavioural
subtyping, and program refinement [14]) while others like Z and backward com-
patibility [15] are defined independent of simulation relations. For instance in the
Z notion [16,7], a client program P interacts with an ADT A by “initializing”
the ADT’s state using the client’s “global” state, invoking some operations on
the ADT, and then “finalizing” the ADT’s state back to a global state of the
client. An ADT C is said to refine another ADT C, if the “behaviours” of P[C]
are contained in that of P[A], for every client program P.

In this work we are interested in a setting where a client program interacts
with an ADT in a functional manner, by periodically calling operations of the
ADT, each time supplying an argument and using the value returned by the
operation to update its local state. We would also like to reason about ADT
implementations that themselves make use of sub-ADT’s. We propose a notion
of refinement in this setting, which is similar in spirit to Z and backward com-
patibility. The definition of refinement is independent of simulation relations and
is in terms of the sequences of valid operations allowed by an ADT.

We describe the properties carried over for a client program, in this notion of
refinement. We also provide sufficient simulation-based refinement conditions.

Finally, we prove a substitutivity or “contextual replacement” result: When
reasoning about complex implementations of an ADT library, one often comes
across situations where an implementation C makes use of a sub-library D and
is thus of the form P[D]. Now to argue that C refines an abstract specification
A, it is convenient to be able to abstract the sub-library D by a simpler abstract
version say B, and show that P[B] refines A. If we can also show that D refines
B, then we would like to conclude that C refines A. To the best of our knowledge,
there are no such results in the setting of imperative programs in the literature.

Our refinement theory specializes nicely to the case of deterministic ADT’s.
Our refinement condition is now also necessary, like in [7], and proofs are more
transparent.

We have used this theory of refinement to build a methodology on top of the
popular verification tool for C programs called VCC, and used it to carry out
verification of the functional correctness of the FreeRTOS scheduler. We refer
the reader to [6] for further details on this case study.

2 Overview

In this section we illustrate the main ideas in our theory, including our refinement
notion and substitutivity result, through a running example.

Fig. 1(a) shows an abstract specification in a Z-like language of a queue
ADT. The specification, which we call z-queue, is parameterized by a constant
k representing the maximum length of the queue. The “type” of the queue ADT
is its set of operations {init, eng, deq} and the associated type of each operation.
For example the operation eng takes an integer argument and returns nothing

(which we represent by a dummy return value “ok”). The ADT has a state, in
this case the value of the variable content which is a finite sequence of integers
denoting the contents of the queue.

Each operation on the ADT works as follows: when called on a state of the
ADT with a given argument, it updates the state of the ADT and returns a value
in its output type to the caller. Thus, the eng operation when called on a state [
whose length is less than k, with an argument a, updates the state to append a
to [and returns ok. When an operation is called on a state that lies outside its
precondition (in the case of eng this happens when the length of the queue is &
or more), the operation is assumed to return a special “exceptional” value “e”
and update the state to a special “exceptional” state E. Once in an exceptional
state, all operations on the ADT must maintain the exceptional state and return
the exceptional value e.

There is a natural notion of the set of (initialised) sequences of operation calls
allowed by an ADT. Each element of the sequence is of the form (n, a, b) where n
is an operation name, and a and b are respectively inputs and outputs to the op-
eration. For example, z-queue, allows the sequence (init, nil, ok), (eng, 1, ok), (deg, nil, 1)
(here “nil’> represents a dummy input value). This sequence of calls is exzception-
free. Tt also allows the sequence (init, nil, ok), (deg, nil, e) which however contains
an exception.

Our notion of when an ADT C refines another ADT A of the same type, is
that every exception-free sequence of operations permitted by A must also be al-
lowed by C. Thus, z-queue, refines z-queue,, but not vice-versa since z-queue,
allows the sequence (init, nil, ok), (eng, 1, ok), (eng, 2, ok), (eng, 3, ok) which z-queue,
does not.

content: seq Z

init():

content’ = () 1: int A[MAXLEN]; 11: void enq(int t) { 1: init();
2: unsigned beg, 12: if (len == MAXLEN) 2: enq(0);
eng(z: Z): end, len; 13: assert(0); 3: enq(1);
#content < k 3: // exception 4: t = deq();
content’ = content ~(z) 4: void init() { 14: Alend] = t; 5: while (true) {
5 beg = 0; 15: if (end < MAXLEN-1) 6: if (x) { // tick
deq(): 6: end = 0; 16: end++; 7: enq(t);
result: 7 7: len = 0; 17: else 8: t = deq();
content # () 8: } 18: end = 0; 9: }
result = head(content) 9: 19: lent+; 10: }
content’ = tail(content) 10: int deq() {...} 20: }
(a) (b) (c)

Fig. 1. (a) An abstract specification z-queue, of the Queue ADT, parameterized by
a constant k denoting the capacity of the queue; (b) c-queue: a C implementation of
a Queue ADT; and (c) A client program interp that interprets two tasks of equal
priority.

Consider now a C-like program c-queue shown in Fig. 1(b), which gives
an efficient implementation of a queue ADT. It maintains the contents of the
queue in the array A starting from the position beg and going up to end—1,
wrapping around to the start of the array if necessary. We can view c-queue as
an ADT in a natural way, as follows. A program state of c-queue is the contents
of the variables A, beg, end and len, together with a location representing
the statement number to be executed next. We use a special location “0” to
represent the fact that an operation has completed, and the program is not
in the middle of executing an operation. The states of the ADT induced by
c-queue is now the set of complete program states. As expected, we view each
implementation of an operation as starting in a complete program state, taking
an argument, transforming the program state — via a number of intermediate
steps — from one complete state to another, and returning a value. If the function
does not terminate (due to a buggy loop for example), or causes an exception
(due to a null dereference for example), we view the operation as returning the
exceptional value e. With this view as an ADT, c-queue can be seen to refine
z-queue;, whenever MAXLEN > k.

Let us now consider a client program of the c-queue library, shown in
Fig. 1(c), which we call interp. With some imagination one could view it as
“interpreting” or executing two tasks of equal priority running on an operat-
ing system. If we want to verify that the program interp using the c-queue
library (we write this as “interp|[c-queue]”) does not encounter an exception
while calling one of the queue operations, or that it satisfies an assertion on its
local state (like assert (t == 0 || t == 1) at line 5), it is sufficient to check
that the program with the abstract z-queue library (that is interp[z-queue])
verifies these properties. This can be done in a prover like VCC for example by
using a ghost implementation of the abstract c-queue library called g-queue,
shown in Fig. 2. Since g-queue is a simpler program than c-queue the latter
check is more tractable for a prover than the former.

_(ghost int content[\natural]) void enq(int a)
_(ghost \natural beg, end) _(requires end - beg < MAXLEN)
void init(void) _(ensures content[\old(end)] == a)
. _(ensures end == \old(end) + 1)
_(ensures beg == end == 0) _(ensures (\forall \natural n; (n != \old(end)
{ ==> content[n] == \old(content[n]))))
_(ghost beg = 0) {
_(ghost end = 0) _(ghost content[end] = a)
} _(ghost end = end + 1)
}

Fig. 2. A ghost version of z-queue in VCC.

Finally, we illustrate our “substitutivity” claim. Consider a C implementation
c-sched of a simple OS scheduler, which maintains a set of ready tasks (ordered

according to arrival time), and a set of blocked tasks, among other things. We
can view the scheduler as an ADT that provides the operations init (which
initializes the lists to empty), create (which takes a newly created task and adds
it to the end of the ready list), and resched (which takes the currently running
task as input, adds it to the end of the ready list, removes the task at the head
of the new ready list, and returns it as the next task to run). Fig. 3(b) shows
an excerpt from c-sched of the function implementing the resched operation. It
uses the c-queue library as a sub-ADT.

ready, blocked: seq tasks resched(cur: tasks):
result: tasks 1: task resched(task cur) {
result = head(ready™(cur)) 2. task t;
init(): ready’ = blocked’ = () ready’ = tail(ready™(cur)) 3: enq(cur);
4: t = deq();
create(t: tasks): delay(cur: tasks): 5: return t;
ready’ = ready "~ (t) .. 6: }
(a) (b)

Fig. 3. (a) z-sched: An abstract specification of a scheduler ADT and (b) a part of
c-sched showing the reschedule operation of a Scheduler ADT, that uses c-queue as
a sub-ADT. Here task is assumed to be of type integer.

Fig. 3(a) shows an abstract specification of the scheduler ADT, called z-sched.
Suppose we want to show that c-sched refines z-sched. We would like to reason
about this in a step-by-step manner to reduce the complexity involved in doing
this in a single step. As a first step we could abstract the c-queue component

and replace it by the simpler more-abstract z-queue
component, and argue that c-sched[z-queue] refines

z-sched

z-sched. As a second step we would need to argue that 5
c-sched[c-queue] refines c-sched|z-queue]. This is de- :

c-sched[z-queue]

picted in the figure alongside. Our substitutivity result
tells us that to do this second step, it is sufficient to — crached
show that c-queue refines z-queue. It is in this way

that the substitutivity result adds compositionality to

)

our verification task.

c-sched[c-queue]

c-sched

c-queue

3 ADT’s and refinement

We begin with some preliminary notions. A (labeled) transition system (TS) is
a structure of the form & = (Q, X, s, A) where @ is a set of states, X' a set of
action labels, s the start state, and A C @ x X x @ the transition relation. S
induces a language of (finite) sequences of action labels along execution paths
denoted L(S). We say S is deterministic if for each p € @ and | € X', whenever

P AN gand p AN q' we have ¢ = ¢. We say S is closed (or has no internal choice)

if for each p € Q and I,!’ € X, whenever p AN g and p LN q we have [= 1'. We
use standard notation to deal with strings over an alphabet, with € denoting the
empty string and u - v denoting the concatenation of strings v and v.

3.1 Abstract data types and client transition systems

An ADT type is a finite set N of operation names. Each operation name n in N
has an associated input type I, and an output type O,, each of which is simply
a set of values. We require that there is a special exceptional value denoted by e,
which belongs to each output type O, ; and that the set of operations N includes
a designated initialization operation called init. We fix an ADT type N for the
next few sections. In the sequel we will focus on deterministic ADTs for clarity
of presentation. Most of the theory extends to non-deterministic ADTs as well,
and we detail this in Sec. 5.

A (deterministic) ADT of type N is a structure of the form A =
(Q, U, E,{op,}nen) where @ is the set of states of the ADT, U € @ is an
arbitrary state in @ used as an uninitialized state, and E € @ is an ezceptional
state. Each op,, is a realisation of the operation n given by op,, : @ x I, = @x O,
such that op, (E,—) = (E,e) and op, (p,a) = (¢,¢) = ¢ = E. Thus if an
operation returns the exceptional value the ADT moves to the exceptional state
FE, and all operations must keep it in F thereafter. Further, we require that the
init operation depends only on its argument and not on the originating state:
thus nit(p, a) = init(q, a) for each p, ¢ € @\ {E} and a € L.

As an example consider a version of the queue example from the previous
section, that stores bits instead of QADT,
integers. The type of the ADT is ' K i
QType = {init, eng, deq} with I = © : {eiegog)z:ilf]ﬂjz ; %E}

. _ _ OPinit(q, nil) (E,e) otherwise.

{TLZZ}, Oinit - {0k7 6}, Ienq o B, (g-a,ok) if g# E and |q|< k
Oenq = {Ok, fazl, 6}, Ideq = {TLZl}, and Op““’(q’ a) (E,e) otherwise.

O_deq = BU{ fail, e}. Her'e.IBE istheset of op,,, (q,nil) = EqE/ é’)) gtgefwi;‘“d g=b-d
bit values {0, 1}, and nilis a “dummy”

argument for the operations init and

deq. The figure alongside shows an example ADT called QADT), of type QType.

An N-client transition system is a transition system whose action labels
include “calls” to an ADT of type N. It is meant to model a client program like
interp of Fig. 3(b) that uses an ADT. It is of the form S = (Q, X, s, E, A) where

(Q, U, E,{op,}neqType) Where

— (@ is a set of states, with s € @ the start state

— X} is a finite set of internal or local action labels. Let X'y = {(n,a,b) | n €
N,a € I,,b € 0,} be the set of operation call labels corresponding to the
ADT type N. The action label (n, a, b) represents a call to operation n with
input a that returns the value b. Let X' be the disjoint union of X; and Xy.

— E € Q is an exceptional state reached when an exceptional value is returned.

— AC @ x X x @ is the transition relation satisfying:

e (p,c,E) € Aiff ¢ = (n,a,e) for some operation n and input a (thus
an exceptional return value leads to the exceptional state and this is the
only way to reach it).

e (p,—,q) € Aimplies p # E (E is a “dead” state).

e (p,(n,a,b),q) € A implies for each b’ € O, there exists a ¢’ such that
(p,(n,a,b"),q) € A (calls from a state are “complete” with respect to
return values).

Fig. 4(a) shows a QType-client transition system corresponding to the interp
program of Fig. 1(c). In the sequel we will assume that client transitions systems
always initialize the ADT they are using before making calls to other operations
on it.

(Lu)
(init, nil, ok) (init, nil, e) \V
Q2u) (1wu O
(eng, 0, ok/ fail) (init, nil, ok)
GBu) eng, 1, e (2,u),e
(eng, 1, ok/ fail) (eng, 0, ok)
(3,u),0
(eng, 1, ok)
E
(4,w),01 O
dy il, fail
(dea, nil foi (deg, nil, 0)
- (5,10
(ldeq (5,0).1
if (*) Aif (%)
&0) (7,0),1 7.1),0
(deq, nil, 1) (deg, nil, 0)
(degq, nil, fail) (eng, 0, ok) (eng 1, o)
(8,0),10 (8.1).01
(deq, nil, fail) O (deq, nil, 1) (deq, nil, 0)
(a) (b)

Fig. 4. (a) A QType-client transition system corresponding to interp of Fig. 1(c), and
(b) the resulting transition system interp[QADT,].

Let S = (Q,X),s,E,A) be an N-client transition system and let A4 =
(Q',U',E" {op, }nen) be an ADT of type N. Then we can define the transition
system obtained by using A in S, denoted S[A], to be the transition system
(QxQ,2 (s,U"),A") where A’ C (Q x Q') x X' x (Q x Q') is given by

)5 (ap) HleSandphg
) /)M(q,q/)lf (’I’L,a,b)EEN andpm

and op,,(p,a) = (¢', b).

Fig. 4(b) shows the transition system corresponding to interp[QADT,)].

3.2 Refinement between ADT’s

Let A = (Q,U,E,{op,}nen) be an ADT of type N. Then A induces a
(deterministic) transition system S4 = (Q, Xy, U, A) where A is given by
(p,(n,a,b),q) € Aiff op,,(p,a) = (¢q,b). We define the language of initialised
sequences of operation calls of A, denoted Lj,;:(A), to be L(S4) N ((init,—, —) -
2%)- We say a sequence of operation calls w is exception-free if no call in it re-
turns the exceptional value e (i.e. w does not contain a call of the form (—, —, e)).

Let A and B be ADT’s of type N. We say B refines A, written B < A, iff
each exception-free sequence in Lt (A) is also in Ly (B).

With reference to the example queue ADT of Fig. 3.1, we could define another
ADT say QADT,, that refines QADT, by defining the eng and deq operations to
return fail (instead of failing with an exception) when the queue is full or empty
respectively. Also, QADT,, refines QADT; whenever k > .

Let us consider now the verification guarantee given by this definition of
refinement. Let A = (Q, U, E,{opp}nen) and A’ = (Q', U’, E',{op], }nen) be
two ADTs of type N such that A’ refines A. and let S be an N-client transition
system. There is a natural relation o C Q' x @) which relates a state ¢’ of A’ and
q of A precisely when there exists an exception-free initial sequence of operations
w such that U = ¢ in A and U’ = ¢/ in A’. We can use this relation to define
a kind of isomorphism ¢’ between S[A] and S[A']: a state (p, ¢) of S[A] and
(r,q") of S[A'] are related by o’ iff p = r and o(¢’, ¢) holds. Thus when two
states are related by ¢’ the local states of the client program S in them are the
same. This relation ¢’ can be seen to be an isomorphism or bisimulation in the
following sense:

— if o'(v/,u), and u L vin S[A] with [a non-exception action label, then
there exists v’ in S[A’] such that v’ 4 o and a(v',v).

— Conversely, if o/(v/, u), and v’ 4 v in S[A’], then either there exists v in
n,a,e)

S[A] such that u L v and o(v',v), or [is of the form (n, a,b) and u (=,
in S[A].

It follows from this characterisation that several properties including some tem-
poral ones, are preserved in going from S[A] to S[A’]. In particular if S[A] does
not see an exception, neither will S[A’]. Also, if S[.A] satisfies an assertion about
the client S’s local state, then either S[A’] also satisfies this assertion, or the
violating execution in S[A’] is such that the corresponding execution in S[.A] has
a prefix that ends in an exception. a

It follows immediately from the definition of refinement that it is transitive:

Proposition 1. Let A, B, and C be ADT’s of type N, such that C < B, and
B<A. ThenC < A. O

Let A= (Q,U,E,{opn}nen) and A" = (Q', U, E',{opn} nen) be ADTSs of
type N. We formulate an equivalent condition for A’ to refine A, based on an
“abstraction relation” that relates states of A’ to states of A. We say A and A’
satisfy condition (RC) if there exists a relation p C Q' x @ such that:

(init) Let a € I and let (gq, b) and (g, b’) be the resultant states and outputs
after an init(a) operation in A4 and A’ respectively, with b # e. Then we
require that b = b’ and (¢, ¢.) € p.

(sim) For each n € N, a € I,, b € O,, and p’ € Q’, with (p’,p) € p, whenever
,a,b . . ,a,b
(n0b), g with b # e, then there exists ¢’ € Q' such that p’ (ot q

with (¢, q) € p.

(n,a,b) (n,a,b)
P O—=0 ¢ P O——=0 ¢
Vi
P — Lp P
\\ \\ \\
. \ (n,a,b)
p’ O p’ O q

Fig. 5. Illustrating the equivalent condition (RC-sim) for refinement.

Theorem 1. Let A and A’ be two ADT’s of type N. Then A" <X A iff they
satisfy condition (RC).

Proof. Let A = (Q, U, E,{opp}tnen) and A" = (Q', U', E',{0op,, }nen) be two
ADTs of type N, and p C Q' x @ an abstraction relation, such that A and A’
satisfy condition (RC) wrt p. We prove that for any states p,q € @ and p’ € @',
if p % ¢ in A for an initialized error-free sequence of operation calls w, then
there exists a state ¢’ in @’ such that p’ = ¢’ in A’ and (¢’, ¢) € p. The proof
follows easily by induction on the length of w, and the if direction follows.
Conversely suppose A" < A. Let p be the relation o C @’ x @ defined in
the proof of our verification guarantee in Sec. 3.2. For the (init) part, suppose

mit,a,b) , b
Linita,b), g in A. Then since A’ refines A, we must have p’ e, ¢’ for

some ¢’ € Q'. Also, by definition of p, we have (¢, ¢) € p. For the (sim) part,
ya,b . .

suppose (p’, p) € p, and p M q in A. By definition of p, we know that there

exists an exception-free initial sequence w such that U = p and U’ = p’. Since

ya,b . (n,a,b .
P M q by assumption, we have U M q. But since A" < A, we know

w-(n,a,b) n,a,b)

U ————% ¢ for some ¢’ € @', and hence also that p’ —— ¢’. This implies
that (¢’, q) € p, and we are done. O

10

4 ADT transition systems and client ADTs

We are interested in reasoning about imperative language implementations of
ADTSs and proving a substitutivity result for them. With reference to the running
example from Sec. 2, the c-queue program of Fig. 1(b) is what we call an “ADT
transition system” (ADT TS), and the c-sched program of Fig. 3(b) is what
we call a “QType-Client ADT transition system” since it is a client of a QType
ADT and itself provides the functionality of a Scheduler type ADT.

An ADT transition system of type N is a structure of the form
S =(Q, Q1, X1, U, {0, nen) where:

— @ is the set of “complete” states of the ADT (where an ADT operation is
complete) and @ is the set of “incomplete” or “local” states of the ADT.
The set of states @ of the ADT TS is the disjoint union of @, and Q.

— X is a finite set of internal or local action labels. Let I'f, = {in(a) | n €
N and a € I,} be the set of input labels corresponding to the ADT of
type N. The action in(a) represents reading an argument with value a. Let
't ={ret(b) | n € N and b € O,} be the set of return labels corresponding
to the ADT of type N. The action ret(b) represents a return of the value b.
Let X be the disjoint union of Xy, I' and I'g.

— U € Q. is an uninitialized state

— For each n € N, ¢, is a transition relation of the form: §,, C @ x X x @,
that implements the operation n. It must satisfy the following constraints:

e it is deterministic

e it is closed, except for the input actions in I'y for which it must be
complete.

e Each transition labelled by an input action in I'j; begins from a Q. state
and each transition labelled by a return action in I'y ends in a (). state.
All other transitions begin and end in a @ state.

e No transition is labeled ret(e). Thus an ADT TS cannot explicitly return
the exceptional value.

Fig 6(a) shows a part of the ADT transition system induced by c-queue,
assuming it to be of type QType.

An ADT transition system like S above induces an ADT Ag of type N given
by As = (Q.U{E}, U, E,{0ops}nen) where for each n € N, p € Q. U{E}, and
a € I,, we have:

(q,b) if there exists a path of the form

l—1 ret(b) .
— 1, ——qin S

n(a) I
— s e

(E,e) otherwise.

opn(p,a) =

We say that an ADT transition system S’ refines another ADT transition system
S of the same type iff Ag/ refines As. We can also lift the sufficient condition for
refinement to ADT transition systems as well. Let S = (Q¢, Q1, X1, U, {0n }nen)
and 8" = (Q, Q/, X}, U', {0, }nen) be two ADT transition systems of type N.
We say S and S’ satisfy the condition (RC-TS) if there exists a relation p C
Q. x Q. such that:

11

(0.u.u.uuu) (u.().U.U.U.n/)’Q\\(n./\1).0.1.1.\127@.“».11.1.1.\12yo
in(nil) ret(ok 7’"(02/'/’ m(l\)\\\ ret(ukl),/ ‘reL(ok/)/"
Guuuuw O (1¢7(),0,0,0,0) 6/(10,(),0,0,0,1) b / a q a2 a3
beg = 0 len 7 MAXLEN | len 7 MAXLEN | 'l
(6,u,0,u,u,u) (12,(),0,0,0,0) (5 (12,(),0,0,0,1) (5 “ ret(0) L ret(fail)
end = 0 Alend] = t | Alend] = t | ; O(eng, 0, e)
(7,(),0,0,u,u) ()13,(0),0,0,0,0) é(\:;.u‘/.n.u.n.|> (5 : (' (eng, 0, ok fail) p
len = 0 end < MAXLEN-1! end < MAXLEN-1| |
(8,(),0,0,0,u) 1,(0),0,0,0,0) é(ll./\l,\.tl.ll.tl.l) (5 ;
1
end++i end-H-i ‘w’
(17,(0),0,1,0,0) (5(17.«1‘,.(14.04) (5 ’
Tent+! Tent+! |

(18,(0),0,1,1,0) (5(1&.\1}.0.1.1.1) (5 h

(a) (b)

Fig.6. (a) Part of an ADT TS representing a queue implementation from Fig.1(b),
with solid edges representing dinix and dashed edges representing denq; and (b) part
of a QType-client ADT transition system representing the resched implementation of
Fig. 3(b).

(init) Let a € Iy and let (qq, b), with b # e, be the resultant complete state
and output after an init(a) operation in S (thus, starting from an arbitrary
complete state ¢, there is a sequence of transitions starting with in(a) and
ending with a ret(b) in state ¢,). Then, on doing an init operation with input
a from any complete state in S, (1) the run in &’ must terminate, (2) the
output should be b, and (3) the resultant complete state ¢/, must be such
that (g5, ¢a) € p-

(sim) For each n € N, a € I,, b € Op, p,q € Q., and p’ € Q., with (p’,p) € p,
whenever §,, has a terminating run in S starting in state p with a transition
labelled in(a), and ending in state ¢ with a ret(b); then there must exist a
complete state ¢’ € Q. such that §/, has a terminating run in S’ starting
from the state p’, which begins with a transition labelled in(a), and ends
with a ret(b) in a state ¢’, with (¢’, q) € p.

It is not difficult to see that S and S’ satisfy condition (RC-TS) iff the ADT
Ag induced by S’ refines the ADT Ag induced by S.

Let M and N be ADT types. Then an M-client ADT transition sys-
tem of type N (recall that this is meant to capture an ADT implementa-
tion like c-sched) is similar to a ADT transition system of type N, except
that it makes calls to a sub-ADT of type M. It is a structure of the form
U = (Q, Q, X1, U, E, {0} nen) where Q., Q;, X, and U are as in an ADT
transition system. F € () is an exceptional state that arises when a call to a

12

sub-ADT returns an exceptional value. Let X be the disjoint union of X}, I't,, 'S
and Xy (recall that X, is the set of operation calls of type M). Then, for each
operation n in N, §,, is a transition relation of the form 6, C Q x X' x @Q satisfy-
ing similar constraints as in an ADT transition system, except that in addition
we require that

— F is a dead state (i.e. d,, has no transition of the form (E,—, —)).
— 0, is “closed” with respect to a given M-operation and input value (thus if
R ,b /’ /,b,
1m0 e s and 1T e 6 then m = m! and a = o).

— The §;p;; transition relation is assumed to initialize the sub-ADT before going
on to make other calls to it.

Fig 6(b) shows part of a QType-client ADT TS corresponding to Oresched
for the resched operation of the c-sched Scheduler ADT implementation of
Fig. 3(b).

Let U be an M-client ADT transition system of type N, and A be an ADT
of type M. Then the ADT transition system obtained by using A in U, denoted
U[A], is defined in the expected way as a product of the transition systems A
and U. The following theorem says that refinement is “substitutive” and gives
us a compositional way of reasoning about ADT implementations.

Theorem 2. Let U be an M-client ADT transition system of type N, and B
and C be ADTs of type M such that C < B. Then U|C] refines U[B].

Proof. Tt is sufficient to define a relation p’ between the complete states of U[C]
and U[B] satisfying condition (RC-TS). To do this we make use of the necessary
and sufficient condition for refinement (RC) of Thm. 1. Since C refines B, by
Thm. 1 there must exist a relation p from the states of C to the states of B
satisfying conditions (init) and (sim) of (RC). We now define a relation p’ from
the states of U[C] to U[B] given by ((p,q’'),(r,q)) € p' iff p = r and (¢', q) € p.
It is easy to check that p’ satisfies condition (RC-TS) between U[B] and U[C],
and it follows that U[C] refines U[B]. O

We can extend the definition of client transition systems to allow them to
have multiple sub-ADTs. Thus an (M, ..., M,)-client transition system makes
calls to ADTs of type My, ..., M,,. Thm. 2 implies that the congruence property
holds for client ADT transition systems with multiple sub-ADT's as well.

5 Non-Deterministic ADTs

In this section we describe the version of our theory for non-determnistic
ADTs. A non-deterministic ADT (NADT) of type N is a structure of the form
A=(Q, U, E,{op, }nen) similar to a deterministic ADT, except that each op,,
is now a non-deterministic realization of the operation n. Thus, for each n € N,
op,, C(Q x I,) x (@ x O,) satisfying the following conditions:

1. if (¢,e) € op,,(p, a) then ¢ = E,

13

2. if (E,e) € op,(p, a) and (g, b) € op,,(p, a) then ¢ = F and b = e, and
3. Opn(Evf) = (E,G).

Thus if an operation returns the exceptional value the ADT moves to the
exceptional state E, and all operations must keep it in F thereafter. Also if an
operation can return the exception value, then it cannot return any other value.

Let A and B be NADTSs of type N. We say B refines A, written B < A, iff
they satisfy the following conditions:

1. For each exception-free sequence of operation calls, w in L, (A):
(a) w is in L (B) or
(b) w is of the form u- (n, a, b)- v such that «-(n, a, b) not in L;p;(B), there
exists a b’ in O, such that u-(n,a,b’) in Ly (A) and v (n,a,d’) v in
Linit(B). That is, after the prefix u, B decided to reduce non-determinism
by discarding the transition corresponding to output b and allowing a
transition corresponding to output b which is also allowed by A.
2. For each exception-free sequence of operation calls, w in L (B):
(a) wis in L (A) or
(b) w=wu-(n,a,b)-vand u-(n,a,e)in Ljp;(A). That is a prefix of w leads
to exception in A.

We can give a version of the refinement conditions (RC) for NADTs which
is however sufficient but not necessary. Let A = (Q, U, E,{opn}nen) and
A" = (Q',U',E',{op,}nen) be NADTs of type N. We say A and A’ satisfy
condition (NRC) if there exists a relation p C Q' x @ such that:

(init) Let p and p’ be arbitrary states in A and A’ respectively. For each a € I,
b € Oz, if init(p,a) # (E,e) in A then init(p’, a) # (E,e) in A" and for
each (¢’, b) € init(p’, a) in A there exists a ¢ € @ such that (g, b) € init(p, a)
in A and (¢', q) € p.

(sim) For each n € N, a € I,, b € O,, and p’ € Q’, with (p’,p) € p, if n(p,a) #
(E,e) in A then n(p’, a) # (E,e) in A’ and for each (¢’,b) € n(p’, a) in A’
either there exists a ¢ € @ such that (¢, b) € n(p,a) in A and (¢’, q) € p or
n(p,a) = (E,e).

Fig. 7 illustrates sufficient condition for refinement between NADTs. This
condition essentially captures the following: (i) the concrete cannot introduce
a new transition when the abstract transition is not an exception and (ii) the
concrete ADT must allow at least one of the non-exception transitions allowed
in the abstract.

Theorem 3. Let A and A’ be two NADTs of type N. Then A < A if they
satisfy condition (NRC).

This notion of refinement gives similar verification guarantees for clients of
the NADTSs, as for the deterministic case.

The definitions of ADT transition systems can be extended to allow non-
determinism, and the substitutivity result (Thm 2) continues to hold in this
setting as well.

14

(init, a, by)
q1

(init, a, ba .

g3

(i"it7 a, bl) (init, a, bl) N\ \‘
init = ‘ !
(init) e ip

! I
. . / !
-5 (init, a, by) /q{ ///
: ij,’//
a2
(init, a, ba)

(sim)

o p O%O(n a, b1) a

Fig. 7. Illustrating the sufficient condition (NRC) for refinement.

6 Related Work and Conclusion

We discuss related work in relation to following aspects of our work: the notion
of refinement and the compositionality result.

The notion of refinement in Event-B [2], and proof environments like Dafny
[12] and Resolve [5] is that the abstract simulates the concrete. This notion is
not strong enough to show that the concrete provides the same functionality
as the abstract, as it allows the concrete to leave out some functionality that
is present in the abstract. Moreover it does not allow what we consider to be
valid refinements like QADT, refining QADT,. Liskov and Wing give a well-
known notion of refinement in the form of behavioural subtyping, which in a
deterministic setting essentially asks for both the abstract and concrete to be able
to simulate each other. Once again this notion is too strong and disallows QADT;
from refining QADT,. Furthermore, they do not seem to have any requirements
on termination, which is crucial for the verification guarantees we are interested
in. Finally, as already mentioned, the notion of refinement in VDM [4,9] and
Z [3,16] is closest to ours, when specialized to deterministic ADTs. However
our definition is unique in that it is trace-based, and we extend our theory
to programs that implement ADTs. We should also mention that Kapur [10]

15

proposes a behavioural and algebraic notion of ADTs, but the emphasis is on
proving properties about them rather than refinement.

He et al.[7] give a notion of refinement which is similar to the Z notion of
refinement. In this notion, the communication between the client and the ADT
is not functional, since in this notion the client maintains the ADT state in the
form of “global state” and communicates the state to the ADT by “initialization”
and “finalization” operations. This notion is not compositional, in particular an
ADT operation is not allowed to make a call to a sub-ADT, since a sub-ADT
may have a different data type.

Welsch at el.[15] proposed a notion of refinement in the form of “backward
compatibilty” for proving that a new library implementation is backward com-
patible with an existing implementation. The concrete implementation simulates
the abstract implementation in this notion of reifnement. This notion uses a bi-
jective relation between the abstact and concrete states, which is too strong and
disallows certain valid reifinements that we allow. There is no abstract mathe-
matical model or specification in this notion of refinement.

In terms of our compositionality result, the theory of CSP [8] provides no-
tions of refinement based on traces and failures/refusals, for which a variety
of compositionality (also called monotonicity or congruence) results are proved.
However none of these results imply our result which is in the specific setting of
transition system implementations of ADTs.

References

1. Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: An open toolset for modelling and rea-
soning in Event-B. Software Tools for Technology Transfer, 12(6):447-466, Novem-
ber 2010. http://dx.doi.org/10.1007/510009-010-0145-y.

3. Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Specification
language. In On the Construction of Programs, pages 343—410. 1980.

4. Dines Bjgrner and Cliff B. Jones, editors. The Vienna Development Method: The
Meta-Language, volume 61 of LNCS. Springer, 1978.

5. Stephen H. Edwards, Wayne D. Heym, Timothy J. Long, Murali Sitaraman, and
Bruce W. Weide. Part ii: specifying components in resolve. SIGSOFT Softw. Eng.
Notes, 19(4):29-39, October 1994.

6. FreeRTOS verification project. Project artifacts. www.csa.iisc.ernet.in/
~deepakd/FreeRT0S, 2014.

7. Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In
Bernard Robinet and Reinhard Wilhelm, editors, ESOP, volume 213 of LNCS,
pages 187-196. Springer, 1986.

8. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

9. Clifford B. Jones. Systematic software development using VDM. Prentice Hall
International Series in Computer Science. Prentice Hall, 1986.

10. Deepak Kapur. Towards a theory of Abstract Data Types. PhD thesis, MIT, May
1980.

16

11.

12.

13.

14.

15.

16.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of
an os microkernel. ACM Trans. Comput. Syst., 32(1):2, 2014.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In Edmund M. Clarke and Andrei Voronkov, editors, LPAR (Dakar), volume
6355 of LNCS, pages 348-370. Springer, 2010.

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811-1841, 1994.

Carroll C. Morgan. Programming from specifications, 2nd Edition. Prentice Hall
International series in computer science. Prentice Hall, 1994.

Yannick Welsch and Arnd Poetzsch-Heffter. A fully abstract trace-based seman-
tics for reasoning about backward compatibility of class libraries. Sci. Comput.
Program., 92:129-161, 2014.

Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, 1996.

