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ABSTRACT
Dynamic programming is a core algorithmic technique, taught com-
monly in algorithms courses. While a powerful tool when mas-
tered, students —who are learning it for the first time— may strug-
gle with the decomposition of the problem into overlapping sub-
problems and iterative reuse of the solutions to the subproblems.

In this paper, we present DPAssist, an automated technique to
generate feedback on student submissions written using iterative
dynamic programming strategy. DPAssist checks a student submis-
sion against reference implementations provided by the instructor.
Checking program equivalence is difficult in this setting because of
stylistic variations and use of procedures, loops and arrays. DPAs-
sist therefore follows a novel staged approach. It performs a com-
bination of static analysis and pattern matching on a program to
compute a high-level, precise summary and then checks equiva-
lence of summaries using an SMT solver. DPAssist identifies a
reference implementation whose summary is closest to that of the
student submission. If they are not equivalent, it reports a com-
plete list of semantic differences between the two, using a novel
counter-example guided iterative feedback generation algorithm.

We have evaluated DPAssist on 518 programs submitted to two
problems posed on a contest site. DPAssist generated correct feed-
back on 79.5% submissions in average 5.3s each. It required only
one reference implementation for every 11 submissions. This shows
that the staged approach of DPAssist successfully handles a multi-
tude of stylistic variations in submissions without requiring propor-
tionately many reference implementations.

1. INTRODUCTION
The increasing realization about the importance of CS education

has resulted in several websites that offer programming lessons,
several MOOCs on various CS subjects and even adoption of com-
puting curricula as part of school education. Unfortunately, provid-
ing good feedback on programs submitted by students is extremely
challenging because of the differences in high-level strategies or
low-level syntactic and stylistic variations across submissions [17].
This has motivated recent work on automating feedback genera-
tion, which until now, has focused on introductory programming
assignments [40, 14, 41, 18]. In this paper, we investigate auto-
matic feedback generation for the more sophisticated subject matter
of algorithms, and in particular, dynamic programming.

Dynamic Programming. Among a variety of algorithmic tech-
niques taught in algorithms courses, Dynamic Programming (DP)
is an essential one as it forms the basis of many powerful algo-
rithms on strings (e.g., longest common subsequence) and graphs
(e.g., shortest path). These algorithms find applications in many
areas such as text processing and bioinformatics.

1 void main() {
2 int i, j, n, max;
3 scanf("%d", &n); // Input
4 int m[n][n], dp[n][n];
5 for (i = 0; i < n; i++)
6 for (j = 0; j <= i; j++)
7 scanf("%d", &m[i][j]); // Input
8 dp[0][0] = m[0][0]; // Init
9 for (i = 1; i < n; i++) {

10 for (j = 0; j <= i; j++) {
11 if (j == 0)
12 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
13 else if (j == i)
14 dp[i][j] = dp[i-1][j-1] + m[i][j]; // Update
15 else if (dp[i-1][j] > dp[i-1][j-1])
16 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
17 else dp[i][j] = dp[i-1][j-1] + m[i][j]; // Update
18 }
19 }
20 max = dp[n-1][0];
21 for (i = 1; i < n; i++)
22 if (dp[n-1][i] > max) max = dp[n-1][i];
23 printf("%d", max); // Output
24 }

Figure 1: A reference implementation for matrix path problem

The essence of DP lies in its ability to efficiently exploit the
structure of the problem, namely, overlapping subproblems and op-
timal substructure [6]. DP is considered more advanced than other
strategies like divide-and-conquer and greedy algorithms, which do
not entail overlapping subproblems. As an example, consider the
matrix path problem1 taken from a popular programming contest
site CodeChef. We are given a lower triangular matrix m of n rows.
Starting at a cell, we can traverse a path in the matrix by moving ei-
ther directly below or diagonally below to the right. The objective
is to find the maximum weight among the paths that start at the cell
in the first row and first column and end in any cell in the last row.
The weight of a path is the sum of all cells along that path. To solve
this problem, we identify (1) the optimal substructure: the solution
for m[i][j] (i.e., the maximum weight of paths reaching m[i][j]) can
be obtained by selecting the maximum from the solutions for m[i-
1][j] and m[i-1][j-1] and adding m[i][j], and (2) overlapping subprob-
lems: the solution for m[i][j] is used for computing solutions for
m[i+1][j] and m[i+1][j+1]. Such observations are formalized as DP
recurrences [6]. A DP algorithm computes an optimal solution to a
problem by solving the DP recurrence efficiently.

Figure 1 shows a C program that implements a DP algorithm
for the matrix path problem. The array dp stores the solutions to
the subproblems. The program implements an iterative strategy for
computing solutions starting from the top-left matrix cell. It iterates

1http://www.codechef.com/problems/SUMTRIAN
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1 int max(int a, int b) {
2 return a > b ? a : b;
3 }
4 int max_arr(int arr[]) {
5 int i, max;
6 max = arr[0];
7 for (i = 0; i < 100; i++)
8 if (arr[i] > max) max = arr[i];
9 return max;

10 }
11 int main() {
12 int n, i, j, A[101][101], D[101][101];
13 scanf("%d", &n);// Input
14 for (i = 0; i < n; i++)
15 for (j = 0; j <= i; j++)
16 scanf("%d", &A[i][j]); // Input
17 D[0][0] = A[0][0] ; // Init
18 for (i = 1; i < n; i++)
19 for (j = 0; j <= i; j++)
20 D[i][j] = A[i][j] + max(D[i-1][j], D[i-1][j-1]); // Update
21 int ans = max_arr(D[n-1]);
22 printf("%d", ans); // Output
23 return 0;
24 }

Figure 2: A faulty student submission for matrix path problem

over the rows from top-to-bottom and columns from left-to-right as
seen in Figure 1 and uses previously computed values stored in dp.
The DP recurrence can also be computed recursively. The recursive
strategy is not preferred in practice because it does not scale well
for large problem instances. In this work, we focus on the more
common strategy of iteratively solving DP problems.

Iqbal and Alvi [19] argue that students have a tough time grasp-
ing the fundamentals of DP and need lot of practice and feedback.
Our goal in this paper is to develop program analysis techniques to
automatically generate feedback on iterative DP programs.

Our Approach. Most standard algorithmic techniques such as DP
or divide-and-conquer prescribe certain templates for logical steps
that should be instantiated to derive an implementation for the spe-
cific problem at hand. Our key insight is that these templates can be
formally represented and their instantiations can be extracted stat-
ically from a program. We call it a summary of the program. The
summaries do away with most of the syntactic and stylistic varia-
tions across different programs implementing the same algorithm
and help in checking equivalence among them.

In this paper, we exploit this insight to automatically generate
feedback for iterative DP assignments. We present a technique
called DPAssist. Apart from student submissions, DPAssist takes
reference implementations from the instructor. It then computes a
precise summary of each program and checks equivalence of the
summary of a student submission (i.e., submission summary) with
the summary of each of the reference implementations (i.e., refer-
ence summaries). If the submission summary is not found to be
equivalent to any reference summary, DPAssist generates feedback
highlighting the differences between the submission summary and
the closest reference summary. Thus, DPAssist validates correct
logical steps in the student submission and generates customized
feedback for the faulty steps, using a closest reference implementa-
tion. If the solution strategy used by the student is not represented
in the reference implementations, the instructor may add another
reference implementation and run DPAssist again.

To illustrate our approach, we give a faulty program, inspired by
student submissions to the matrix path problem, in Figure 2. Let
the program in Figure 1 be a reference implementation. DPAssist
generates the following feedback —which is close to what could be
generated manually— by comparing the two:

In the declaration step: (1) Types of A and D should be int[n][n]
In the update step:
(2) Under guard j == 0,

compute D[i][j] = D[i-1][j] + A[i][j]
instead of D[i][j] = A[i][j] + (D[i-1][j]>D[i-1][j-1] ?

D[i-1][j] : D[i-1][j-1]).
(3) Under guard (j != 0 && j == i),

compute D[i][j] = D[i-1][j-1] + A[i][j]
instead of D[i][j] = A[i][j] + (D[i-1][j]>D[i-1][j-1] ?

D[i-1][j] : D[i-1][j-1]).
In the output step: (4) Under guard true, compute maximum

over D[n-1][0],...,D[n-1][n-1] instead of D[n-1][0],...,D[n-1][99].

The first correction suggests that the submission use array sizes as
int[n][n] instead of hardcoded value of int[101][101]. The DP update
at line 20 misses some corner cases for which DPAssist generates
corrections #2 and #3 above. The computation of output at line 22
should use the correct array bounds as indicated by correction #4.

These example programs use two-dimensional arrays, nested loops
and the faulty submission even uses multiple procedures. Since
they use different variable names and programming styles, it is non-
trivial to use one to generate feedback for the other. The staged
approach of DPAssist aids in overcoming these challenges. DPAs-
sist first infers program summaries through static analysis based on
backward substitution [13] and syntactic pattern matching special-
ized to iterative DP programs. The equivalence of two summaries
is then checked using syntactic simplifications and satisfiability-
modulo-theories (SMT) based constraint solving. We have devel-
oped a novel counter-example guided feedback generation tech-
nique to iteratively identify and fix all semantic differences be-
tween submission and reference summaries. The student submis-
sion in Figure 2 contains multiple faults. The feedback above iden-
tifies fixes for all the faults in it. In addition, we use SMT based
simplification tactics to make feedback as concise as possible.

The idea of exploiting the common patterns in DP programs has
been used by Pu et al. [36] but for synthesis of DP programs. Singh
et al. [40] advocated that a complete list of semantic changes is a
useful form of feedback to students. While they presented a repair
technique for introductory programming assignments, we focus on
the more sophisticated, but specialized, domain of DP. Gulwani et
al. [14] used reference implementations to generate feedback for
performance issues in introductory programming assignments. In
contrast, our goal is to look for logical faults in DP programs. The
program repair approaches (e.g., [25, 31, 22, 28, 27]) target devel-
opers and synthesize repairs for faults localized at the granularity
of line numbers. In our opinion, the high-level feedback generated
by DPAssist is more suitable to students. Unlike the program re-
pair setting, we have the advantage of calling upon the instructor
to provide reference implementations. This aids in giving complete
feedback but then our technique must solve the challenging (and in
general, undecidable) problem of checking program equivalence.

Implementation and Results. We have implemented DPAssist for
C programs and evaluated it on 518 student submissions for two
problems from CodeChef. Of these, 85 were tagged by the test-
based online judge of CodeChef as wrong answers. On 79.5% of
the total submissions, DPAssist generated correct feedback. In ad-
dition to faults in wrong answers, DPAssist also found many cases
of faulty logic in the submissions accepted by CodeChef as cor-
rect answers. The static technique of DPAssist thus has a qualita-
tive advantage over the test-based approach of online judges. The
submissions come from 463 students from over 100 different insti-
tutes and are therefore representative of diverse backgrounds and
coding styles. Even then, DPAssist required only one reference im-
plementation for every 11 submissions. This shows that the staged
approach of DPAssist successfully handles a multitude of stylistic



Declaration block
n 7→ int, m 7→ int[n][n], dp 7→ int[n][n], out 7→ int
Input block #1
true: n = any;
Input block #2
loop(i,0,n-1,+) {

loop(j,0,i,+) {
true: m[i][j] = any; } }

Init block
true: dp[0][0] = m[0][0]
Update block
loop(i,1,n-1,+) {

loop(j,0,i,+) {
(j == 0): dp[i][j] = dp[i-1][j] + m[i][j];
(j != 0 && j == i): dp[i][j] = dp[i-1][j-1] + m[i][j];
(j != 0 && j != i && dp[i-1][j] > dp[i-1][j-1]):

dp[i][j] = dp[i-1][j] + m[i][j];
(j != 0 && j != i && dp[i-1][j] ≤ dp[i-1][j-1]):

dp[i][j] = dp[i-1][j-1] + m[i][j]; } }
Output block
true: out = _max(dp[n-1][0], dp[n-1][1..n-1]);

(a) Summary of reference implementation of Figure 1
Declaration block
n 7→ int, A 7→ int[101][101], D 7→ int[101][101], out 7→ int
Input block #1
true: n = any;
Input block #2
loop(i,0,n-1,+) {

loop(j,0,i,+) {
true: A[i][j] = any; } }

Init block
true: D[0][0] = A[0][0];
Update block
loop(i,1,n-1,+) {

loop(j,0,i,+) {
true: D[i][j] = A[i][j] + (D[i-1][j] > D[i-1][j-1] ?

D[i-1][j] : D[i-1][j-1]);} }
Output block
true: out = _max(D[n-1][0], D[n-1][0..99]);

(b) Summary of faulty student submission of Figure 2
Figure 3: Program summaries computed by DPAssist

variations in submissions without requiring proportionately many
reference implementations. DPAssist is fast even while checking a
student submission against multiple reference implementations. It
took on an average 5.3s to generate feedback for each submission.

Contributions. The contributions of this paper are follows:

• We motivate the problem of automatically generating feed-
back for programming assignments related to advanced al-
gorithmic concepts, in particular, dynamic programming.
• We present DPAssist which contributes two novel techniques:

(1) summary inference through a combination of pattern match-
ing and static analysis which deals with stylistic variations
effectively and (2) counter-example guided iterative feedback
generation that generates a complete list of fixes for faults in
a student submission. We believe that these techniques can
be extended to other algorithmic classes as well.
• We report experimental results on 518 submissions to two

algorithmic problems and show effectiveness of DPAssist.

2. OVERVIEW
We now return to the example presented in the Introduction sec-

tion and demonstrate important steps of DPAssist. Figure 3 gives
the summaries computed by DPAssist for the reference implemen-
tation (Figure 1) and the student submission (Figure 2). Each sum-
mary consists of different blocks corresponding to different logical
steps: declaration, input, init, update and output where init, update
and output refer to the initialization of the DP arrays, their updation

and the computation of the output from the DP arrays.

Summary Inference. We explain summary inference for the stu-
dent submission. DPAssist identifies the input variables and output
expressions by simple pattern matching which extracts arguments
to the I/O library functions such as scanf and printf. The statements
that match I/O patterns are labeled as input/output statements in
Figure 2. This gives us the variable n and the array A[101][101] as
the input variables. We use a fresh integer valued variable out to
store the output produced by the program. These variables and their
types are recorded in the declaration block in Figure 3(b).

We label an assignment statement as an update statement if the
LHS is an array element and the RHS uses some element of the
same array or a variable that is defined in terms of some element of
that array previously. The array being assigned is a DP array. Iden-
tifying update statements can be tricky and requires global program
analysis. In contrast, simple pattern matching suffices for labeling
input/output statements. We shall label line 20 in Figure 2 as an
update statement and identify the array variable D as the DP ar-
ray provided we can infer that the RHS at line 20 uses some ele-
ment of D. The RHS involves a call to procedure max. Through
a static analysis, it infers that the RHS expression is equivalent to
A[i][j] + (D[i-1][j] > D[i-1][j-1] ? D[i-1][j] : D[i-1][j-1]). Through
pattern matching over this expression, it detects that D is used in
both branches and labels line 20 in Figure 2 as an update state-
ment. The declaration of the DP array D[101][101] is recorded in
the declaration block. An assignment to D where the RHS is an
expression over constants or input variables is labeled as an init
statement. Line 17 in Figure 2 is an init statement. Following the
above technique, we have also labeled the key statements of the
reference implementation in Figure 1.

Having labeled the key statements, DPAssist proceeds to infer
the summary blocks. DPAssist performs syntactic pattern matching
to summarize the code which encloses each of the labeled state-
ments. We denote an arbitrary value read as input by any. The
input blocks in Figure 3(b) record the way the input variables n
and A are initialized. The elements of A are initialized in a nested
loop (lines 14–16) where the loop indices go over each of the ar-
ray dimensions. The loop construct gives the loop index, the two
bounds on it and the direction (+/-) of index updation. A “+” in-
dicates that the index is incremented in each iteration by one. The
assignment statements in the summary are guarded by a boolean
constraint. The init block states that D[0][0] is initialized to A[0][0].
The update block is obtained by using the expression derived while
analyzing the procedure call at line 20. In our experiments, we
observed that there are certain repeating iterative patterns used in
the submissions. The computation of a maximum over an array in
lines 6–8 is one such example. We encode patterns to lift these to
certain predefined functions which make it is easier to reason about
the summaries later. The function _max takes the first and the last
elements of a contiguous array segment and returns the maximum
over them. We use it in the output block in Figure 3(b) to summa-
rize the computation in lines 6–8.

Summary inference cleanly separates logical steps in separate
summary blocks and does away with several syntactic and stylistic
quirks of a program. First, we permit only the input/output vari-
ables, DP arrays and loop indices in the summary. We call them
the summary variables. We eliminate the use of variables other
than the summary variables from the summary. Second, we elimi-
nate procedure calls (e.g., line 20) while summarizing their seman-
tics precisely. Third, DPAssist maps different loop constructs such
as for, while and do-while to the canonical loop construct. Fourth,
the guarded statements within a summary block are interpreted as
a set of statements. In other words, the ordering between them is



compiled away. Thus, two code fragments which swap the true and
false branches but perform the same computation in two programs
would be represented by syntactically equivalent set of guarded
statements. As a result, the summaries in Figure 3 are much easier
to compare than the corresponding programs.

Feedback Generation. DPAssist first checks whether the two sum-
maries in Figure 3 contain the same number of blocks of the same
type and in the same order. It uses the type information in decla-
ration blocks to infer type-compatible variable correspondences. If
multiple correspondences are possible, it performs the subsequent
analysis for each of them separately. For purposes of illustration,
consider that the variables n from both summaries correspond to
each other. Similarly, A corresponds to m, D corresponds to dp and
out corresponds to out. But for this correspondence to hold, we
require the array sizes to be same. This gives rise to correction #1
in the feedback presented in the Introduction section.

DPAssist then checks equivalence of each block from the sub-
mission summary with the corresponding block from the reference
summary. By unifying the summary variables, we get syntactic
equality of the input and init blocks with their counter-parts. In the
case of output blocks, we identify correction #4.

The case of update blocks is more interesting. The iteration
spaces of these blocks are equal. To check equivalence of loop
bodies, DPAssist constructs a formula ϕ which asserts that in each
iteration, if the two DP arrays are equal at the beginning then they
are equal at the end of the iteration. We defer the more technical
details to Section 3.2. It then checks validity of ϕ. In this exam-
ple, the formula is not valid and the SMT solver returns a counter-
example which assigns values to all the variables in the formula.
When substituted in the loop bodies, the first guard in the reference
summary is satisfied, and the ternary condition in the submission
summary evaluates to false. The corresponding assignment state-
ments use different DP array elements on the RHS. DPAssist there-
fore generates correction #2. DPAssist thus correctly discovers that
the submission does not handle a corner case: When j==0, we are
at the first column in the lower-triangular matrix (recall the prob-
lem statement from the Introduction) and we should use solution
to the subproblem stored at D[i-1][j] whereas the submission incor-
rectly accesses D[i-1][j-1]. The student should add code to handle
this case as suggested by DPAssist and guard line 20 with j!=0.

To check whether the two loop bodies become equivalent when
the correction is applied, DPAssist updates the loop body in the
submission summary as per the suggested fix and checks equiva-
lence of loop bodies again. It then discovers a counter-example
where in the reference, the second guard evaluates to true, and in
the (updated) submission, the guard j!=0 and the ternary condi-
tion evaluate to true. These result in different assignments to D[i][j]
– the reference assigns D[i-1][j-1] whereas the submission assigns
D[i-1][j]. So DPAssist generates correction #3. This is another cor-
ner case –of updating cells along the diagonal– missed by the faulty
submission. When (j!=0 && j!=i), the student should retain the as-
signment at line 20. On incorporating this feedback, DPAssist is
able to verify that the student summary and the reference summary
are equivalent. Thus, DPAssist does not stop after discovering some
one fault in the student submission. It discovers faults in all sum-
mary blocks independently. As was seen for update blocks, within
the same block, it tries to discover all possible faults by iteratively
looking for counter-examples and applying fixes.

3. TECHNICAL DETAILS

3.1 Summary Inference

We first introduce the language of summaries. The summary of
a DP program is a formal representation of the logical steps imple-
mented in it. A summary is made up of a sequence of blocks. In
Section 2, we discussed different types of summary blocks and the
notion of summary variables. The declaration block gives C types
of summary variables. For brevity, we have omitted type declara-
tions of loop indices in Figure 3.

A summary block (other than a declaration block) is either a set
of guarded assignments or a possibly nested loop. A guarded as-
signment is of the form g: x = e where g is a boolean expression
called a guard, and x and e are type-compatible variable and ex-
pression respectively. We skip discussion on syntax of guards and
expressions as these are standard. We do not permit pointer arith-
metic in expressions. A loop is of the form loop(a,b,c,d) { e } where
a is a loop index variable, b and c are the bounds on it, d is either
“+” or “-” and e is another statement. The meaning of “+” was
introduced earlier; “-” means that the loop index is decremented by
one in each iteration. We permit tightly nested loops, that is, if a
loop statement s1 is nested inside a loop statement s2 then there
cannot be another statement between them.

3.1.1 Building Blocks
Backward Substitution. It is natural for programmers to break a
computation into smaller parts and use temporary variables to store
intermediate results. From the perspective of summary inference,
this complicates the structure of the program and obscures the un-
derlying logical steps of the DP strategy. To eliminate the use of
a temporary variable x at a program location l, we compute a set
of guarded expressions {g1 : e1, . . . , gn : en} where the guards
and expressions are defined only over the summary variables of the
program. We denote this set by Σ(l, x) and call Σ the substitution
store. Semantically, if gk : ek ∈ Σ(l, x) then x and ek evaluate
to the same value at l whenever gk evaluates to true at l. For any
run of the program, exactly one of the guards in Σ(l, x) is satis-
fied at l. The substitution store Σ is lifted in a natural manner to
expressions and statements. For instance, for an assignment state-
ment s ≡ x = e, Σ(l, s) = {g1 : x = e1, . . . , gn : x = en} where
{g1 : e1, . . . , gn : en} = Σ(l, e).

Gulwani and Juvekar [13] developed an inter-procedural back-
ward symbolic execution algorithm to compute symbolic bounds
on values of expressions. While we are not interested in the bounds,
the equality mode of their algorithm suffices to compute substitu-
tion stores. We call this backward substitution. We refer the reader
to [13] for the details of the algorithm.

Syntactic Pattern Matching. We employ pattern matching for two
main purposes: (1) for assigning labels (e.g., input, update, etc.) to
program statements and (2) for extracting summary blocks.

We define a function updateLabelMap to assign a label to a
statement s. Let l be the program location of s. updateLabelMap
performs pattern matching over Σ(l, s). In Σ(l, s), the non-summary
variables (or temporaries) in s are replaced by the guarded expres-
sions from the substitution store. This makes the labeling part of
DPAssist robust even in presence of temporaries and procedure
calls. For example, suppose we have t = x[i-1]; x[i] = t;. The
second statement can be identified as an update statement through
pattern matching only if we substitute x[i-1] in place of t on the
RHS. In general, Σ(l, s) may contain more than one statements (see
the definition above). If Σ(l, s) = {s1, . . . , sn}, updateLabelMap
requires that all of s1, . . . , sn satisfy the same pattern and get the
same label. We have already discussed the specific patterns that we
match for different statement labels in Section 2.

Let genBlock be the function which infers summary blocks from



uniqueDef(s, B) ≡ ∀s′ ∈ B, ∀i, i′ ∈ iter(B) : h = defIn(s, i) ∧ h′ = defIn(s′, i′) =⇒ (h 6= h′) ∨ (s = s′ ∧ i = i′)
allUseAfterDef(s, B) ≡ ∀s′ ∈ B, ∀i, i′ ∈ iter(B) : h = defIn(s, i) ∧ h ∈ useIn(s′, i′) =⇒ (i < i′) ∨ (i = i′ ∧ s <po s′)

useAfterAllDef(s, B) ≡ ∀s′ ∈ B, ∀i, i′ ∈ iter(B), ∀h ∈ useIn(s, i) : h = defIn(s′, i′) =⇒ (i′ < i) ∨ (i′ = i ∧ s′ <po s)
EqIter(BS, BR, IC) ≡ IC ∧ idxcorr(BS, BR) =⇒ (iter(BR) ∧ guards(BR) ⇐⇒ iter(BS) ∧ guards(BS))

EqBody(BS, BR, IC) ≡ IC ∧ varcorr(BS, BR) =⇒ (iter(BR) ∧ body(BR) ∧ body(BS) =⇒
∧

v∈updated(BR)

v = v′)

Figure 4: Symbolic constraints

top-level statements in the program. A statement which is not
enclosed within another statement is called a top-level statement.
For example, the outer for loop starting at line 18 in Figure 2 is a
top-level statement but the inner for loop starting at line 19 is not.
Thus, DPAssist will generate a summary block for the outer loop
(lines 18–20). A top-level statement can be an assignment state-
ment, a conditional statement or a loop. The case of loops is most
interesting. To summarize the loop header, our algorithm identifies
the loop index variable i, expressions representing its initial value
iv and final value fv and the increment to the loop index d. Let e be
+ is d is +1 and - if it is -1. DPAssist then generates loop(i, iv, fv,
e) as the corresponding summary statement. We do the same for
while and do-while loops using dataflow analysis [2].

Next, all labeled statements within the top-level statement are
converted to their equivalent guarded statements in the summary
using the substitution store such that the guards are pairwise dis-
joint. This removes if-else branching and sequencing between the
program statement. If the top-level statement does not contain any
labeled statement, no summary block is generated for it. If the re-
sulting summary block does not meet the syntactic restrictions of
our summary language, DPAssist returns FAIL.

Symbolic Constraints. Let B be a summary block and s a statement
in it. Let iter(B) represent the iteration space defined by the loops
in B. For example, loop(i,0,n,+) defines the space 0 ≤ i ≤ n.
defIn(s, i) returns the memory location that statement s defines in
iteration i ∈ iter(B). For example, if s is the statement a[i][j] = e,
and i and j are loop index variables then defIn(s, (0, 0)) = a[0][0].
Similarly, useIn(s, i) returns the set of all memory locations that
are used in s at iteration i ∈ iter(B). <po defines the program
order among two statements in B.

The formula uniqueDef(s, B) asserts that no other statement in
B writes to the memory locations defined by s and that s also does
not write to the same location multiple times. Next, the formula
allUseAfterDef(s, B) asserts that all uses of memory locations de-
fined in s occur after s. We define useAfterAllDef(s, B) to assert
that the definitions for all memory locations used in s occur before
s. In other words, the location used in s is not redefined later. The
other formulae in Figure 4 are explained in Section 3.2.

Pre-processing. In a pre-processing phase, we replace repeating
iterative computations by the predefined functions (e.g., _max) di-
rectly in the source code of the program. We require the expres-
sions in the program to be free of side-effects. This requirement
is satisfied by applying a standard program transformation which
introduces temporaries. Since we focus only on iterative DP pro-
grams, we do not permit recursive procedures. For presentation, we
assume that all procedures are inlined. However, our implementa-
tion does work directly on procedural programs. We present the
algorithm assuming there is only one DP array in the program. The
extension to multiple DP arrays is straightforward.

3.1.2 Algorithm
Algorithm 1 presents our algorithm COMPUTESUMMARY to com-

pute the summary of an iterative DP program P. Line 2 initial-
izes the substitution store Σ, the labeling map L for statements and
the summary S. COMPUTESUMMARY calls identifySummVars
(line 3) which returns the set of summary variables SV in the pro-
gram by pattern matching. Initially, all array variables are treated as
potential DP arrays. The algorithm then goes over each statement
s in the program. It calls updateSubStore (line 5) which returns
an updated substitution store after analyzing s. Next, the algorithm
calls updateLabelMap (see Section 3.1.1) at line 6 to obtain the
updated labeling map after analyzing s.

Once the labeling is computed, the algorithm proceeds to ob-
tain summary blocks from the program. It goes over each top-
level statement t in the program (line 8) in the program order and
calls genBlock (line 9) to transform t into a single summary block
through syntactic pattern matching (see Section 3.1.1). Note that
the ordering of the summary blocks in S is same as the ordering
between the respective top-level statements in the program.

The summary block obtained at line 9 may contain statements
with different labels. This happens, for example, if the program
performs initialization and updation of the DP array within the
same loop. For such blocks, isHeterogenous returns true (line 10).
The algorithm then proceeds to obtain a sequence of homogeneous
blocks for the heterogeneous block (line 11). A block is homoge-
neous if all the labeled statements within it have the same label.

The procedure getHomogeneousBlocks goes over each input
and init statement s in B (line 19). It checks whether uniqueDef(s, B)
(defined in Figure 4) is valid to assert that there are no other def-
initions of the locations defined at s (line 20). Next, it checks the
validity of allUseAfterDef(s, B) (line 21) to assert that any use of
the locations defined in s happens after s. If these checks succeed,
we can safely move the input/init statement outside B and place it
before the rest of B in the final sequence of homogeneous blocks.
The sequence of blocks thus obtained is semantically equivalent
to the original heterogeneous block since the transformation pre-
serves all dependences [10, 16, 37]. Next, the procedure goes over
each output statement s in B (line 23). It checks the validity of
useAfterAllDef(s, B) to assert that all variables used in the output
statement s are defined before the output statement. In this case, we
can safely move the output statement outside B and place it after
the rest of B. Again, this transformation preserves the dependences
in the block. When all the validity checks are successful, the al-
gorithm calls splitBlocks (line 26) that applies the transformations
described above and returns a sequence of homogeneous blocks.
The function splitBlocks duplicates the loop header of B to create
a new block B′ and moves the appropriate statements to B′. The
input and init statements are placed in distinct blocks and the block
with input statements comes before the block with init statements.

We note that getHomogeneousBlocks is a powerful procedure
that leverages dependence analysis to separate out different logical
steps interleaved within the same block. For example, if a student
submission performs init and update in the same loop but a refer-
ence implementation performs them in separate loops, COMPUTE-
SUMMARY computes comparable summaries for the two.



Algorithm 1: Algorithm COMPUTESUMMARY

Input: A program P implementing an iterative DP strategy
Output: The summary S of P and the set of residual statements of P

1 begin
2 Σ← ∅, L← ∅, S← ∅
3 SV ← identifySummVars(P)
4 foreach statement s ∈ P do
5 Σ← updateSubStore(Σ, s, SV, P)
6 L← updateLabelMap(L, Σ, s, SV)
7 end
8 foreach top-level statement t ∈ P in the program order do
9 Bt ← genBlock(t, Σ, L, P)

10 if isHeterogeneous(Bt) then
11 Bh ← getHomogeneousBlocks(Bt)
12 S← append(Bh, S)
13 else S← append(Bl , S) end
14 end
15 if BlocksInOrder(S) then return 〈S, getResidual(P, S, Σ)〉
16 end
17 Procedure getHomogeneousBlocks(B : block)
18 begin
19 foreach statement s ∈ Input(B) ∪ Init(B) do
20 if uniqueDef(s, B) is not valid then return FAIL
21 if allUseAfterDef(s, B) is not valid then return FAIL
22 end
23 foreach statement s ∈ Output(B) do
24 if useAfterAllDef(s, B) is not valid then return FAIL
25 end
26 return splitBlocks(B)
27 end

Finally, the algorithm checks if the blocks are in the required
order. The function BlocksInOrder takes a sequence of blocks, ob-
tains the labels for them and returns true if the labels match the
regular expression "Declaration Input* Init* Update* Output*". If
not, the algorithm fails. Otherwise, it returns the blocks obtained
as the summary and calls getResidual to obtain the set of resid-
ual statements. The function getResidual returns the set of pro-
gram statements that are not summarized in S. These are the state-
ments in the program that did not match any of the statement pat-
terns and also were not analyzed as part of the backward substi-
tution procedure. These may arise if the submission performs ex-
traneous computation not required in the DP solution. The resid-
ual statements are shown to the student as part of feedback. Re-
call that identifySummVars returns all arrays as potential DP ar-
rays (line 3). The arrays for which COMPUTESUMMARY does
not discover an update statement are treated as auxiliary variables.
The statements operating over them are added to the residual state-
ments. If any block in S refers to them, the algorithm returns FAIL.

Our algorithm satisfies several properties. The backward substi-
tution procedure computes the substitution store for the given pro-
gram. The labeling procedure computes precise statement labels.
Finally, the dependence analysis ensures that the splitting of hetero-
geneous blocks into homogeneous blocks is sound. These ensure
that whenever COMPUTESUMMARY succeeds (i.e., does not return
FAIL), it computes a sound and precise summary of the given pro-
gram modulo the residual statements.

3.2 Feedback Generation
Our objective is to generate feedback for a student submission

by identifying the semantic differences between it and the closest
reference implementation. Program equivalence is an undecidable
problem and in practice, the key difficulties are in identifying vari-
able and control correspondences between programs [29]. DPAs-
sist therefore uses program summaries. Their simple format makes
it easy to identify variable and control correspondences.

To identify variable correspondence, first all type-compatible
maps are generated from the declaration blocks of two summaries.
If we cannot obtain any bijective map, we discard the candidate
reference summary. DPAssist retains only those maps that are con-
sistent with the order in which the input blocks in the two sum-
maries initialize the input variables. If there are multiple variable
correspondences that remain, DPAssist generates feedback for the
summaries wrt each variable correspondence map ρ separately. If
two variables are mapped to each other but their types are not equal
then DPAssist generates a feedback which suggests that the type of
the variable from the student summary be changed to that of the
corresponding variable from the reference summary. The control
correspondence is based on the order and types of summary blocks.
Because our summary inference algorithm already separates the
logical steps into distinct summary blocks, we check equivalence of
a pair of related blocks from the two summaries. This reduces the
problem of checking program equivalence to the more amenable
problem of checking equivalence of summary blocks.

3.2.1 Building Blocks
Identifying Closest Reference Summary. Different students may
follow different high-level solution strategies for the same problem.
We rely on the instructor to provide reference implementations that
represent different high-level strategies.

DPAssist performs a lightweight structural comparison of a sub-
mission summary with reference summaries. It checks whether
they contain the same number of blocks of the same kind and in the
same order. Within each block, it checks whether a loop construct
is used and if yes, do they have the same nesting depth and whether
the directions (+/-) in the corresponding loops are the same. The
submission summary is checked for equivalence with every refer-
ence summary that meets these requirements. We design a simple
function score which assigns a score that is same as the number of
corrections suggested in the feedback. A reference summary with
the smallest feedback score is thereby closest to the submission
summary and the corresponding feedback is shown to the student.

Symbolic Constraints. Let BS and BR be two summary blocks
from submission and reference summaries respectively whose equiv-
alence we want to check. We discuss the general case when these
blocks contain nested loops. Note that due to the structural compar-
ison explained above, these will have to have the same depth and
directions. DPAssist checks the equivalence of iteration spaces and
loop bodies separately. We identify the correspondence between
the loop index variables at the same depth in BS and BR. This to-
gether with the variable correspondence ρ between the summaries
gives us correspondence between array elements and expressions
appearing in BS and BR. We rename the variables and array el-
ements of BS to primed versions of the matching ones from BR.
That is, y[j] in BS is renamed to x′[i′] if y corresponds to x from BR
and j corresponds to i from BR. Next, we replace array elements by
fresh scalar variables. If we have x[i] in BR and we replace it with a
scalar variable v then in BS, we replace x′[i′] by v′. In order to iden-
tify matching expressions under commutative operations, we force
a unique ordering among variables when they appear as operands
of commutative operations. Thus, our renaming can successfully
match x[i+j] and x′[j′ + i′]. This simple step allows us to abstract
away some more stylistic differences. If there is a variable that is
updated in BS but the corresponding one is not updated in BR or
vice versa, our algorithm discards the reference summary as un-
suitable. The instructor may impose certain constraints over inputs
(e.g., the cells of a matrix contain only positive numbers). DPAssist
takes the constraints IC on the input variables as an input.



Algorithm 2: Algorithm GENFEEDBACK

Input: Submission summary S, reference summary R, variable correspondence map ρ, constraints on input variables IC and threshold value thresh
Output: Feedback F and associated score s

1 F ← ””, s← 0
2 foreach i ∈ {1, ..., numBlocks(S)} // Iterate over all blocks in the submission summary
3 do
4 Let BS and BR be the ith blocks in S and R respectively
5 if the loop headers of BS and BR are not syntactically equal and EqIter(BS, BR, IC) is not valid // Check equivalence of loop headers
6 then
7 〈L, U〉 ← getDifference(BS, BR)
8 foreach (i, l) ∈ L do
9 f ← ”In” + label(BS) + ”step, lower bound o f ” + getAsSubExpr(i) + ”should be” + getAsSubExpr(l)

10 F.append( f ), s← s + score( f )
11 end
12 foreach (i, u) ∈ U do
13 f ← ”In” + label(BS) + ”step, upper bound o f ” + getAsSubExpr(i) + ”should be” + getAsSubExpr(u)
14 F.append( f ), s← s + score( f )
15 end
16 end
17 Fb ← ””, sb ← 0
18 foreach i ∈ {0, ..., thresh}// Counter-example guided feedback generation loop
19 do
20 α← checkValid(EqBody(BS, BR, IC)) // Check equivalence of loop bodies
21 if α = ∅ then break
22 Let φS = gS : sS and φR = gR : sR be statements in BS and BR such that α |= gS and α |= gR
23 if gS ⇐⇒ gR is valid then
24 f ← ”In” + label(BS) + ”step, under” + getAsSubExpr(gs) + ”, compute” + getAsSubExpr(sR)+”instead o f ” + getAsSubExpr(sS)
25 Rewrite φS to gS : translate(sR)
26 else
27 f ← ”In” + label(BS) + ”step, under” + getAsSubExpr(gs ∧ gR) + ”, compute” + getAsSubExpr(sR)+

”instead o f ” + getAsSubExpr(sS)
28 Split φS to two statements φS1 = gS ∧ translate(gR) : translate(sR) and φS2 = gS ∧ ¬translate(gR) : sS
29 end
30 Fb.append( f ), sb ← sb + score( f )
31 end
32 if i = thresh or isNotMemSafe(BS) then Fb ← “In′′ + label(BS) + “compute′′ + BR + “instead o f ′′ + BS; sb ← score(BR) end
33 F.append(Fb), s← s + sb
34 end
35 return 〈F, s〉

We check equivalence of iteration spaces by checking syntactic
equality of the loop headers under the variable correspondences.
Syntactic equality can be too strong a check. For example, sup-
pose BR is loop(i,1,n,+){true: s} and BS is loop(i′,0,n,+){i′

> 0: s′}. BR executes s for 1 ≤ i ≤ n and BS executes s′ also
for 1 ≤ i′ ≤ n. The syntactic check will end up reporting that BS
executes one additional iteration when i′ is 0. To avoid reporting
such cases, we create a symbolic constraint. Let idxcorr(BS, BR)
assert equality between the loop index variables at the same depths
from the two blocks and correspondence between input variables.
For a block B, iter(B) encodes the ranges of each loop index vari-
able and guards(B) gives the disjunction of all guards present in
the loop body of block B. The formula EqIter(BS, BR, IC) from
Figure 4 asserts equivalence of the iteration spaces.

The formula EqBody(BS, BR, IC) in Figure 4 encodes our equiv-
alence check for loop bodies whose aim is to establish that if the
DP arrays of the submission and reference summaries are equal at
the beginning of an iteration, they remain equal at the end. The
precondition is captured in varcorr(BS, BR) which asserts equality
of all scalar variables substituted for the DP array elements used in
the loop body. In addition, varcorr(BS, BR) also encodes equality
of summary variables and loop index variables. The postcondition
we want to establish is: for any variable v updated in BR, v = v′.
Recall that due to the renaming of variables as explained above, v′

is the variable from BS that corresponds to v. The relation between
the values at the beginning and end of an iteration of a block B is

given by body(B). For a block B, body(B) represents the conjunc-
tion of guarded assignments in B. A guarded assignment g: x = e
is encoded as a constraint g =⇒ x = e where the assignment is
converted to an equality constraint. If the variable x is also used on
the RHS then we rename the LHS occurrence to a fresh variable,
say x0, in the equality constraint above.

3.2.2 Algorithm
We now focus on generating feedback for a pair of summaries

which satisfy the structural constraints and for which the variable
renaming transformations described in Section 3.2.1 are already ap-
plied. Algorithm 2 presents our algorithm GENFEEDBACK to gen-
erate feedback for a submission summary S wrt a reference sum-
mary R given a variable correspondence map ρ, input constraints
IC and a positive constant thresh. thresh is used for controlling the
complexity of feedback as explained later. The declaration blocks
are handled earlier to generate variable correspondences and re-
naming. The input summaries to GENFEEDBACK do not contain
them. The output of GENFEEDBACK is a feedback string com-
prising possibly multiple corrections and a score. The score is not
displayed to the student but is used for identifying feedback wrt the
closest reference summary as described in Section 3.2.1.

The feedback string F and the score s are initialized in line 1. The
algorithm then goes over a pair of corresponding blocks (BS, BR)
from submission and reference summaries respectively (line 2). If
the blocks contain loops, the algorithm checks equivalence of the



loop iteration spaces in line 5. If they are not equivalent, it calls
getDifference (line 7) which outputs two sets L and U which are
sets of pairs of the form (i, b) where i is a loop index variable in BS
and b is the correct lower/upper bound for the corresponding loop
index variable as specified in BR. L gives the set of lower bounds
and U gives the set of upper bounds. Then, the algorithm goes over
each pair in L and U (lines 8 and 12) and generates feedback text
(lines 9 and 13) describing the correct lower/upper bound of each
loop index variable. In the feedback text, the function label(BS)
refers to the type of the summary block (e.g., init, update, etc.). The
algorithm renames the summary variables to the actual variables
in the student submission using the function getAsSubExpr. The
generated feedback f is accumulated in F (line 14). If the blocks
do not contain loops, the algorithm skips lines 5–16.

At line 17, it initializes Fb and sb to an empty string and 0 to
track block-level feedback and score. The loop at lines 18–31 is
a counter-example guided iterative feedback generation algorithm.
In each iteration, it checks the equivalence of the loop bodies of
BS and BR by checking validity of EqBody (line 20). The spe-
cialization of EqBody (Figure 4) to blocks which do not contain
loops but only guarded assignments is straightforward. The func-
tion checkValid returns a counter-example α if its argument is not
valid. If α is empty, the loop bodies are equivalent and the algo-
rithm exits from the loop (line 21).

The algorithm uses the counter-example α to localize the fault
in BS and the matching statement in BR. Let φS = gS : sS
and φR = gR : sR be the statements from BS and BR such that
α |= gS and α |= gR (line 22). There are two possibilities: (1) the
guards are equivalent and the assignment statements disagree or
(2) the guards themselves disagree. In the former case, the algo-
rithm states that under the guard gS, the submission should com-
pute sR instead of sS (line 24). In the latter case, it states that under
the guard gS ∧ gR, the submission should compute sR instead of sS
(line 27). The summaries can be manipulated easily. GENFEED-
BACK rewrites the faulty statement φS to gS : translate(sR) in
the former case (line 25). The function translate translates an as-
signment or a guard from BR to use the corresponding variables
of BS. In the latter case, at line 28, φS is split into two state-
ments in BS: (1) φS1 = gS ∧ translate(gR) : translate(sR) and
(2) φS2 = gS ∧ ¬translate(gR) : sS. The statement φS1 performs
the computation that BS would do under the original guard gS and
the guard suggested in the feedback. The statement φS2 continues
to behave like φS but under gs ∧ ¬translate(gR). The feedback
and score are accumulated at line 30 and the loop continues.

The counter-example guided feedback generation loop terminates
when no more counter-examples can be found (line 21) and thus,
progressively finds all semantic differences between the submis-
sion and reference summaries. Each iteration eliminates the se-
mantic difference between a pair of statements from BS and BR
that gave rise to the counter-example α and the loop terminates af-
ter a finite number of iterations.

In practice, giving a long list of corrections might not be use-
ful to the student if there are too many mistakes in the submission.
A better alternative might be to stop generating corrections after a
threshold is reached. The constant thresh provided by the instruc-
tor controls this. The function isNotMemSafe checks whether the
accesses to array indices within a loop are all within the declared
size of the array. If the threshold has been reached or the submis-
sion summary BS here is not memory safe, the algorithm discards
the feedback generated so far in the loop and simply returns the
entire reference summary block BR (line 32). The feedback and
scores for the two blocks are updated at line 33. Finally, the algo-
rithm returns the feedback F and the score s across all blocks.

Table 1: Results of summary and feedback generation
SUMTRIAN MGCRNK

Total AC WA Total AC WA

#Submissions 364 300 64 154 133 21
#Summarized 341 291 50 119 101 18

#Feedback Obtained 306 264 42 106 89 17

#References 23 14

Due to the explicit verification of summary equivalence, our al-
gorithm only generates correct feedback. Each iteration of the feed-
back generation loop increases the size of guards present in the sub-
mission summary. To limit this, our algorithm uses simplification
tactics present in the SMT solvers to simplify the guards.

4. IMPLEMENTATION AND EVALUATION
We have implemented DPAssist using the Clang front-end of

LLVM [24] to obtain ASTs and CFGs of programs. DPAssist per-
forms pattern matching on the ASTs and structural analysis over the
CFGs to identify summary blocks, as described in Section 3.1. For
summary inference, common library functions such as memset are
modeled using summary language constructs. The feedback gener-
ation module then parses the summaries obtained using the Antlr3
framework [32], and compares them against reference implemen-
tations using Z3 [8] for SMT solving. The module implements the
feedback generation algorithm described in Section 3.2.

4.1 Experimental Setup
To assess the performance and effectiveness of DPAssist, we cre-

ated a benchmark using programs submitted to CodeChef. The pro-
grams were submitted as solutions to the following two DP prob-
lems: (1) SUMTRIAN, described in the Introduction section and
(2) MGCRNK2, which asks students to find a path from (1, 1) to
(N, N) in an N × N matrix, so that the average of all integers in
cells on the path, excluding the end-points, is maximized. From
each cell, moves to cells to the right or below are permitted.

We selected submissions to these problems that implemented an
iterative DP strategy in C. We filtered out submissions that used
pointer arithmetic and solutions that had loop carried dependencies
on scalars other than the loop index variables. We picked the latest
submissions from individual users. CodeChef tags submissions as
“WA” (wrong) or “AC” (correct) using test cases. For several users,
the latest submissions were tagged WA. We believe they represent
their best efforts, and are in clear need of feedback. For automating
testing on CodeChef, the solutions had an outermost loop to iterate
over test cases – we identified and removed this loop automatically.

We gathered 518 submissions in all, with 364 from SUMTRIAN
and 154 from MGCRNK, together from 463 students representing
over 100 institutions. The submissions employ a wide range of
coding idioms and many possible solution approaches, both correct
and incorrect. Thus, this real-world benchmark used for our ex-
perimental evaluation is large, diverse and challenging. We wrote
reference implementations for evaluation, as described in RQ3.

4.2 Results
(RQ1 - Effectiveness). Table 1 shows DPAssist’s effectiveness on
our benchmark. We ran our experiments on an Intel Xeon E5-
1620 3.60 GHz machine with 8 cores and 24GB RAM. DPAssist
runs only on a single core. DPAssist generated correct summary
as well as feedback on 79.5% submissions across both problems
and WA/AC categories in 5.3s on average. Of all the submissions,

2http://www.codechef.com/problems/MGCRNK

http://www.codechef.com/problems/MGCRNK
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DPAssist provided appropriate corrections as feedback for 69.4%
of all WA submissions and 81.5% of all AC submissions in 1.9s
on average. It successfully computed summaries on 88.9% of the
submissions in 3.4s on average. The remaining submissions either
had a non-tightly nested loop within a block, or had statements that
could not be assigned labels by our technique.

For some submissions, DPAssist generated correct summaries
but could not provide feedback because: (1) the student either used
an esoteric solution strategy or an arbitrarily wrong strategy and we
did not have corresponding references or (2) the submission had
constructs which the SMT solver could not handle. We assess the
feedback quality shortly. DPAssist identified residual statements in
12 cases and in all but one, they were indeed spurious.

(RQ2 - Benefits to Students). A desirable goal for an automated
feedback generation technique like DPAssist is to customize the
feedback to the student’s submission to the extent possible. The
feedback provided should not force changing every submission to
conform to a single solution strategy. To test whether DPAssist is
able to provide feedback customized to individual submissions, we
manually identified the closest reference implementation for each
submission. For all submissions, DPAssist selected the same refer-
ence that we had identified manually as being the closest.

Students may make multiple and even inter-related errors of di-
verse nature in the same program. We evaluated how DPAssist
works in such cases. For 62 submissions, DPAssist provided feed-
back to correct faults in multiple summary blocks (logical steps)
(See Figure 5(a)), and it provided more than one correction to 104
submissions as feedback (See Figure 5(b)). The results show that
DPAssist provides feedback to correct a wide range of errors, even
if they occur simultaneously, and localizes feedback to address in-
correct components of the solution, while validating correct com-
ponents. The form of corrections suggested included fixing in-
correct loop headers, initialization mistakes including missing and
spurious initialization, missing cases in the DP recurrence, errors

in expressions and guards, incorrect dimensions, etc. Studying
the feedback text from our benchmarks revealed, for instance, that
many students struggled with getting the corner cases such as the
ones illustrated in Section 2 correct. For some submissions tagged
“WA” by CodeChef, we were able to validate all components. On
investigation, we found that the program logic was correct, as val-
idated by DPAssist - the bugs were localized to output formatting,
or in custom input/output functions.

Failing to identify faults in student submissions hurts students
since they may not realize their mistakes. For AC submissions,
DPAssist proved equivalence with a reference in 237 cases. Out
of the rest, DPAssist identified spurious initializations in 30 cases.
DPAssist was able to provide more interesting feedback asking
users to rectify faulty logic that lead to idempotent computations,
or code filling in entries in the DP table beyond what the prob-
lem asked for in 48 cases. Importantly, DPAssist detected an out-
of-bounds array access in 3 cases, and suggested appropriate cor-
rections as feedback. Thus, the static technique of DPAssist has a
qualitative advantage over the test-based approach of online judges.
DPAssist forced 28 submissions to conform to existing reference
implementations even though they were already correct. We call
these suggestions as spurious feedback and we observed them in
28 cases (∼8% of all AC submissions).

Many students, especially beginners, write programs with con-
voluted conditional control flow, and unnecessarily complex ex-
pressions. Moreover, our counter-example guided feedback gen-
eration algorithm may generate complex guards. To present clear
and concise feedback even in the face of these challenges, we sim-
plify guards using the SMT solver. We use Z3’s tactics to remove
redundant clauses, evaluate sub-expressions to Boolean constants,
and simplify systems of inequalities. Figure 6 quantifies the impact
of the simplifications on feedback size in the case of MGCRNK. We
measure the effectiveness of the simplification by disabling it, and
using the sum of AST sizes (#nodes in the AST) of the guards in
our feedback text as feedback size. The figure excludes cases where
simplification had no impact on feedback size. Simplifications en-
sured that the feedback size was at most 177, and 24 on aver-
age. Without simplification, the maximum feedback size was 867.
Simplification, where applicable, reduced feedback size by 57.8%
(resp. 83.6%) on average for SUMTRIAN (resp. MGCRNK).

(RQ3 - Benefits to Instructors). DPAssist relieves the instructor
from the burden of manually triaging hundreds of submissions.
The instructor can use DPAssist to generate feedback for the sub-
missions in an automated fashion by providing just a few (tens of)
reference implementations. Table 1 shows that every reference im-
plementation could provide feedback for 13 (resp. 7) submissions
on average in the case of SUMTRIAN (resp. MGCRNK).

We first wrote an implementation of a recurrence relation solv-
ing the problem. We then added more references that had varia-



tions such as 0 vs. 1 based array indexing, column vs. row based
traversal of the DP array, and direction of the loop nests. On en-
countering a submission that none of the existing references could
validate, we studied the solution and implemented its strategy as a
new reference, and iterated this procedure. While we wrote them
ourselves for the purposes of the experimental evaluation, the ref-
erence implementations may be written by the instructor/TAs, or
reused from previous offerings of a course.

DPAssist allows the instructor to obtain a bird’s eye view of the
multitude of solution strategies and student difficulties at scale. For
example, DPAssist can be used to find the most popular strategy
used by student submissions. The instructor can also use the statis-
tics aggregated from DPAssist’s output (e.g., shown in Figure 5)
to tailor future recitation sessions to explain, say, lesser used, but
pedagogically interesting strategies or common errors.

Limitations. DPAssist cannot generate sound summaries for pro-
grams that have loop carried dependencies over scalar variables
apart from the loop index variables, and programs that use aux-
iliary arrays. Our approach requires a separate reference imple-
mentation for each solution strategy to the DP problem. Variations
in strategy include using the input array in-place as the DP array,
update loops that differ in direction and stride, and strategies that
either split or fuse loops. We inherit the limitations of SMT solvers
in reasoning about non-linear constraints and program expressions
that are ill-defined mathematically, such as division by 0. We did
not observe non-linear constraints in our experiments. Our ap-
proach cannot suggest feedback for errors in custom input/output
functions, output formatting, typecasting etc. Our approach may
provide spurious feedback to correct submissions enforcing stylis-
tic conformance. Although our experiments show that this is rare,
future work is to design heuristics to filter these out. Finally, our
implementation currently handles only a frequently used subset of
C syntactic constructs and library functions.

Threats to Validity. There may be faults in our implementation that
might have affected our results. To address this threat, we manu-
ally checked the summaries and feedback obtained, and did not en-
counter any error. Our evaluation used reference implementations
we wrote. To mitigate the threat of incorrect reference implementa-
tions, we scrutinized each carefully. Our results may not generalize
to a different set of reference implementations. Threats to external
validity arise because our results may not generalize to other stu-
dent submissions and problems. We mitigated this threat by draw-
ing upon submissions from more than 400 students from different
institutions. While our technique is able to handle most constructs
that introductory DP coursework employs, further studies are re-
quired to validate our findings in the case of other problems.

5. RELATED WORK
Automated Feedback Generation. The idea of comparing instruc-
tor provided reference implementations with student submissions
appears in [1]. It uses graph representation and transformations
for comparison of Fortran programs. Xu and Chee [43] use richer
graph representations for object-oriented programs. Rivers and
Koedinger [38] use edit distance as a metric to compare graphs and
generate feedback, while Gross et al. [12] cluster student solutions
by structural similarity, and use a correct solution that is “close” to
the buggy solution to provide feedback. In contrast, DPAssist per-
forms more powerful abstractions in terms of summaries and uses
symbolic reasoning but for the restricted domain of DP.

Alur et al. [3] develop a technique to automatically grade DFA
constructions. Our work targets the algorithmically challenging
class of DP assignments and generates corrections using reference

implementations, whereas they search over a pre-defined set of cor-
rections over automata. Singh et al. [40] apply sketching based syn-
thesis to provide feedback for introductory programming assign-
ments. In addition to a reference implementation, the tool takes
as input an error model in the form of correction rules. Their
error model is too restrictive to be adapted to our setting that re-
quires more sophisticated repairs and that too for a more challeng-
ing class of programs. Gulwani et al. [14] address the orthogonal
issue of providing feedback to address performance issues, while
recent work by Srikant and Aggarwal [41] uses machine learning
to automatically grade programs by determining the closeness of
the program to the correct program using code features. The ap-
proach of [41] is aimed at helping companies assess prospective
employees, and does not provide feedback on incorrect solutions.

Automated Program Repair. Genetic programming and mutations
have been used to automatically generate repairs that make failing
test cases pass and do not break any passing test case [4, 25, 9].
These approaches are not directly applicable in our setting as the
search space of mutants is very large. Further, GenProg [25] uses
only statements from the program to generate repairs, and there-
fore, relies on redundancy present in other parts of the code for
fixing faults. This condition is not met in our setting. Long and
Rinard [27] proposed an approach that generates candidate repairs
by using a set of transformation schemas as a first step. The candi-
dates are parameterized by an abstract condition that is synthesized
next. Although the patch generated by this approach could contain
multiple lines, it applies to exactly one program location. Repairs
that modify multiple locations are not in their search space.

Recent approaches that use tests to infer specifications and pro-
pose repairs include SemFix [31], MintHint [22] and DirectFix [28].
These approaches use synthesis [20], symbolic execution [7] and
partial MaxSAT [8] respectively. In contrast, we use reference
implementations and our technique uses a combination of pattern
matching, static analysis and SMT solving.

Konighopher et. al. [23] present an approach for automated error
localization and correction of imperative programs using reference
implementations. They use model-based diagnosis to localize the
faulty component and use template-based approach for suggesting
repairs. Their fault model only considers the right hand side of
assignment statements as replaceable components, whereas our ap-
proach can even find missing statements in the program. There
exist many approaches that rely on program specifications for re-
pair, including contracts [34, 42], LTL [21], assertions [39] and
pre-post conditions [11, 26, 15]. In our setting, writing reference
implementations is much easier than writing such specifications.

All these approaches can be applied to larger classes of programs
than DPAssist which targets only iterative DP programs.

Program Equivalence. Automated program equivalence between
a program and its optimized version has been studied in translation
validation [35, 30, 5]. Partush and Yahav [33] design an abstract in-
terpretation based technique to check equivalence of a program and
its patched version. In comparison, our technique permits equiva-
lence check between programs written by different individuals in-
dependently but only for iterative DP programs.

6. CONCLUSIONS AND FUTURE WORK
We presented and evaluated DPAssist, an automated technique

to generate feedback for student submissions implementing itera-
tive DP algorithms, using a set of reference implementations. We
want to extend the summary inference and counter-example guided
iterative feedback generation algorithms of DPAssist to other algo-
rithmic techniques such as greedy and divide-and-conquer.
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