Thread-Local Semantics and its Efficient Sequential
Abstractions for Race-Free Programs

Suvam Mukherjee!, Oded Padon?, Sharon Shoham?, Deepak D’Souza', and
Noam Rinetzky?

! Indian Institute of Science, India
2 Tel Aviv University, Israel

Abstract. Data race free (DRF) programs constitute an important class of con-
current programs. In this paper we provide a framework for designing and proving
the correctness of data flow analyses that target this class of programs, and which
are in the same spirit as the “sync-CFG” analysis originally proposed in [9]. To
achieve this, we first propose a novel concrete semantics for DRF programs called
L-DRF that is thread-local in nature with each thread operating on its own copy
of the data state. We show that abstractions of our semantics allow us to reduce
the analysis of DRF programs to a sequential analysis. This aids in rapidly port-
ing existing sequential analyses to scalable analyses for DRF programs. Next, we
parameterize the semantics with a partitioning of the program variables into “re-
gions” which are accessed atomically. Abstractions of the region-parameterized
semantics yield more precise analyses for region-race free concurrent programs.
We instantiate these abstractions to devise efficient relational analyses for race
free programs, which we have implemented in a prototype tool called RATCOP.
On the benchmarks, RATCOP was able to prove upto 65% of the assertions, in
comparison to 25% proved by a version of the analysis from [9].

1 Introduction

Our aim in this paper is to provide a framework for developing data-flow analyses which
specifically target the class of data race free (DRF) concurrent programs. The starting
point of this work is the so-called “sync-CFG” style of analysis proposed in [9]] for race-
free programs. The analysis here essentially runs a sequential analysis on each thread,
communicating data-flow facts between threads only via “synchronization edges” that
go from a release statement in one thread to a corresponding acquire statement in an-
other thread. The analysis thus runs on the control-flow graphs (CFGs) of the threads
augmented with synchronization edges, as shown in the center of Fig.[T} which explains
the name for this style of analysis. The analysis can be seen to produce data flow facts
about the value of a variable that are sound only at points where that variable is relevant
in that it is read or written to at that point. The analysis thus trades unsoundness of facts
at irrelevant points for the efficiency gained by restricting interference between threads
to only points of synchronization.

However, the analysis proposed in [9]] suffers from some drawbacks. Firstly, the
analysis is intrinsically a “value-set” analysis, which can only keep track of the set of
values each variable can take, and not the relationships between variables. Any naive
attempt to extend the analysis to a more precise relational one quickly leads to un-
soundness. The second issue is to do with the technique for establishing soundness.
A convenient way to prove soundness of an analysis is to show that it is a consistent
abstraction [7]] of a canonical analysis like the collecting semantics for sequential pro-
grams or the interleaving semantics for concurrent programs. However, a sync-CFG

style analysis cannot be shown to be a consistent abstraction of the standard interleav-
ing semantics, due largely to the unsoundness at irrelevant points. Instead, one needs to
use an intricate argument, as done in [9]], which essentially shows that in the least fixed
point of the analysis, every write to a variable will flow to a read of that variable, via a
happens-before path that is guaranteed to exist by the property of race-freedom. Thus,
while one can argue soundness of an analysis that abstracts the value-set analysis by
showing it to be a consistent abstraction of the value set analysis, to argue soundness of
any other proposed sync-CFG style analysis (in particular one that is more precise than
the value-set analysis), one would have to resort to a similar involved proof as in [9].

Towards addressing these issues, we propose a framework that facilitates the design
of different sync-CFG analyses with varying degrees of precision and efficiency. The
foundation of this framework is a thread-modular semantics for DRF programs which
can play the role of a “most precise” analysis which other sync-CFG analyses can be
shown to consistent abstractions of. This semantics, which we call L-DRF, is similar
to the interleaving semantics of concurrent programs, but keeps thread-local (or per-
thread) copies of the shared state. Intuitively, our semantics works as follows. Apart
from its local copy of the shared data state, each thread ¢ also maintains a per-variable
version count, which is incremented whenever ¢ updates the variable. The exchange of
information between threads is via buffers, associated with release points in the pro-
gram. When a thread releases a lock, it stores its data state to the corresponding buffer,
along with the version counts of the variables. As a result, the buffer of a release point
records both the local data state and the variable versions as they were when the release
was last executed. When some thread ¢ acquires a lock m, it compares its per-variable
version count with those in the buffers pertaining to m, and copies over the valuation of
a variable to its local state, if it is newer in some buffer (as indicated by a higher version
count). Similar to a sync-CFG analysis, the value of a shared variable in the local state
of a thread may be stale. L-DRF leverages the race freedom property to ensure that the
value of a variable is correct in a local state at program points where it is read. It thus
captures the essence of a sync-CFG analysis. The L-DRF semantics is also of indepen-
dent interest, since it can be viewed as an alternative characterization of the behavior of
data race free programs.

The analysis induced by the L-DRF semantics is shown to be sound for DRF pro-
grams. In addition, the analysis is in a sense the most precise sync-CFG analysis one
can hope for, since at every point in a thread, the relevant part of the thread-local copy
of the shared state is guaranteed to arise in some execution of the program.

Using the L-DRF semantics as a basis, we now propose several precise and efficient
relational sync-CFG analyses. The soundness of these analyses all follow immediately,
since they can easily be shown to be consistent abstractions of the L-DRF analysis. The
key idea in obtaining a sound relational analysis is suggested by the L-DRF analysis: at
each acquire point we apply a mix operator on the abstract values, which essentially
amounts to forgetting all correlations between the variables.

While these analyses allow maintaining fully-relational properties within thread-
local states, communicating information over cross-thread edges loses all correlations
due to the mix operation. To improve precision further, we refine the L-DRF semantics
to take into account data regions. Technically, we introduce the notion of region race
freedom and develop the R-DRF semantics: The programmer can partition the program
variables into “regions” that should be accessed atomically. A program is region race
free if it does not contain conflicting accesses to variables in the same region, that are
unordered by the happens-before relation. The classical notion of data race freedom is

a special case of region race freedom where each region consists of a single variable,
and techniques to determine that a program is race free can be naturally extended to
determine region race freedom (see Section[6). For region race free programs, R-DRF,
which refines L-DRF by taking into account the atomic nature of accesses that the
program makes to variables in the same region, produces executions which are indistin-
guishable, with respect to reads of the regions, from the ones produced by L-DRF. By
leveraging the R-DRF semantics as a starting point, we obtain more precise sequential
analyses that track relational properties within regions across threads. This is obtained
by refining the granularity of the mix operator from single variables to regions.

We have implemented our analyses in a prototype analyzer called RATCOP, and
provide a thorough empirical evaluation in Sec.[7] We show that RATCOP attains a pre-
cision of up to 65% on a subset of race-free programs from the SV-COMP1S5 suite. In
contrast an interval based value-set analysis derived from [9]] was able to prove only
25% of the assertions. On a separate set of experiments, RATCOP turns out to be

nearly 5 orders of magnitude faster than an existing state-of-the-art abstract interpre-
tation based tool [24].

2 Overview

We illustrate the L-DRF semantics, and its sequential abstractions, on the simple pro-
gram in Fig. [We assume that all variables are shared and are initialized to 0. The
threads access = and y only after acquiring lock m. The program is free from data
races.

““ o S e o “
0=x=y=z 0O0=x=y=z 0O0=x=y=12z 0=x=y=z O0=x=y=z 0

=x=y=z
1: acquire (m); 8: z++;
N
x=y, 0<x, 0<x, x=0, 0=x=y, 0=x=y,
0<y, 0<y, 0<y, y=0, z=1 z=1
0<z=<1 0<z<1 0<z<1 0<z<1
9: assert (z = 1);
x=y, x=y, 0 <x, x=0, 0=x=y, 0=x=y,
0<y, 0=y, 0<y, y=0, z=1 z=1
0<z<1 0<z<1 0<z<1 0<z<1
10: acquire (m);
A
0<x, 0 <=, x=y,
0<y, 0<y, 0<y,
0<z<1 0<z<1 0<z<1
11: assert (x = y);
x=y, x=y, 1<x 0 <x, 0<x, x=y,
1<y, 1<y, 1<y 0<y, 0<y, 0=y,
0<z<1 0<z<1 0<z<1 0<z<1 0<z<1 0<z<1
2: release (m);
x =Y, x=y, 1=x
1<y, 1<y, 1<y
0<z<1 0<z<1 0<z<1
6: releasef(m);
7:)

Fig. 1.: A simple race free program with two threads ¢, and t2, with all variables being shared
and initialized to 0. The columns L-DRF and R-DRF show the facts computed by polyhedral
abstractions of our thread-local semantics and its parameterized version, respectively. The Value-
Set column shows the facts computed by interval abstractions of the Value-Set analysis of [9].
R-DRF is able to prove all 3 assertions, while L-DRF fails to prove the assertion at line 11.
Value-Set only manages to prove the simple assertion at line 9.

A state in the L-DRF semantics keeps track of the following components: a location
map pc mapping each thread to the location of the next command to be executed, a lock
map p which maps each lock to the thread holding it, a local environment (variable to
value map) O for each thread, and a function A which maps each buffer (associated with
each location following a release command) to an environment. In the environments,
each variable has a version count associated with it, which essentially associates this
valuation of the variable with a unique prior write to it. As an example, the “versioned”
environment (z ~ 11,y = 11 2z + 0°) says that = and y have the value 1 by the
1% writes to = and y, and z has not been written to. An execution is an interleaving
of commands from the different threads. Consider an execution where, after a certain
number of steps, we have the state pc(t; = 6,t3 = 8),0(t1) = (z = 11,y > 11 2
0°),0(¢2) = (x —» 0%,y —» 0%, 2 > 1'), u(m) = t1, A = 1. The buffers are all empty as
no thread has executed a release yet. Note that the values (and versions) of x and y
in O(ty) are stale, since it was ¢; which last modified them (similarly for z in O(t1)).
Next, ¢; can execute the release at line 6, thereby setting u(m) = _ and storing its
current local state to A(7). Now to can execute the acquire at line 9. The state now
becomes pc(t; = 7,ta — 10), u(m) = to, and to now “imports” the most up-to-date
values (and versions) of the variables from A(7). This results in its local state becoming
(z+ 11,y 11, 2 = 11) (the valuations of = and y are pulled in from the buffer, while
the valuation of z in t3’s local state persists). The value of and y in ©(¢2) is no longer
stale: L-DRF leveraged the race freedom to ensure that the values of x and y are correct
when they are read at line 10.

Roughly, we obtain sequential abstractions of L-DRF via the following steps: (i.) Pro-
vide a data abstraction of sets of environments (ii.) Define the state to be a map from
locations to these abstract data values (iii.) Draw inter-thread edges by connecting re-
leases and acquires of the same lock (as shown in Fig.[I)) (iv.) Define an abstract mix op-
eration which soundly approximates the “import” step outlined earlier (v.) Analyze the
program as if it was a sequential program, with infer-thread join points (the acquire’s)
using the mix operator.

The analysis in [9] is precisely such a sequential abstraction, where the abstract
data values are abstractions of value-sets (variables mapped to sets of values). Value
sets do not track correlations between variables, and only allow coarse abstractions like
Intervals [[6]. The mix operator, in this case, turns out to be the standard join. For Fig.[I]
the interval analysis only manages to prove the assertion at line 8.

A more precise relational abstraction of L-DRF can be obtained by abstracting the
environments as, say, convex polyhedra []]. As shown in Fig.[I] the resulting analysis
is more precise than the interval analysis, being able to prove the assertions at lines 5
and 8. However, in this case, the mix must forget the correlations among variables in the
incoming states: it essentially treats them as value sets. This is essential for soundness.
Thus, even though the acquire at line 10 obtains the fact that z = y from the buffer at
7, and the incoming fact from 9 also has x = y, it fails to maintain this correlation after
the mix. Consequently, it fails to prove the assertion at line 11.

Finally, one can exploit the fact that and y form a data region, that is always
accessed atomically by the two threads. The program is thus region race free, for this
particular region definition. One can parameterize the L-DRF semantics with this region
definition, to yield the R-DRF semantics. The resulting sequential abstraction maintains
relational information as in polyhedra based analysis derived from L-DRF, but has a
more precise mix operator which preserves relational facts which hold within a region.

Type Syntax Description

Assignment|z :=e Assigns the value of expression e to variable € V

Assume assume(b) [Blocks the computation if boolean condition b does not hold
Acquire acquire(m)|Acquires lock m, provided it is not held by any thread
Release release(m)|Releases lock m, provided the executing thread holds it

Table 1: Program Commands

Since both the incoming facts at line 10 satisfy x = y, the mix preserves this fact, and
the analysis is able to prove the assertion at 11.

Note that in all the three analyses, we are guaranteed to compute sound facts for
variables only at points where they are accessed. For example, all three analyses claim
that = and y are both O at line 9, which is clearly wrong. However, and y are not
accessed at this point. We make this trade-off for the soundness guarantee in order to
achieve a more efficient analysis. Also note that the inter-thread edges add a spurious
loop in the analysis of the program, which prevents us from computing an upper bound
for the values of x and y. We show in a later section how we can appropriately abstract
the versions to avoid some of these spurious loops.

3 Preliminaries

Mathematical Notations. We use — and — to denote total and partial functions, respec-
tively, and 1 to denote a function which is not defined anywhere. We use _ to denote
an irrelevant value which is implicitly existentially quantified. We write S to denote
a (possibly empty) finite sequence of elements coming from a set S. We denote the
length of a sequence 7 by ||, and the i-th element of 7, for 0 < i < ||, by 7;. We de-
note the domain of a function ¢ by dom(¢) and write ¢[x — v] to denote the function
Ay.ify = x thenv else ¢(y). Given a pair of function v = (¢, v), we write v and vV to
denote ¢ and v, respectively.

3.1 Programming Language and Programs

A multi-threaded program P consists of four finite sets: threads T, control locations
L, program variables V and locks (mutexes) M. We denote by V the set of values the
program variables can assume. Without loss of generality, we assume in this work that
V is simply the set of integers. Figure [2]lists the semantic domains we use in this paper
and the metavariables ranging over them..

Every thread ¢ € 7 has an entry location ent, and a set of instructions inst; € £ x
c¢md x L, which defines the control flow graph of t. An instruction (ns, ¢, n;) comprises
a source location ng, a command c € cmd, and a target location n;. The set of program
commands, denoted by cmd, is defined in Table [T} (Commands like fork and join
of a bounded number of threads and can be simulated using locks.) For generality, we
refrain from defining the syntax of the expressions e and boolean conditions b.

We denote the set of commands appearing in program P by cmd(P). We refer to
an assignment x := e as a write-access to z, and as a read-access to every variable that
appears in e. Without loss of generality, we assume variables appearing in conditions of
assume() commands in instructions of some thread ¢ do not appear in any instruction
of any other thread ¢’ # .

We denote by L, the set of locations in instructions of thread ¢, and require that the
sets be disjoint for different threads. For a location n € £, we denote by tid(n) the
thread ¢ which contains location n, i.e., n € L;. We forbid different instructions from

t € T Thread identifiers pce PC =T > L Program counters
n € L Program locations welLM =M—-T Lock map
z,y €V Variable identifiers pebnv=V->YV Environments

l e M Lock identifiers veRV =R->N Region versions

r € R Region identifiers v e VE = Env x RV Versioned environments
v eV Values

s={pc,p,p) €S = PC x LM x Env Standard States

o= {pc,p,0,A4) € ¥ = PCx LM x (T - VE) x (L — VE) Thread-Local States
Fig.2.: Semantic Domains.

having the same source and target locations, and further expect instructions pertaining
to assignments, acquire() and release() commands to have unique source and target
locations. Let £°! be the set of program locations in the body of thread ¢ following a
release() command. We refer to £ as t’s post-release points and denote the set of
release points in a program by L7 = e L7, Similarly, we define t’s pre-acquire
points, denoted £;“?, and denote a program’s acquire points by L9 = U1 L7, We
denote the sets of post-release and pre-acquire points pertaining to operations on lock
m by L and L2, respectively.

m

3.2 Standard Interleaving Semantics

Let us fix a program P = (T, £,V, M) for the rest of this paper. We define the standard
interleaving semantics of a program using a labeled transition system (S, s¢n;, TR®),
where S is the set of states, Sen: € S is the initial state, and TR® € Sx T xSis a
transition relation, as defined below.

States A state s € S is a tuple (pc, 1, ¢), where pc € PC' = T — L records the program

counter (or location) of every thread, € LM € M — T is a lock map which associates

every lock to the thread that holds it (if such a thread exists), and ¢ € Env Y 5 Vis
an environment, mapping variables to their values.

Initial State We refer to the state s.,; = (At. ent;, L, \x. 0) where every thread is at its
entry program location, no thread holds a lock, and all the variables are initialized to
zero as the initial state.

Transition Relation The transition relation TR% € S x T x S captures the interleaving
semantics of a program P. A transition 7 = (s, ¢, s'}, also denoted by 7 = s —; s/, says
that thread ¢ can execute a command which transforms (the source) state s to (the targer)
state s’. As such, the transition relation is the set of all possible transitions generated by
its commands, i.e. TR} = Uceemd(P) TRE. In these transitions, one thread executes a
command, and changes its program counter accordingly, while all other threads remain
stationary. Due to space constraints, we omit the formal definitions of 7' Ri, which is
standard, and only provide a brief informal description. An assignment x := e command
updates the value of the variables according to the expression e. An assume(b) com-
mand generates transitions only from states in which the boolean interpretation of the
condition b is True. An acquire(m) command executed by thread ¢ sets u(m) = t,
provided the lock m is not held by any other thread, A release(m) command exe-
cuted by thread ¢ sets u(m) = _ provided ¢ holds m. A thread attempting to release a
lock that it does not own gets stuck

3 The decision to block a thread releasing a lock it does not own was made to simplify the semantics. Our
results hold even if this action aborts the program.

Notations. For a transition 7 = (pc, p, @) = (pc’, ', ¢') € TR%, we denote by t(7) =t
the thread that executes the transition, and by ¢(7) the (unique) command ¢ € cmd(P),
such that (pc(t), ¢, pc’(t)) € inst;, which it executes. We denote by n(7) = pc(t) and
n'(7) = pc’(t) the source and target locations of the executed instruction.

Executions An execution 7 of a concurrent program P is a finite sequence of transitions
coming from its transition relation, such that s, is the source of transition 7y and the
source state of every transition m;, for 0 < 4 < |, is the target state of transition 7;_;.

By abuse of notation, we also write executions as sequences of states interleaved with

. . t1 to tn
thread identifiers: m = sg — 81 — ... —> Sp, .

Collecting semantics. The collecting semantics of a program P according to the stan-
dard semantics is the set of reachable states starting from the initial state s.:

[P]°=LFPAX . {Sens}U{s' | s>t s'Ase X AteT}

3.3 Data Races and the Happens-Before Relation

We say that two commands conflict on a variable z, if they both access x, and at least
one access is a write. A program contains a data race when two concurrent threads may
execute conflicting commands, and the threads use no explicit mechanism to prevent
their accesses from being simultaneous [27]]. A program which has no data races is
said to be data race free. A standard way to formalize the notion of data race freedom
(DRF), is to use the happens before [19] relation induced by executions. An execution
is racy if it contains a pair of transitions executing conflicting commands which are
not ordered according to the happens-before relation. A program which has no racy
execution is said to be data race free.

For a given execution, the happens-before relation is defined as the reflexive and
transitive closure of the program-order and synchronizes-with relations, formalized be-
low.

Definition 1 (Program order). Let 7 be an execution of P. Transition ; is related to
the transition 7 according to the program-order relation in m, denoted by ; p—0>7r T,
ifj=min{k|i<k<|n|At(ny) =t(m;)}, i.e, m; and 7; are successive executions of
commands by the same thread.

Definition 2 (Synchronize-with). Let 7 be an execution of P. Transition 7; is related
fo the transition m; according to synchronizes-with relation in m, denoted by ; =,
mj, if ¢(m;) = release(m) for some lock m, and j = min{k | i < k < |n| A e(my) =
acquire(m) }, ie., m; and ; are successive release and acquire commands of the
same lock in the execution.

Definition 3 (Happens before). The happens-before relation pertaining to an execu-

. hb . . o .
tion of P, denoted by - — . -, is the reflexive and transitive closure of the union of the
program-order and synchronizes-with relations induced by the execution T.

Note that transitions executed by the same thread are always related according to the
happens-before relation.

4 Strictly speaking, the various relations we define are between indices {0, ..., |n| — 1} of an execution,

.. . . po .. o
and not transitions, so we should have written, e.g., % p—>7r 7 instead of m; p—>7r mj. We use the rather
informal latter notation, for readability.

Definition 4 (Data Race). Let 7 be an execution of P. Transitions m; and m; constitute
a racing pair, or a data-race, if the following conditions are satisfied: (i) c¢(m;) and
c(wj) both access the variable x, with at least one of the accesses being a write to .,

o hb hb
and (ii) neither w; —> w; hor w; — 5 m; holds.

4 Thread-local Semantics for Data-Race Free Programs (L-DRF)

In this section, we define a new thread-local semantics for datarace free concurrent
programs, which we refer to as L-DRF semantics. The new semantics, like the standard
one defined in Section 3] is based on the interleaving of transitions made by different
threads, and the use of a lock map to coordinate the use of locks. However, unlike
the standard semantics, where the threads share access to a single global environment,
in the L-DRF semantics, every thread has its own local environment which it uses to
evaluate conditions and perform assignments. Threads exchange information through
release buffers: every post-release point n € L of a thread ¢ is associated with a
buffer, A(n), which records a snapshot of ¢’s local environment the last time ¢ ended
up at the program point n. Recall that this happens right after ¢ executes the instruction
(ns,release(m),n) € inst;. When a thread ¢ acquires a lock m, it updates its local
environment using the snapshots stored in the buffers pertaining to the release of m. To
ensure that ¢ updates its environment such that the value of every variable is up-to-date,
every thread maintains its own version map v : V — N, which associates a counter to
each variable. A thread increments v(x) whenever it writes to . Along any execution,
the version v(z), for z € V, in the version map v of thread ¢, associates a unique
prior write with this particular valuation of x. It also reflects the total number of write
accesses made (by any thread) to = to obtain the value of x stored in the map. A thread
stores both its local environment and v in the buffer after releasing a lock m. When a
thread subsequently acquires lock m, it copies from the release buffers at £7¢! the most
up-to-date (according to the version numbers) value of every variable. We prove that
for data race free programs, there can be only one such value.
Asin Section we define L-DRF in terms of a labeled transition system (X, o epne, TRp).

States A state o € X of the L-DRF semantics is a tuple {pc, ut, ©, A). pc and p have the
same role as in the standard semantics, i.e., they record the program counter of every
thread and the ownership of locks, respectively. A versioned environment v = (¢, V) €
VE = Env x (V — N) is a pair comprising an environment ¢ and a version map v. The
local environment map © : 7 — VE maps every thread to its versioned environment
and A: L™ — VE records the snapshots of versioned environments stored in buffers.

Initial StateThe initial state is o o, = (At. enty, L, At. Uent, L), where veny = (A2.0, Az.0),
as the initial state. In o ..+, every thread is at its entry program location, no thread holds

a lock, in all the versioned environments all the variables and variable versions are
initialized to zero, and all the release buffers are empty.

Transition Relation The transition relation TRp ¢ X' x T x X captures the interleaving
nature of the L-DRF semantics of P. A transition 7 = (o,t,0’), also denoted by 7 =
o =>; o', says that thread ¢ can execute a command which transforms state o € X to
state o’ € XJ. We define the transition system which captures the L-DRF semantics of a
program P by defining the transitions generated by every command in P.

Assignments and Assume Commands. We define the meaning of assignments and
assume() commands (as functions from versioned environments to sets of versioned

environments) by executing the standard interpretation over the environment compo-
nent of a versioned environment. In addition, assignments increment the version of a
variable being assigned to. Formally,

[z:=€]: VE - P(VE) = X¢,v) .{(¢[z = v],v[z—v(z) +1]) |ve [e] o}
[assume()]: VE - P(VE) = Ao, v) . {(¢,v) | [D] &}

where [e] ¢, [b] ¢ denote the value of the (possibly non-deterministic) expression e
and the Boolean expression b, respectively, in ¢. The set of transitions T'R. generated
by an assume() or an assignment command c is given by:

TR. = {{pc, 1,0, A) = (pc[t = n'], 1, Ot = V'], A) | {pc(t),c,n’) € inst,nv” € [c] (O(t))}

Note that each thread ¢ only accesses and modifies its own local versioned environment.

Acquire commands An acquire(m) command executed by a thread ¢ has the same
effect on the lock map component in L-DRF as in the standard semantics. (See Sec-
tion) In addition, it updates ©(t) based on the contents of the relevant release
buffers. The release buffers relevant to a thread when it acquires m are the ones at £/
We write G(72) as a synonym for £, for any post-release point 7 € £, The auxil-
iary function updEnv is used to update the value of each x € V (along with its version)
in O(t), by taking its value from a snapshot stored at a relevant buffer which has the
highest version of z, if the latter version is higher than ©(¢)v(x). If the version of x
is highest in @(t)v(z), then ¢ simply retains this value. Finding the most up-to-date
snapshot for z (or determining that @ (¢)v(z) is the highest) is the role of the auxiliary
function ake, . It takes as input ©(t), as well as the versioned environments of the rele-
vant release buffers, and returns the versioned environments for which the version asso-
ciated with x is the highest. We separately prove that, along any execution, if there is a
state in the L-DRF semantics o with two component versioned environments (in thread
local states or buffers) vy and vs such that viv(x) = vov(z), then v1¢(z) = vad ().
The set of transitions pertaining to an acquire command ¢ = acquire(m) is

TR. = {(pc, p,0,4) = (pe[t = n'], pu[m = t],0[t = v], A) |
(pe(t),e,n’) € insty A u(m) = L Av € updEnv(O(t), A)}

where updEnv = (VE x (L™ - VE)) - P(VE)
such that

.ipdEnv(v, E) = {v' | Agey Fvg € take,(V),v'd(x) = vpd(x) Av'v(z) = vpv(z)}
Wit

Y ={viu{A(n) | pe(t) e G(n)}

take, £ \Y € P(VE). {{¢,v) € Y | v(x) = max{v/(x) | (¢/,1') e Y} }.

Release commands A release(m) command executed by a thread ¢ has the same ef-

fect on the lock map component of the state in the L-DRF semantics that it has in
the standard semantics. (See Section) In addition, it stores ©(t) in the buffer as-
sociated with the post-release The set of transitions pertaining to a release command
¢ =release(m) is

TR ={(pc,p, 0, 4) = (pe[t = n'], p[m = _],0, A[n" > O)]) | {pe(t), ¢, n') € instenp(m) = t}

Program transition relation. The transition relation T'Rp of a program P according to
the L-DRF semantics, is the set of all possible transitions generated by its commands,
and is defined as TRp = Uceema(py TRe.

Collecting semantics. The collecting semantics of a program P according to the L-
DRF semantics is the set of reachable states starting from the initial state o ¢,;:

[P] = LFPAX. {oeni}uf{o’|o=>y0' hoeX nteT}

4.1 Soundness and Completeness of L-DRF Semantics

For the class of data race free programs, the thread local semantics L-DRF is sound and
complete with respect to the standard interleaving semantics (Section [3)). To formalize
the above claim, we define a function which extracts a state in the interleaving semantics
from a state in the L-DRF semantics.

Definition 5 (Extraction Function y).

X:X=>8=Xpc,u,0,4). (pc, iy Ax.O (argmax@ () I/({,C)) (b(x)>
teT

The function y preserves the values of the program counters and the lock map, while
it takes the value of every variable x from the thread which has the maximal version
count for z in its local environment. is well-defined for admissible states where if
O(t)v(z) = O(t")v(x) then O(t)p(x) = O(t")p(x). We denote the set of admissible
states by Y. The L-DRF semantics only produces admissible states, as formalized by
the following lemma:

Lemma 6. Let 0.pt =+, ... =¢5 0N be an execution of P in the L-DRF semantics.
Then, for any o;, with two component versioned environments (in thread local states or
buffers) v1 and vy such that viv(z) = vav(z), then V1P(x) = Va2 (T).

The function x can be extended to executions in the L-DRF semantics by apply-
ing it to each state in the execution. The following theorems state our soundness and
completeness results:

Theorem 7. Soundness. For any trace 7 of P in the standard interleaving seman-
tics, there exists a trace 7t in the L-DRF semantics such that x (%) = m. Moreover,
Sor any transition m;, if ¢(m;) involves a read of variable x € V), then s;_1¢(x) =
0,-10(t;)p(x). In other words, in &, the valuation of a variable x in the local environ-
ment of a thread t coincides with the corresponding valuation in the standard semantics
only at points where t reads .

Theorem 8. Completeness. For any trace 7« of P in the L-DRF semantics, x (%) is a
trace of the standard interleaving semantics.

The proofs of all the claims are available in the Appendix.

Remark 9. Till now we assumed that buffers associated with every post-release point
in £ are relevant to each pre-acquire point in £2%, i.e., V7o € L7 : G(n) = £,
However, if no (standard) execution of a program contains a transition 7;, with the target
location being 7i, which synchronizes-with a transition 7;, with source location 7, then
Theorem (as well as Theorem holds even if we remove n from G(7). This is true

10

because in race-free programs conflicting accesses are ordered by the happens-before
relation. Thus, if the most up-to-date value of a variable accessed by t was written
by another thread t’, then in between these accesses there must be a (sequence of)
synchronization operations starting at a lock released by ¢" and ending at a lock acquired
by t. This refinement of the set G based on the above observation can be used to improve
the precision of the analyses derived from L-DRF, as it reduces the set of possible
release points an acquire can observe.

5 Sequential Abstractions for Data-Race Free Programs

In this section, we show how to employ standard sequential analyses to compute over-
approximations of the L-DRF semantics. Thanks to Theorem [7] and Theorem [8] the
obtained results can be used to derive sound facts about the (concurrent) behavior of
data race free programs in the standard semantics. In particular, this also allows us
to establish the soundness of the sync-CFG analysis [9] by casting it as an abstract
interpretation of the L-DRF semantics.

Technically, the analyses are derived by two (successive) abstraction steps: First,
we abstract the L-DRF semantics using a thread-local cartesian abstraction which ig-
nores version numbers and forgets the correlation between the local states of the dif-
ferent threads. This results in cartesian states where every program point is associated
with a set of (thread-local) environments. Note that the form of these cartesian states
is precisely the one obtained when computing the collecting semantics of sequential
programs. Thus, they can be further abstracted using any sequential abstraction, in par-
ticular relational ones. This allows maintaining correlations between variables at all
points except synchronization points (acquires and releases of locks).

Thread-Local Cartesian Abstract Domain The abstract domain is a complete lattice
over cartesian states, functions mapping program locations to sets of environments,
ordered by pointwise inclusions: We denote the set of cartesian states by .4, and range
over it using ax.

Dy =(Ay,cx) where A, =L - f(Env) and ayxExa, < VneLl.ax(n)cal,(n)

The abstraction function ax maps a set of L-DRF states C' € X' to a cartesian state
ax € Ax. The abstract value ax(C)(n) contains the collection of ¢’s environments
(where t = tid(n))) coming from any state o € C' where ¢ is at location n. In addition,
if n is a post-release point, ., (C')(n) also contains the contents of the buffer A(n) for
each state o € C. As a first cut, we abstract away the versions entirely. The concretiza-
tion function -y, maps a cartesian state ax to a set of (admissible) L-DRF states C' in
which the local state of a thread ¢ at program point n € £; comes from ax(n) and the
contents of the release buffer pertaining to the post-release location n € £ also comes
from ay(n).

ax 1 RP(X) > Ay, where a, (C) = Ane LA | (pc, u, O, A) € C A pc(t) =na(d,v) =O(tid(n))} u
{01 {pe, 11,0, 4) € Cnne L™ A (¢,v) = A(n)}
pce PCApeLMA

Yt Ay = P(X) , where 7, (ax) = { (pe, 1, 0, A) e D[V e T.O(t) = (¢, \z._) A ¢ € ax(pe(t)) A
Vne L™ A(n) = (o, \x..) Apeax(n)}

Abstract Transitions The abstract cartesian semantics is defined using a transition re-
lation, TR* ¢ A, x T x A,.

11

Assignments and assume commands. As we have already abstracted away the version
numbers, we define the meaning of assignments and assume() commands ¢ using their
interpretation according to the standard semantics, denoted by [c]s. Hence, the set of
transitions coming from an assume() or an assignment command c is:

TR} =4ax =} ax n' = ax(n')u U [c]s(@) [[(n, e, n') € insty
peax(n)

Acquire commands With the omission of any information pertaining to ownership of
locks, an acquire command executed at program location n is only required to over-
approximate the effect of updating the environment of a thread based on the contents
of relevant buffers. To do so, we define an abstract miz operation which mixes together
different environments at the granularity of single variables. The set of transitions per-
taining to an acquire command ¢ = acquire(m) is

TR} = {ax =5 ax[n' » Epiz] | {n,c,n’) € inst;} , where
Epie = miz({ax(n')} u{ax(n) [neG(n)}) ,and
miz : P(Env) - P(Env) = ABy.{¢' | Vz € V,3d € By : ¢'(z) = ¢p(z)}

Note that as a result of abstracting away the version numbers, a thread cannot determine
the most up-to-date value of a variable, and thus conservatively picks any possible value
found either in its own local environment or in a relevant release buffer.

Release commands Interestingly, the effect of release commands in the cartesian se-
mantics is the same as skip: This is because the abstraction neither tracks ownership
of locks nor explicitly manipulates the contents of buffers. Hence, the set of transitions
pertaining to a release command ¢ = release(m) is

TR = {ax =} ax[n' = ax(n")Uax(n)]|{(n,c,n’)) € inst,}

Collecting semantics. The collecting semantics of a program P, according to the thread-
local cartesian semantics, is the cartesian state obtained as the least fixpoint of the ab-
stract transformer F starting from a$™ = a ({0ent }), the cartesian state corresponding
to the initial state of the semantics:

[P]x = LFP (F,a™) where
FEA > Acst. Flax) = nel. U{al(n) |ax =} a’l e TR* AteT},and
al™ =X ne{ent, | teT}{\xeV.0}

Theorem 10 (Soundness of Sequential Abstractions). v« ([P]x) 2 [P] .

Sequential Analyses Note that the collecting semantics of P, according to the thread-
local cartesian abstraction, can be viewed as the collecting semantics of a sequential
program P’ obtained by adding to P’s CFG edges from post-release points 7 to pre-
acquire points n in n € G(7), and where a special mix operator is used to combine
information at the acquire points. Further, note that we abstract the environment of
buffers and their corresponding release location into a single entity, which is the stan-
dard over-approximation of the set of environments at a given program location. Hence,

12

the concurrent analysis of P can be reduced to a sequential analysis of P’, provided a
sound over-approximation of the mix operator is given.

Soundness of the Value-Set analysis. The analysis in [9]] is obtained by abstracting the
thread-local cartesian states using the value set abstraction on the environments domain.
Note that in the value set domain, where every variable is associated with (an over
approximation of) the set of its possible values, the mix operator reduces to a join
operator.

Remark 11. We can improve upon the sequential abstraction presented earlier by not
forgetting the versions entirely. We augment A, with a set .S' of “recency” information
based on the versions as follows:

S=XCA{t|3oeC,z eV :argmaxcO(t)v(z) =1}
teT

In other words, S soundly approximates the set of threads which contain the most up-
to-date value of some variable x € V. We show in the experiments that the abstract
domain, when equipped with this set of thread-identifiers, results in a significant gain
in precision (primarily because it helps avoid spurious read-write loops between post-
release and pre-acquire points).

6 Improved Analysis for Region Race Free Programs

In this section we introduce a refined notion of data race freedom, based on data re-
gions, and derive from it a more precise abstract analysis capable of transferring some
relational information between threads at synchronization points.

Essentially, regions are a user defined partitioning of the set of shared variables. We
call each partition a region r, and denote the set of regions as R and the region of a vari-
able x by r(z). The semantics precisely tracks correlations between variables within
regions across inter-thread communication, while abstracting away the correlations be-
tween variables across regions. With suitable abstractions, the tracked correlations can
improve the precision of the analysis for programs which conform to the notion of race
freedom defined below. We note that [9] and [21] do not permit relational analyses.

Region Race Freedom We define a new notion of race freedom, parameterized on the
set of regions R, which we call region race freedom (abbreviated as R-DRF). R-DRF
refines the standard notion of data race freedom by ensuring that variables residing in
the same region are manipulated atomically across threads.

A region-level data race occurs when two concurrent threads access variables from
the same region r (not necessarily the same variable), with at least one access being a
write, and the accesses are devoid of any ordering constraints.

Definition 12 (Region-level races). Let P be a program and let R be a region parti-
tioning of P. An execution m of P, in the standard interleaving semantics, has a region-
level race if there exists 0 < i < j < ||, such that ¢(m;) and c(r;) both access variables

. . ; ; . hb

in region r € R, at least one access is a write, and it is not the case that w; — . ;.
Remark 13. The problem of checking for region races can be reduced to the problem
of checking for dataraces as follows. We introduce a fresh variable X, for each re-

gion r € R. We now transform the input program P to a program P’ with the follow-
ing addition: We precede every assignment statement x := e, where r,, is the region

13

which is written to, and 71,...,7r, are the regions read, with a sequence of instruc-
tions X, := Xp,; ... X, := X, ;. Statements of the form assume(b) do not need to be
changed because b may refer only to thread-private variables. Note that these modifica-
tions do not alter the semantics of the original program (for each trace of P there is a
corresponding trace in P’, and vice versa). We now check for data races on the variables
X,’s.

The R-DRF Semantics The R-DRF semantics is obtained via a simple change to the
L-DRF semantics, a write-access to a variable x leads to incrementing the version of
every variable that resides in z’s region:

[z:=e]: VE - R(VE) = X(¢,v) . {{¢[z = v],v[y = v(y) + 1| r(z) =r(y)]) [v € [e] ¢}

It is easy to see that Theorems|[7]and[§|hold if we consider the R-DRF semantics instead
of the L-DRF semantics, provided the program is region race free with respect to the
given region specification. Hence, we can analyze such programs using abstractions
of R-DRF and obtain sound results with respect to the standard interleaving semantics
(Section[3).

Thread-Local Abstractions of the R-DRF Semantics The cartesian abstractions de-
fined in Section [5]can be extended to accommodate regions in a natural way. The only
difference lies in the definition of the miz operation, which now operates over regions,
rather than variables:

miz : P(Env) - £(Env) EAB..{¢' |Vre R,Ap e By : Yz e V.rg(z) =17 = ¢'(z) = ¢(x)}.

where the function r¢g maps a variable to its region. Mixing environments at the granu-
larity of regions is permitted because the R-DRF semantics ensures that all the variables
in the same region have the same version. Thus, their most up-to-date values reside in
either the thread’s local environment or in one of the release buffers. As before, we can
obtain an effective analysis using any sequential abstraction, provided that the abstract
domain supports the (more precise) region based mix operator.

7 Implementation and Evaluation

RATCOP: Relational Analysis Tool for COncurrent Programs In this section, we per-
form a thorough empirical evaluation of our analyses using a prototype analyzer which
we have developed, called RATCOFE], for the analysis of race-free concurrent Java pro-
grams. RATCOP comprises around 4000 lines of Java code, and implements a variety
of relational analyses based on the theoretical underpinnings described in earlier sec-
tions of this paper. Through command line arguments, each analysis can be made to
use any one of the following three numerical abstract domains provided by the Apron
library [17]: Convex Polyhedra (with support for strict inequalities), Octagons and In-
tervals. RATCOP also makes use of the Soot [28]] analysis framework. The tool reuses
the code for fixed point computation and the graph data structures in the implementation
of [9].

The tool takes as input a Java program with assertions marked at appropriate pro-
gram points. We first checked all the programs in our benchmarks for dataraces and
region races using Chord [_25]]. For detecting region races, we have implemented the

3 The project artifacts are available at https: //bitbucket .org/suvam/ratcop

14

translation scheme outlined in Remark 10 in Sec. [RATCOP then performs the nec-
essary static analysis on the program until a fixpoint is reached. Subsequently, the tool
automatically tries to prove the assertions using the inferred facts (which translates to
checking whether the inferred fact at a program point implies the assertion condition):
if it fails to prove an assertion, it dumps the corresponding inferred fact in a log file for
manual inspection.

As benchmarks, we use a subset of concurrent programs from the SV-COMP 2015
suite [2]. We ported the programs to Java and introduced locks appropriately to remove
races. We also use a program from [22]. While these programs are not too large, they
have challenging invariants to prove, and provide a good test for the precision of the
various analyses. We ran the tool in a virtual machine with 16GB RAM and 4 cores.
The virtual machine, in turn, ran on a machine with 32GB RAM and a quad-core Intel
i7 processor. We evaluate 5 analyses on the benchmarks, with the following abstract
domains: (i) Al: Without regions and thread identifiers ﬂ (i1) A2: With regions, but
with no thread identifiers. (iii) A3: Without regions, but with thread identifiers. (iv)
A4: With regions and thread identifiers. The analyses A1 - A4 all employ the Octagon
numerical abstract domain. And finally, (v) A5: The value-set analysis of [9], which
uses the Interval domain. In terms of the precision of the abstract domains, the analyses
form the following partial order: A5 < A1 < A3 <A4and A5 <Al1<A2<A4. We
use A5 as the baseline.

Porting Sequential Analyses to Concurrent Analyses. For the sequential commands, we
perform a lightweight parsing of statements and simply re-use the built-in transformers
of Apron. The only operator we need to define afresh is the abstract mix. Since Apron
exposes functions to perform each of the constituent steps, implementing the abstract
mix is straight forward as well.

Precision and Efficiency. Fig.[3|summarizes the results of the experiments. While all
the analyses failed to prove the assertions in reorder_2, A2 and A4 were able to prove
them when they used convex polyhedra instead of octagons. Since none of the analyses
track arrays precisely, all of them failed to prove the original assertion in sigma (which
involves checking a property involving the sum of the array elements). However, A3
and A4 correctly detect a potential array out-of-bounds violation in the program. The
improved precision is due to the fact that A3 and A4 track thread identifiers in the
abstract state, which avoids spurious read-write cycles in the analysis of sigma. The
program twostage_3 has an actual bug, and the assertions are expected to fail. This
program provides a “sanity check” of the soundness of the analyses. Programs marked
with * contain assertions which we have altered completely and/or weakened. In these
cases, the original assertion was either expected to fail or was too precise (possibly re-
quiring a disjunctive domain in order to prove it). In qw2004, for example, we prove
assertions of the form = = y. A2 and A4 perform well in this case, since we can specify
a region containing = and y, which precisely track their correlation across threads. The
imprecision in the remaining cases are mostly due to the program requiring disjunc-
tive domains to discharge the assertions, or the presence of spurious write-write cycles
which weakens the inferred facts.

Of the total 40 “valid” assertions (excluding the two in twostage_3), A4 is the
most precise, being able to prove 65% of them. It is followed by A2 (55%), A3 (45%),

6 By thread-identifiers we are referring to the abstraction of the versions outlined in Remark

15

AL A2 A3 AL A5
Programs Loc Threads | Asserts v Time v Time v Time v Time v Time
(ms) (ms) (ms) (ms) (ms)
reorder 2 106 5 2 0(0) 77 2(0) 23 0(0) 71 2(0) 37 0 25
sigma™ 118 5 5 0 132 0 138 4 a8 4 50 0 506
ssscl2 08 3 4 4 76 4 %0 4 82 4 86 2 28
unverif 82 3 2 0 115 0 121 0 84 0 86 0 6
spin2003 65 3 2 2 6 2 9 2 10 2 10 2 8
simpleLoop 7 3 2 2 56 2 61 2 57 2 64 0 27
simpleLoop5 84 4 1 0 40 0 50 0 31 0 37 0 20
doubleLock p3 | 64 3 1 1 1 1 2 1 16 1 19 1 9
£ib_Bench 82 3 2 0 138 0 118 0 129 0 102 0 56
fi:;ﬁ:‘;ih— 82 3 2 0 95 0 103 0 123 0 91) 35
indexer 119 2 2 2 1522 2 1637 2 1750 2 1733 2 719
twostage_3° 93 2 2 0 61 0 a8 0 57 0 28 0 59
singleton_ 59 2 1 1 31 1 29 1 14 1 10 1 28
with uninit
stack 85 2 2 0 151 0 175 0 127 0 129 0 7
stack_longer | 85 1 2 0 1163 0 669 0 1082 0 1186 0 597
stack_longest | 85 2 2 0 1732 0 1679 0 1873 0 2068 0 920
synco1* 65 2 2 2 7 2 25 2 37 2 33 2 10
qw2004% 90 2 a 0 1401 4 1890 0 1478 4 1913 0 698
[27] Fig. 3.11 89 2 2 0 49 2 26 0 54 2 36 0 19
Total 1625 | 3 (Avg) 2 14 | 361(Avg) | 22 |366(Avg) | 18 |[374(Avg)| 26 |406(Avg) | 10 |204(Avg)

Fig.3.: Summary of the experiments. Superscript ® indicates that the program has an actual bug.
(C) indicates the use of Convex Polyhedra as abstract data domain. * indicates a program where
we have altered/weakened the original assertion.

A1 (35%) and, lastly, A5 (25%). Thus, the new analyses derived from L-DRF and R-
DRF perform significantly better than the value-set analysis of [9]]. Moreover, this total
order respects the partial ordering between the analyses defined earlier.

With respect to the running times, the maximum time taken, across all the pro-
grams, is around 2 seconds, by A4. A5 turns out to be the fastest in general, due to
its lightweight abstract domain. A2 and A4 are typically slower that A1 and A3 re-
spectively. The slowdown can be attributed to the additional tracking of regions by the
former analyses.

Comparing with a current abstract interpretation based tool. We also compared the
efficiency of RATCOP with that of Batman, a tool implementing the previous state-of-
the-art analyses based on abstract interpretation [2324] (a discussion on the precision
of our analyses against those in [23] is presented in Sec. [8). The basic structure of the
benchmark programs for this experiment is as follows: each program defines a set of
shared variables. A main thread then partitions the set of shared variables, and cre-
ates threads which access and modify variables in a unique partition. Thus, the set of
memory locations accessed by any two threads is disjoint. In our experiments, each
thread simply performed a sequence of writes to a specific set of shared variables. In
some sense, these programs represent a “best-case” scenario because there are no inter-
ferences between threads. Unlike RATCOP, the Batman tool, in its current form, only
supports a small toy language and does not provide the means to automatically check
assertions. Thus, for the purposes of this experiment, we only compare the time required

16

to reach a fixpoint in the two tools. We compare A3 against Batman running with the
Octagon domain and the BddApron library [16] (Bm-oct).

100000000

10000000

#Threads|A3 Time (ms)| Bm-oct Time (ms) 1000000
2 61 7706 & 100000
3 86 82545 Ts’ 10000 |—
4 138 507663 E 00 == ;zciF;(A3)
5 194 2906585 | _ == -
6 261 13095977 w0 E=
7 368 53239574 10

1

2 3 4 5 6 7
#Threads

Fig.4.: Running times of RATCOP (A3) and Batman (Bm-oct) on loosely coupled
threads. The number of shared variables is fixed at 6. The graph on the right shows
the running times on a log scale.

The running times of the two analyses are given in Fig. 4] In the benchmarks, with
increasing number of threads, RATCOP was upto 5 orders of magnitude faster than
Bme-oct. The rate of increase in running time was almost linear for RATCOP, while it
was almost exponential for Bm-oct. Unlike RATCOP, the analyses in [23}24]] compute
sound facts at every program point, which contributes to the slowdown.

8 Related Work and Discussion

1 acquire (m) 6 while p # 1 do {
2 x =1 7 acquire (m)
30y =1 8 p =y
4 release (m) 9 release (m)
0}
(a) Thread 1 ox =2
12 p = X
13 assert (p # 1)

(b) Thread 2

Fig.5.: Example demonstrating that a program can be DRF, even when a read from a
global variable is not directly guarded by any lock.

There is a rich literature on concurrent dataflow analyses and [26]] provides a de-
tailed survey of some of them. We compare some of the relevant ones in this section. [5]]
automatically lifts a given sequential analysis to a sound analysis for concurrent pro-
grams, using a datarace detector. Here, data-flow facts are not communicated across
threads, and this can lose a lot of precision. The work in [4,21]] allows a greater degree

17

of inter-thread communication. However, unlike our semantics, they are unable to infer
relational properties between variables. The methods described in [9}|10,[15] present
concurrent dataflow algorithms by building specialized concurrent flow graphs. How-
ever, the class of analyses they address are restricted — [[10] handles properties express-
ible as Quantified Regular Expressions, [[15] handles reaching definitions, while [9]
only handles value-set analyses.

In [23]], an abstract interpretation formulation of the rely-guarantee proof tech-
nique [18}29] is presented in the form of a precise semantics. The semantics in [23]]
involves a nested fixed-point computation, compared to our single fixed-point formula-
tion. The analysis aims to be sound at all program points (e.g, in Fig. [T the value of y
at line 9 in ¢5), due to which many more interferences will have to be propagated than
we do, leading to a less efficient analysis. Moreover, for certain programs, our abstract
analyses are more precise. Fig. [5] shows a program which is race free, even though the
conflicting accesses to x in lines 2 and 12 are not protected by a common lock. The
“lock invariants” in [23]] would consider these accesses as potentially racy, and would
allow the read at line 12 to observe the write at line 2, thereby being unable to prove
the assertion. However, our analyses would ensure that the read only observes the write
at line 11, and is able to prove the assertion. [13|] presents an operational semantics
for concurrent programs, parameterized by a relation. It makes additional assumptions
about code regions which are unsynchronized (allowing only read-only shared vari-
ables and local variables in such regions). Moreover, it too computes sound facts at
every point, resulting in less efficient abstractions.

A traditional approach to analyzing concurrent programs involves resource invari-
ants associated with every lock (e.g. [[14]). This approach depends on a locking policy
where a thread only accesses global data if it holds a protecting lock. In contrast, our
approach does not require a particular locking policy (e.g., see Fig.[3), and is based on
a parameterized notion of data-race-freedom, which allows to encode locking policies
as a particular case. Thus, our new semantics provides greater flexibility to analysis
writers, at the cost of assuming data-race-freedom.

Our notion of region races is inspired by the notion of high-level data races [1].
The concept of splitting the state space into regions was earlier used in [20]], which
used these regions to perform shape analysis for concurrent programs. However, that
algorithm still performs a full interleaving analysis which results in poor scalability.
The notion of variable packing [J3] is similar to our notion of data regions. However,
variable packs constitute a purely syntactic grouping of variables, while regions are
semantic in nature. A syntactic block may not access all variables in a semantic region,
which would result in a region partitioning more refined than what the programmer
has in mind, which would result in decreased precision. In contrast to our approach,
the techniques in [11}|12]] provide an approach to verifying properties of concurrent
programs using data flow graphs, rather than use control flow graphs like we do.

As future work, we would like to evaluate the performance of our tool when equipped
with disjunctive relational domains. In this paper, we do not consider dynamically al-
located memory, and extending the L-DRF semantics to account for the heap memory
is interesting future work. Abstractions of such a semantics could potentially yield effi-
cient shape analyses for race free concurrent programs.

18

References

1.

10.

12.

13.

15.

16.

17.

18.

19.

Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. In New Tech-
nologies for Information Systems, Proceedings of the 3rd International Workshop on New
Developments in Digital Libraries, NDDL 2003, and the 1st International Workshop on Vali-
dation and Verification of Software for Enterprise Information Systems, VVEIS 2003, Angers,
France, April 2003, pages 82-93, 2003.

. Dirk Beyer. Software verification and verifiable witnesses. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages 401-416. Springer,
2015.

. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software.
In ACM SIGPLAN Notices, volume 38, pages 196-207. ACM, 2003.

. Jean-Loup Carre and Charles Hymans. From single-thread to multithreaded: An efficient

static analysis algorithm. arXiv preprint arXiv:0910.5833, 2009.

. Ravi Chugh, Jan W Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for concurrent

programs using datarace detection. In ACM SIGPLAN Notices, volume 43, pages 316-326.
ACM, 2008.

. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of programs.

In Proceedings of the 2nd International Symposium on Programming, Paris, France. Dunod,

1976.

. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
238-252. ACM, 1977.

. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 84-96. ACM, 1978.

. Arnab De, Deepak DSouza, and Rupesh Nasre. Dataflow analysis for datarace-free pro-

grams. In Programming Languages and Systems, pages 196-215. Springer, 2011.
Matthew B Dwyer and Lori A Clarke. Data flow analysis for verifying properties of concur-
rent programs, volume 19. ACM, 1994.

. Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by

modular reasoning about data and control. In ACM SIGPLAN Notices, volume 47, pages
297-308. ACM, 2012.

Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Inductive data flow graphs. In ACM
SIGPLAN Notices, volume 48, pages 129-142. ACM, 2013.

Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. Parameterized memory models and concur-
rent separation logic. In European Symposium on Programming, pages 267-286. Springer,
2010.

. Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular shape anal-

ysis. In ACM SIGPLAN Notices, volume 42, pages 266-277. ACM, 2007.

Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly parallel programs,
volume 28. ACM, 1993.

Bertrand Jeannet. Some experience on the software engineering of abstract interpretation
tools. Electronic Notes in Theoretical Computer Science, 267(2):29-42, 2010.

Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for
static analysis. In International Conference on Computer Aided Verification, pages 661-667.
Springer, 2009.

Cliff B Jones. Development methods for computer programs including a notion of interfer-
ence. Oxford University Computing Laboratory, 1981.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21:558-565, July 1978.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and Josh Berdine.
Heap decomposition for concurrent shape analysis. In Static Analysis, pages 363-377.
Springer, 2008.

Antoine Miné. Static analysis of run-time errors in embedded critical parallel ¢ programs. In
Programming Languages and Systems, pages 398—418. Springer, 2011.

Antoine Miné. Static analysis by abstract interpretation of concurrent programs. PhD thesis,
Ecole Normale Supérieure de Paris-ENS Paris, 2013.

Antoine Miné. Relational thread-modular static value analysis by abstract interpretation. In
Verification, Model Checking, and Abstract Interpretation, pages 39-58. Springer, 2014.
Raphaél Monat and Antoine Miné. Precise thread-modular abstract interpretation of con-
current programs using relational interference abstractions. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 386—404. Springer, 2017.
Mayur Naik. Chord: A Program Analysis Platform for Java. http://www.cis.upenn.
edu/~mhnaik/chord.html, Accessed: 2017-03-27.

Martin Rinard. Analysis of multithreaded programs. In Static Analysis, pages 1-19. Springer,
2001.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multi-threaded programs. volume 31, pages 27-37,
New York, NY, USA, October 1997. ACM.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot-a java bytecode optimization framework. In Proceedings of the 1999 con-
ference of the Centre for Advanced Studies on Collaborative research, page 13. IBM Press,
1999.

Qiwen Xu, Willem-Paul de Roever, and Jifeng He. The rely-guarantee method for verifying
shared variable concurrent programs. Formal Aspects of Computing, 9:149-174, 1997.

20

http://www.cis.upenn.edu/~mhnaik/chord.html
http://www.cis.upenn.edu/~mhnaik/chord.html

A Appendix
A.1 Proofs

Lemma 14. Let (pcg, 1o, Oo, Ag) =4, --. >tn (PCN, 1N, ON, AN) be a trace of the
L-DRF semantics, and let 7; = (pc;_1, pi-1,Oi-1, Ai—1) =+, {pc;, pi, Os, A;) denote
the i ‘th transition in the trace. If ¢(7;) = x := e, then

Oi(ti)v(x) = {jli<ine(r)=z:=€l

That is, at the post-state of a write to a variable x by thread t, the version of x in the
local state of t equals the total number of writes made to x till that point.

Proof. We prove this lemma using induction on the length of the trace. Let 3(n) denote
the following hypothesis. If (pcg, pio, o, Ao) =, -.. =tn (PCn, N, On, AN) is a
trace of length N, then for any 0 < i < N, if ¢(7;) = x := e, then

Oi(ti)v(x) =|{j|j<inc(r;) =x:=¢}

We now outline the inductive arguments.

Base Case. 3(N) trivially holds for N = 0. Hence, 3(0) is true.

Inductive Case. Assume P(k) holds for all 0 < k& < n. We need to show that P(n + 1)

holds. Consider a n+1 length execution (pcg, o, o, Ao} =41 -« >t,01 (PCri1s Pnt1, Onets Ans1)-
In this execution, (k) holds for 0 < k < n, by inductive hypothesis. We case split on

¢(Tn+1)- The results trivially holds if ¢(7,,41) is an acquire, release, or assume

(since they do not involve any write operations). Consider the case ¢(7,+1) = « = e.

Let the last write to « before ¢(7,,+1) be in the transition 7;/. Since the program is data

race free, 7 and 7,11 are related by happens-before. Also, by inductive hypothesis

Ou(to)w(x) = [{j 5 i ne(rj) == ')

Thus, the version of z in the local versioned environment of ¢;/ is the highest, and
unique. Consequently, each acquire in the happens-before path between 7;- and 7,,.1
would find this valuation of v(x) to be the highest, and copy over this version and value
of x. This implies

Oy (ti)v(x) =0, (tns1)v(x)
91" (tlr)QS(l') :Qn(trwl)d)(l)

Since the write in 7,,,1 increments the version of x, we have

Ot (tnr)v(2) = [{j | < (n+1) Ac(r)) =2 := €'}
Thus, PB(n + 1) holds, which implies P(n) holds for all n > 0. o

Proof (Lemma [6). Let x be an arbitrary variable in V. We prove the lemma using
induction on the length of the trace. Let B(n) denote the following hypothesis. Let
Oent —t, --- —t5 ON be an execution of P in the L-DRF semantics of length N > 0.
Then, for any o;, with two component versioned environments (in thread local states or
buffers) v and v such that viv(x) = ver(x), we must have v1p(z) = vad(x).

We outline the inductive arguments.
Base Case. For N = (, the trace contains the single state o.,;. By the definition of o,

21

for any two component versioned environments (in thread local states or buffers) v; and
vg such that v1v(x) = vav(z), we have v1¢(x) = vad(z). Thus PB(0) holds.
Inductive Case. Assume ‘B3 holds for all executions of length k, where 0 < k < n. We
show that B¥(n + 1) holds. Let # be an execution of P in the L-DRF semantics of length
n + 1. We case-split on ¢(7p41)-

PB(n+1) trivially holds if ¢(7,+1) is either an assume or a release, since these com-
mands do not alter any versions or values.

If ¢(7,41) = acquire(m), then ¢,,1 updates its local versioned environment based
on its own versioned environment, and the versioned environments at relevant buffers.
By the inductive hypothesis, for two component versioned environments v; and vo of
o, such that viv(z) = vor(x), we have vip(x) = vag(z). By the semantics of the
acquire, t,.1 copies over the version and the valuation of x from one such v (includ-
ing, possibly, ¢,1’s local versioned environment) in o,,. Thus, 3(n + 1) holds.

If ¢(ftp41) = @ := e, then ¢, updates the version and valuation of x in its local ver-
sioned environment. By Lemma(l4} ©,,1 (tns1)v(x) = [{j | j <n+1Ac(r)) =z :=¢€}].
This implies, for any component versioned environment v’ in 0,41,

V'v(x) # Oni1(tns1)v(x)

Since none of the other versioned environments are modified, 3(n + 1) continues to
hold for such pairs of v, and vy. Thus, B (N) holds for all N > 0. i

Corollary 15 (x is well-defined). For any trace 7 in the L-DRF semantics, x(7) is
well-defined.

Proof. The function x is only defined for admissible states, and by Lemma [6] the L-
DRF semantics only produces executions containing admissible states. Thus, for any
trace 7, x(7) is well-defined. i

Proof (Soundness Theorem[7). Let x be an arbitrary variable in V. We prove the result
using induction on the length of the traces. Let 3(V) denote the following hypothesis.
For any trace m of program P in the standard semantics, there exists a trace 7 in the
L-DRF semantics such that

— CI: For each transition ; in 7, if ¢(7;) involves a read of variable x, then
sic10(x) = 05-10(t;)p(x)

In other words, the two traces are indistinguishable with respect to the variable
reads. If ¢(7;) involves a write to the variable z, then

sip(x) = 0:0(t:) ()

Recall that s;_1 and o, are the pre-states of the transitions 7; and 7;, respectively.
is the state in the standard interleaving semantics prior to executing transition 7;,
whereas o;_1 is the state in the L-DRF semantics prior to execution 7;.

- C2x(m)=m

Note that the inductive hypothesis is stronger than the claim in Theorem [7] We outline
the inductive arguments.

Base Case. For N = 0, the execution 7 contains the single state s.,:. The length 0
L-DRF execution, containing the single state oy, trivially satisfies C1. Also, since

22

X(Gent) = Sent> C2 holds. Thus, 3(0) holds.

Inductive Case. Assume that 3(k) holds for all executions of length k, where 0 <
k < n. We prove that B(n + 1) holds. Consider an execution 7 of length n + 1 in the
standard semantics. We denote by 7[1...n] the n-length prefix of 7. By the inductive
hypothesis, there exists a trace 4’ of length n in the L-DRF semantics, such that CI/
and C2 holds with respect to 7[1...n]. Consider a state 0,41 and a transition 7 =
(onstns1,0n41) € TRp such that ¢(7) = c(m,41). We prove that # = 7' - 7 is the
trace in the L-DRF semantics such that C/ and C2 hold with respect to 7. For C2, this
involves proving that x (0p41) = Spt1-

We case split on ¢(7).

acquire: CI trivially holds as the command does not involve a read or a write. By the
inductive hypothesis, x (0y,) = s5,, which implies s, i = o, pu. Thus, the lock acquisition
succeeds in both 7,1 and 7. Moreover, since the acquire command does not alter any
values or versions (it simply makes copies), we have x(0p+1) = Sp+1, and C2 holds.
release: It can be shown, in a manner analogous to the acquire, that both C/ and C2
hold.

assume(b): We consider two situations: (i) the conditional b involves the read of a
private variable, and (ii) b involves the read of a shared variable. Consider first the case
that b involves the read of a private variable p. The last write to p in the execution 7
(execution 7") must have been performed by t,,,1 itself (since the variable is private), in
some earlier transition ;s (in some earlier transition (7,)). By the inductive hypothesis,

509(p) = 0irO(tn+1)P(p)

Since p is never written to between ;s and 7,41 (equivalently, between 7}, and 7),
we have

5n0(p) = 0nO(tns1)d(p)

and CI holds. Now consider the case where b involves the read of a shared variable
x. Let the last write to x, prior to m,41, be in the transition 7;. Since the standard
semantics is sequentially consistent, we have:

sip(x) = snp(x)

Since the program P is race free, 7;» and 7,41 (equivalently, 7}, and 7) are happens-
before related. By Lemma the version of z in ©(t;/) would be the highest among
all the component versioned environments in o;;. Every acquire command in the
happens-before path between 7}, and 7 would copy over this version and value of z.
Thus,

Une(tn+1)(;5(1') = O—Z’@(tl’)gb(x)
By the induction hypothesis,

spp(x) =01 O(tir)p(x)
= 5,0(x) =0,0(tns1)0()

and C/ holds. Since the assume command only performs reads, and does not update
any values or versions, we trivially have x (0,,11) = Sn+1, and C2 holds.

23

The last case is if ¢(7) is z := e. In a manner analogous to the assume, one can prove
that the read of every variable y in the expression e satisfies the property s,¢(y) =
01,6 (tn+1)d(y). Since any non-deterministic choice can be made to coincide in both
the standard and the L-DRF semantics, we have

[e] (sn9) =[e] (0nO(tns1)9)
= 3n+1¢($) :Un+1@(tn+1)¢($)

Thus, CI holds. By Lemma the version of x in ©(t,.1) would be the highest
among all the versioned environments in o1, which implies that x (c,+1) = Sp+1, and
C2 holds. Thus, P(n + 1) holds.

Consequently, B(V) holds for all N > 0, and the claim in Theorem 7| follows. o

Proof (Completeness Theorem [§). Let x be an arbitrary variable in V. We prove the
result using induction on the length of the trace. Let ‘B(N) denote the following hy-
pothesis. Let 7 be an execution of length N in the L-DRF semantics. Then, x(7) is an
execution in the standard semantics.

We outline the inductive arguments.
Base Case. For N = 0, the execution 7 contains the single state oy, and x(0ent) =
Sent 18 a valid length O trace in the standard semantics. Thus, $3(0) holds.
Inductive Case. Let B3 hold for all traces of length k, where 0 < k& < n. We prove
that B(n + 1) holds. Consider a length n + 1 trace 7 in the L-DRF semantics. By
the inductive hypothesis, there exists a trace 7’ in the standard semantics, such that
7' = x(#[1...n]), where #[1...n] represents the n length prefix of 7. Let s,,41 =
X(on+1), and T = (S, 011, 8n41) € TR® such that ¢(7) = ¢(7p41). We show that
m =7'.7 = x(7) is a valid trace in the standard semantics. We case split on ¢(7).
acquire: Since x(o,) = s, (by the inductive hypothesis), op = su. Thus, the lock
acquisition succeeds with the state s in 7. Since the acquire command does not alter
the value or version of any z in the L-DRF semantics, 7T is a valid move according to
the standard semantics. Thus, 3(n + 1) holds.
release: Through reasoning analogous to the case for acquire, one can prove that
B(n + 1) holds.
assume(b): For any variable y read in the condition b, the version associated with y
in 0,0 (t,+1) must be the highest among all the component versioned environments in
o,. The reason is as follows: since each variable y is read in 7,1, the transition must
be happens-before related to the last writes to each y. By Lemma|[I4] the version of y,
after a write, is the highest in the local versioned environment of the thread performing
the write. Any intervening acquire command on the happens-before path between the
write and the read would propagate this version (and value) of y. Since the function
extracts the value of a variable associated with highest version count, we have, for every
variable y read in b,

$n®(y) = 0,0 (tn+1)9(y)

This implies [b] s, ¢ = [b] 0,O(tn+1)¢. Consequently, 7 can execute in the stan-
dard semantics and 7 is a valid execution. Thus, B(n + 1) holds.
x := e: By reasoning analogous to the assume, we can show that [e] s,,¢ = [€] 0., O (tn+1)P.
Thus, $,110(2) = 0410 (tns1)d(x). Moreover, by Lemma the version count of =

24

is highest in ©(t,+1) in o,,41. This implies that y maps this value of z to s,,+1. Con-
sequently, 7 can execute in the standard semantics and 7 is a valid execution. Thus,
PB(n + 1) holds.

Thus, PB(N) holds for all N > 0. o

25

	Thread-Local Semantics and its Efficient Sequential Abstractions for Race-Free Programs

