Feature Selection from gene expression

Aim: To select a subset of genes that can maximize the discrimination between various phenotypes.

Given: A set of gene expression profiles and the corresponding phenotypes.

Method:
- Each gene expression profile forms a data item with the corresponding phenotype as the label.
- The features are the genes. The corresponding gene expression denotes the value of feature.
- Apply feature selection using maximum discrimination to obtain the set of features that maximize discrimination.

Flowchart:
- Choose a feature f_i from F which maximizes the discrimination between the 2 classes.
- $F = F - f_i$
- $S = S \cup \{f_i\}$
- Calculate the new divergence between the 2 classes.
- Is increase in divergence very small?
 - Output S
 - No

Feature Selection using Maximum Discrimination

Aim: To select the minimal set of features which maximize the discrimination between classes.

Given:
- $F = \{f_1, f_2, \ldots, f_n\}$
- $S = \{\}$

Selected features

Flowchart:
- Choose a feature f_i from F which maximizes the discrimination between the 2 classes.
- $F = F - f_i$
- $S = S \cup \{f_i\}$
- Calculate the new divergence between the 2 classes.
- Is increase in divergence very small?
 - Output S
 - No

Jensen Shannon Divergence Minimization

Aim:
- To select the minimal set of features which maximize the discrimination between classes.

Given:
- $F = \{f_1, f_2, \ldots, f_n\}$
- $S = \{\}$

Selected features

Flowchart:
- Choose a feature f_i from F which maximizes the discrimination between the 2 classes.
- $F = F - f_i$
- $S = S \cup \{f_i\}$
- Calculate the new divergence between the 2 classes.
- Is increase in divergence very small?
 - Output S
 - No

Applications of Non-extensive Information Theory

q-Gaussian distribution
- Generalization of normal distribution
- q-Gaussians applied to Function Smoothening

q-Gaussian Smoothed
- Gaussian Smoothed
- q-Gaussian Smoothed

Properties of Tsallis Divergence Minimization

Exponential distribution obtained from KL divergence minimization
- Power law distribution obtained from q-divergence minimization

Our Work:
- Generalize the important properties of Kullback-Leibler divergence minimization, such as Subset Independence, Pythagorean property for Tsallis divergence minimization.

Label Ranking using Minimum Description Length Principle

Aim: To rank the labels according to their relevance to a given data item.

Intuition:
- More the regularity in data, more it can be compressed.
- Learning \leftrightarrow Finding regularity in data.

Algorithm

- In the algorithm for feature selection using maximum discrimination, Jensen Shannon divergence can be used to calculate divergence between the classes.