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Fundamental question

How do we draw conclusions from and about networks?

Figure 1. The Global Banking Network
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IMF Stability Assessment: Size + Interconnectedness = “Importance”?



Networks as big data &

Statistical network modeling allows us to understand big data )

Mechanisms that generate data

Structure that facilitates analysis

Tools that can be understood
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Modeling (big) networks

(&)
Objects + relationships = J e.a‘o

networks

A network is two sets:

Nodes (‘nouns’): any discrete set of objects

Links (‘verbs'): a set of pairs of these objects

Examples:

Social networks: people, friendships

Complex systems: variables, correlations

Images: pixel locations, similarities



Adjacency matrices enable visualization of large networks:

. 1 if node i links to node j,
(i,j)th entry = _
0 otherwise.

Their structure reveals information:

o Links as (biased) coin tosses ¢ How to couple the tosses?




The simplest random network &

Links as repeated tosses of the same coin, Pr(Heads = ﬁ)

How many connections will form as the network grows?

Emergence of triangles or other structure?




Clusters and connectedness

Random scattering of nodes

Nodes connect to others nearby

As the network grows, will it eventually become connected?



Limiting behavior in large networks

Suppose n network nodes divide into k
‘regular’ groups (Szemerédi, Gowers, Tao)

Thm: If k grows like /n, with edges added :
faster than n grows, then we can recover groups

Suppose a network is like a noisy ‘image’
f in the infinite limit (digital — analog)

Thm: As n — oo, network yields ‘oracle’
information on f at a rate of at least n~1/4

Brute force algorithms needed to reveal this
information. . . but many special cases possible




Political blog network (Adamic, 2005)

e What is the network equivalent of clustering?

o If the data are not generated by a cluster model, can we still
approximate the generating mechanism (nonparametrics)?

e How to establish correct interpretation for nonparametrics?



Example: likelihood-based clustering &

Survey data on high-school friendships (Add Health, 1994):

students grouped by students grouped by by race (blue lines) and
year (black lines) race (blue lines) then clustered (red)

Implication: how do we interpret the notion of “clusters”?



e Assume the network to be generated nonparametrically, and
then fit via likelihood-based clustering

e The resulting estimate approaches an optimal
piecewise-constant approximation to the generative model

Implication: significantly broadens the interpretation of “clusters”:




Example: Lovasz, Very Large Graphs (AMS, 2012):

Generative model Adjacency matrix



£, ¢ ~ unif|0, 1]

@ Specify w: [0,1]3 — [0,1]
@ Generate latent variable o ~ Uniform(0, 1)

© Generate latent variables £ = (§1,...,&m) and
C = (Cla s 7<n) ~ Uniform(O, 1)

O Let Aj; be Bernoulli with parameter w, = w(o, &, ().
Connect nodes i and j if Aj = 1.



Qn: Can we fit a piecewise-constant approximation, wg, to wq?

&

10...
Given| 1 0 generated by , estimate

A Wey Wep

Parameters ¢ = (1, v, 6) describe wy:
e Vectors u, v : boundaries of the piecewise-constant regions

e Matrix 8: heights of the piecewise-constant regions



Fitting criteria &

We can fit ¢ = (u, v, 0) to an observed adjacency matrix A by
various criteria:

Likelihood: La(p,v,0) = rg’a%(Z log P(Aj; [ 053i)T(j))
I7J
. 2
Mean-squared error: Ra(u,v,0) = r;wlp Z }A;j — 95(,-)-,—0)‘
’7J
Mappings S and T assign nodes to K clusters, and are constrained
to have assignment proportions matching p and v.



Risk measures &

Fitting criteria correspond to risk functionals that measure
agreement with an equivalence class induced by the unknown w.

Let M be the set of all measure-preserving bijective maps of [0, 1]
to itself. Then we can minimize mean-squared error:

Ru(9) = inf // ), 72(y)) — wolx, ¥ dx dy.

71,mp €N

or maximize the corresponding likelihood as

L) = s [ (00, ma() oges(x.y)

71,mo €N

+{1 —w(m(x), ma(y))} log {1 — wy(x, y)}] dxdy.



Technical result &

For the least squares co-blockmodel M-estimator

n . 2
¢):argmm{569m Tegnﬁzzws ()76) ~ A }

ped ==

relative to the L2 risk

Ru(6) = sup //0 X),m2(y)) — wolx, Y[ dx dy.

m1,moEl

we have that
N _ —1/4
R, () q;gi R.(¢) = Op(n )

An analogous result holds for sup;cq Luw(¢) — L. ().



Recap (Biometrika, 2012; Ann. Statist., 2013)

Suppose a network is like a noisy ‘image’
f in the infinite limit (digital — analog)

Thm: As n — oo, network yields ‘oracle’
information on f at a rate of at least n—1/4

Brute force algorithms needed to reveal this
information. . . but many special cases possible

Suppose n network nodes divide into k
‘regular’ groups (Szemerédi, Gowers, Tao)

Thm: If k grows like y/n, with edges added :
faster than n grows, then we can recover groups *
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