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Mathematics used to be about finding the best arrow to hit your target … 
 
… nowadays, a lot of it is about painting the best target around your arrow. 
 

   - H. Narayanan (Prof., IIT Bombay) 



This talk .. 

Three problems of object recovery with missing information: 
 

 - Matrix completion (STOC 2013) 
 - Phase Recovery (NIPS 2013) 
 - Mixed Linear Regression (preprint) 

“One” algorithmic approach: Alternating Minimization 
 

 - problems naturally formulated as non-convex optimization 
  
 - AltMin: hold one set of variables, optimize over the other, alternate 

 
 -  super fast, widely applied 

Our work: the first guarantees of statistical performance 



Problem 1: Matrix Completion 

Find a low-rank matrix from a few (randomly 
 sampled)  elements  



Problem 1: Matrix Completion 

U

V 0
Empirically popular approach: 
 
 
(1) Write as non-convex problem 

 
 
(2) Alternately optimize U and V 
      (from random initialization) 
 

Part of the BellKor winning entry of the Netflix prize. 

min
U,V

kP⌦(M � UV 0)kF



AltMin for Matrix Completion 

U

V 0

No theoretical guarantees on exact/approximate recovery 

Naturally decouples into small least-squares 
problems 

(a) For all i	


(b) For all j	


ui  min
u

X

j:(i,j)2⌦

(mij � hu, vji)2

vj  min
v

X

i:(i,j)2⌦

(mij � hui, vi)2



Matrix Completion 

[Candes, Recht ‘08] : First method with any rigorous guarantees on recovery 
 

 - based on convex optimization over                 matrices n⇥ n

min
X

kXk⇤

s.t. P⌦(X) = P⌦(M)

Theorem [CR,08] (and several others since):  
 
Random samples         + incoherent matrix           ⌦ M ) exact recovery 

See also: [Keshavan, Montanari, Oh] – SVD + gradient descent on grassman 
      manifold 

Input and output : 
 
But this needs            
memory (and computation) ! 

eO(n2)

eO(nr)



Matrix Completion AltMin Sensing Completion Proof Summary References
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AltMin

Nuclear norm approach

Nuclear norm approach : a leading theoretical approach.

Empirically, AltMin has
similar sample complexity and
better computational complexity.

Praneeth Netrapalli Provable Matrix Completion using Alternating Minimization

Surprisingly: AltMin seems to need fewer samples than trace-norm minimization  
 
(empirically) 



recover       from       and 

Problem 2: Phase recovery 

Recover complex vector given only magnitudes of linear eq.s  

<an abstraction of> 
Application: diffraction imaging 
(e.g. in crystallography) A y

y = |Ax

⇤|
x

⇤ 2 Cn



Problem 2: Phase recovery 

Phases contain crucial information … 

FFT Switch phases 
Keep magnitudes 

IFFT 



recover       from       and 

Problem 2: Phase recovery 

Recover complex vector given only magnitudes of linear eq.s  

A y

Empirically popular approach [Gerchberg-Saxton ‘72], [Fineup ‘80] etc. 
 
(1) Write as non-convex problem 

 
 
 
(2) Alternately optimize over       and       starting from random initialization.  

min
C,x

kCy �Axk2

Diagonal matrix of phases 

x C

y = |Ax

⇤|
x

⇤ 2 Cn

<an abstraction of> 
Application: diffraction imaging 
(e.g. in crystallography) 



AltMin for Phase Recovery 

x  argmin
x

kCy �Axk2

cii  Ph(hai, xi)

(a) Solve a least-squares problem 

(b) Record the resulting phases 

This is nothing but Expectation-Maximization (EM) for the noiseless case 



Phase Recovery 

[Candes, Strohmer, Voroninski ‘12] etc. : lifting + SDP relaxation of rank 

min
X

tr(X)

s.t. a0iXai = y2i

X psd

Theorem [CSV’12], [CL’13]: 
 
If                                     then                              whp, from             samples ai ⇠ CN (0, I) b

X = x

⇤(x⇤)0 O(n)

Makes an             problem into 
 
an              problem 

O(n)

O(n2)

See also: [Waldspurger, d’Aspermont, Mallat] for alternate convex formulation 



AltMin for Phase Recovery 
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Phase Sensing: # Measurements Required for Recovery

 

 

AltMin

PhaseLift

Again, lower number of 
samples than convex 
methods  
 
(empirically) 



Problem 3: Mixed linear regression 

Solve linear equations, except that each is either  

or 

Find                  given                       {yi, xi}

yi = hxi,�
⇤
0i yi = hxi,�

⇤
1i

�⇤
1 ,�

⇤
0

Natural for settings where linear prediction / modeling with latent classes 
 

 - Evolutionary biology: separating out mutant behavior / expression 
 - Quantitative Finance: detecting regime change 
 - Healthcare: separating patient classes for differential treatment 
 …. 

 
Several specialized R packages (see [Grun,Leisch] for overview) 

 - all implement variants / optimizations of EM 



Mixed Linear Regression 

… my netflix problem … 



Problem 3: Mixed linear regression 

Solve linear equations, except that each is either  

or 

Find                  given                       {yi, xi}

Only existing algorithm: Expectation Maximization (EM) 
 
 = AltMin on the non-convex problem 

… starting from random initialization.  
 
No theoretical guarantees for any method, in any setting. 

min
�1,�0

X

i

min
zi2{0,1}

(yi � zihxi,�1i+ (1� zi)hxi,�0i)2

yi = hxi,�
⇤
0i yi = hxi,�

⇤
1i

�⇤
1 ,�

⇤
0



Mixed Linear Regression 

(a) Assign labels to the samples, based on current estimates  

(b) Update estimates using new labels 

bzi = 0 else 

b
�1  argmin

�

X

i:zi=1

(yi � hxi,�i)2

bzi = 1 , (yi � hxi,
b
�1i)2 < (yi � hxi,

b
�0i)2

b�1, b�0



Mixed Linear Regresion 

10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

800

900

1000

1100

k

N

Dimension 

(empirically) 
Number of samples 
scale linearly with  
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(for EM with our  
initialization) 

Synthetic experiment with isotropic gaussian samples 



The story so far 

Three problems: matrix completion, phase retrieval, mixed linear regression 

Empirically: Best methods involve AltMin on natural non-convex formulation 
       
      No statistical guarantees on consistent recovery, in any setting 

Methods with statistical guarantees: convex optimization 
 

     (under statistical assumptions) establish consistent recovery 
 

     Slower, involve optimization in higher dimensions than warranted by 
  the data or output 

 
     (often) need more samples than non-convex methods, 



Our motivation 

Is it possible to obtain statistical guarantees for AltMin algorithms that work in 
 
the dimension specified by the input and output ? 
 
 
 
 
Equivalently:  
 
Does the fact that convex methods have statistical 
consistency represent a genuine algorithmic  
advance ? 
   
 
Or is it just that the statistical setting is “easy”  
enough for faster methods as well ? 



Our Results 

Statistical guarantees for exact recovery: 
 

 Global convergence + statistical consistency for AltMin 
 

  … in the standard settings 

Two key components of our analysis: 
 
Initialization:  

 via leading eigenvector(s) of appropriate matrix 
 

Re-sampling: (analytical trick) 
 as a work-around to vexing dependency issues 
  



Initialization 



Phase Recovery: Initialization 

Problem: solve                            i.e. equations  
y = |Ax|

yi = |hai, xi| , i = 1, . . . , N

M =
1

N

X

i

y2i aia
0
iMake a matrix ai ⇠ CN (0, I)

Key observation: as                     the top eigenvector of       N ! 1
M ! x

⇤

M =
1

N

X

i

|hai, x⇤i| aia0i

! I + 2x⇤(x⇤)0



Lemma:  with                                   samples, can get   

Phase Recovery: Initialization 

x

(0)  M =
1

N

X

i

y2i aia
0
iGiven N samples,  top eigenvector of 

Asymptotically consistent, but slow                     convergence 
 
 
Not satisfactory by itself, but useful for initialization 

N =

C

✏2
n log

2 n kx(0) � x

⇤k < ✏

O(1/✏2)



Effects of Initialization 

-  allows for geometric  
 convergence 
  

-  and reduces the number  
 of samples required 

 
 
     (and is crucial for analysis) 



Initializations … 

Matrix Completion: 

U0  top left singular vectors of 0-filled matrix  M⌦

Mixed linear equations: 

�(0)
1 ,�(0)

2  Top two eigenvectors of  
M =

1

N

X

i

y

2
i xix

0
i

yi = hxi,�1i yi = hxi,�2ior 

Theorem:                                  samples for constant distance   N = cr2.5n log n

N = cn log

2 nTheorem:                                  samples for constant distance   

All three: convergence to truth requires too many samples. So use only for init. 



Re-sampling 

Empirically: use all samples in every iteration 
 -  after initialization, geometric decay of error observed 

 
 
Analysis of this is hard  

 - because concentration results require independence between 
   samples and current iterate. 

 
 
“Solution” : use fresh samples in every iteration 

 - making them independent of current iterate 
 - by pre-partitioning the given samples 



Example: Mixed Linear Equations 

�(t)
1 ,�(t)

2 �⇤
1 ,�

⇤
2

{yi, xi} xi ⇠ N (0, I)

�(t)
1 � �(t)

2

�⇤
1 � �⇤

2

Intuition: current iterate truth 

samples 



Example: Mixed Linear Equations 

�⇤
1 ,�

⇤
2

{yi, xi} xi ⇠ N (0, I)

�(t)
1 � �(t)

2

�⇤
1 � �⇤

2

Intuition: current iterate truth 

samples 

If                 not too far from 
 
Then majority points will be correctly  
assigned.  
 
So, running least-squares on these 
will yield better next iterate. 

�⇤
1 ,�

⇤
2

�1,�2

�1,�2



Example: Mixed Linear Equations 

�⇤
1 ,�

⇤
2

{yi, xi} xi ⇠ N (0, I)

�⇤
1 � �⇤

2

Intuition: current iterate truth 

samples 

�1,�2

�⇤
1 � �⇤

2

… which will give fewer error samples … 

�1 � �2 �+
1 � �+

2



Example: Mixed Linear Equations 

�⇤
1 � �⇤

2 �⇤
1 � �⇤

2

�1 � �2 �+
1 � �+

2

Analysis of this is hard because, after first step, samples are dependent the      s �

Idea: make them independent, by re-sampling at every iteration 



Resampling 

Resampling == forcing independence between samples and estimate  
 

 by modifying the algorithm to use  fresh samples in every iteration. 

Matrix completion: new elements in every iteration 
 
Phase Recovery: new measurements 
 
Mixed linear equations: new samples 

Note: seems to be NOT needed empirically. 
 
Proving this is the case would be very interesting. 



Mixed Linear Regression 

Theorem: [Yi, Caramanis, Sanghavi ‘13] 
 
If the current iterate satisfies                                  
 
and we use new, independent samples, then the new error satisfies 
 
 
 
 
provided the number of samples is greater than 

k�+
i � �⇤

i k <
1

2
k�i � �⇤

i k

n

min{p1, p2}

k�i � �⇤
i k < ck�⇤

1 � �⇤
2k

Similar results (i.e. halving of error in each step) for matrix completion and  
phase retrieval. 



Iterations with Re-sampling 

So: geometric decay in the error – halving in every step. 
      - better than rate of convergence for (the non-smooth) convex methods 
 
 
Good initialization is crucial to showing this decay in error 
 
 
 
 
 
 
 
 
 
 
 
 
But: need                   extra samples for accuracy of   

log(1/✏) k�i � �⇤
i k < ✏
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SVD Initialization
Random Initialization



Summary 

Practice: + fast  + low number of samples  - no guarantees 
 
Theory: + statistical guarantees under assumptions 

 - slower   - (often) more samples 

Our work: 
 
An (imperfect, but first) attempt to bridge this divide, via two key ideas 

 - Initialization – important both empirically and for proof 
 - Resampling – only for proof, not important empirically 

We show: AltMin with these two works under similar statistical assumptions 

Future: 
 
Vast number of applications where EM etc. are the most popular methods 
 
Removal of the re-sampling requirement (?) 



Conclusion 

Papers: (also on my website) 
 
Matrix completion: STOC 2013 

 w/ Praneeth Netrapalli and Prateek Jain 
 
 
Phase Retrieval: NIPS 2013 

 w/ Praneeth Netrapalli and Prateek Jain 
 
 
Mixed Linear Regression: preprint 

  w/ Xinyang Yi and Constantine Caramanis
  

Thanks ! 



Mixed Linear Regression: Initialization 

yi = hxi,�
⇤
0i yi = hxi,�

⇤
1ior 

M :=
1

N

X

i

y

2
i xix

0
iMake matrix 

M ! I + 2�⇤
1(�

⇤
1)

0 + 2�⇤
2(�

⇤
2)

0Then, 

So, even with finite samples, top-two  
eigenspace of M a good approximation 
to 
 
Our initialization: a 1-d grid search for the  
    s  in this space 

span(�⇤
1�

⇤
2)
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SVD Initialization
Random Initialization

�

Recall: 



Matrix Completion: Initialization 

Consider the 0-filled matrix P⌦(M)

U (0)  Top r-dimensional column space 
of  P⌦(M)

Lemma [Jain, Netrapalli, Sanghavi]: 
 
We have                                 if the matrix is     -incoherent and number of  
 
samples is 

dist(U (0), U⇤)  1

2
µ

⌦(4µ2r2.5n log n)

Condition number 


