
Dirty Models

Sujay Sanghavi

Electrical and Computer Engg.
University of Texas, Austin

Joint w/ C. Caramanis, Y. Chen, A. Jalali, P. Ravikumar, H. Xu

Outline

High-dimensional Problems

 - Background, convex methods

 - Why robustness ?

 - Why flexibility ?

Our Basic idea

Results

Implications

Current and Future work

High-dimensional Problems

of observations
or samples

of variables to determine
or choices to make

Task: given recover

Dimensionality reduction : use structure in the data to reduce its effective

 dimension

y = A(X) + w

� Rp� Rn

n << p

y = A(X) + w“solve”

“s.t.” X � C

e.g. = sparse vectors,
 low rank matrices
 sparse MRFs,…

C

y,A X

Common Structural Assumptions

Sparsity

y = Ax+ w

=

Sample Application Areas:

Natural and medical images – sparse in fourier / wavelet etc. bases

User modeling from website usage data

“Generic” linear regression where

 out of many possible causes, only a few are relevant / expressed

Most / all of the mass of x in a
very small (but a-priori unknown)

 set of coordinates.

Sparsity: Recovery via ̀1

To solve:

For an x that has “many” zero
variables

y = Ax

Recovery via ̀1

Algorithm:

min kxk1

s.t. y = Ax

Intuitively:
 norm penalizes non-sparse
 vectors more

Formally:
 It is the atomic norm arising
 from 1-sparse vectors

`1

Recovery via ̀1

Succeeds Fails

Recent research (last 6 years): detailed understanding of when we can expect
success

Common Structural Assumptions

Low rank

= When represented as
an appropriate matrix,
data is approx / exactly
low rank

Sample Application Areas:

Principal components analysis (PCA) – the most popular dimensionality reduction

 technique

Data embedding (MDS / Isomap) and localization

Collbaorative Filtering

Graph clustering / community detection

Recovery via Trace / “Nuclear” Norm

min kXk⇤

s.t. Xij = mij for (i, j) 2 ⌦

E.g. matrix completion: find low-rank matrix
from random subset of elements ⌦

kXk⇤ = Sum of singular values of a matrix

Intuitively: encourages sparsity in the singular values, aka low-rank-ness
 (recall: rank = number of non-zero singular values)

Formally: is the atomic norm arising from rank-1 matrices

Common Structural Assumptions

Group Sparsity
 =

Variables organized
into known groups.

Only very few (a-priori unknown) of the groups are non-zero.
Different values possible within a group.

Y = AX +W

For a set G of groups, the norm that encourages group-sparsity is

kXkG =
X

g2G

kXgk2 Intuition: like an norm at the level of groups `1

The story so far …

y = A(X) + w X � C

High-dimensional problems: Consistent recovery possible via structural
assumptions

Convex optimization: a generic framework – penalize with the appropriate
atomic norm

solve s.t.

Last decade: huge amount of work on two aspects of this approach

(a) Statistics: under what conditions does this find a good X ?

(b)  Algorithms: fast/iterative methods that use structure of resulting convex
 programs

min
X

L(y,A;X) + � r(X)

Our motivation

(a) Can we substantially expand the modeling power of such methods ?

(b) Can we make these methods robust to errors / outliers ?

Example: Modeling

xt+1 = Axt + nt

Application: sparse linear predictive modeling of (log of) stock prices

Task: find sparse A given

x1, x2, . . .

Amazon

Walmart

BarnesNoble

BestBuy

Example: Modeling

Simple minimization gives a dense model !

(also not very predictive)

`1

(one possible) Reason:

Each stocks seems to depend
on many others because of
co-dependence on latent factors

(e.g. US Fed Interest rates,
price of gas, etc.)

Question: can we learn both the
direct dependence and latent factors from only stock price data ?

Example: Robustness

PCA: given points in -dim space,
find the low-dimensional subspace that
best approximates them.

Standard approach:
Organize points into data matrix
Take SVD, and retain significant components

Structural assumption: low-rank

n p

points

Standard approach:
Organize points into data matrix
Take SVD, and retain significant components

Structural assumption: low-rank

Gross outliers bounded corruption
in constant fraction
of entries

Fragile to:

Example: Robustness

Collaborative Filtering w/ Adversaries

Collaborative Filtering

Common Assumption: low rank Users

“user ratings based on a
few relevant features”
[Srebro]

Popular approach: [Candes-Recht]

min
X

X

(i,j)2⌦

(xij �mij)
2 + � kXk⇤

Collaborative Filtering w/ Adversaries
Users

Some users malicious (e.g, “shilling for” or “nuking” a product, or generally disruptive)

If these provide inconsistent ratings (which defy the low-rank approx. that works
for everyone else), we should be able to negate their effects.

Main challenge: figuring out identities of the adversaries from v. few observations of
both their and the true users’ rankings

Our Idea

+

Given Low-rank Column-sparse

Idea: Represent data as the superposition of more than one structural model

 (both of which now have to be learnt from data)

Basic Idea

Our methods:

(linear) Superposition of more than one structural model class

-  Each individual model class already used in isolation

-  computationally efficient by combining efficient methods for the
 component classes.

- But can now be more robust / flexible

“solve”

“s.t.”

y = A(X1 + X2) + w

X1 � C1 X2 � C2

Approach: Convex Optimiation

min
X

L(y,A;X) + � r(X)Single structure

Our approach:

Loss function regularizer

(same) Loss function

min
X1,X2

L(y,A;X1 + X2) + �1 r1(X1) + �2 r2(X2)

Weighted sum of regularizers

Focus of our analysis: statsitical
 when does this approach succeed in recovering the true structure ?

Not our focus today: fast algorithms to solve these convex programs ….

Objectives

Robustness:

 == the target we want to recover

 == “errors” we want to separate out

 Requires the objects to be separately identifiable / “incoherent”
 (need to exclude the possibility of)

Flexibility:

 Recover only the sum from few measurements

 (faster) Consistency in settings not captured by any one class

 Do not need objects to be separately identifiable
 because all we anyway care about is their superposition

X2

X1

X1, X2 � C1 ⇥ C2

X1 + X2

No hope if errors completely
arbitrary

Our Work

Sparsity Low-rank

Block-sparse

S + L

S + B L + B

PCA w/ corruptions, Latent variables
in linear time series,
Graph Clustering …

PCA w/ outliers,
Robust
Collaborative
Filtering, …

Multiple sparse
Model selection

Low-rank + Column-sparse

PCA with Outliers
Points

Objective: find identities of outliers
 (and hence col. space of true matrix)

Robust PCA
Points

min
L

⇥M � L⇥F

min
L,C

⇥M � L� C⇥F

col(C) = c

Standard PCA

s.t. rank(L) = r
s.t. rank(L) = r

Robust PCA
Points

min
L,C

⇥M � L� C⇥F + �1⇥L⇥� + �2⇥C⇥1,2

We propose:

(L�, C�)When does this recover the true

When does it (not) work ?

When certain directions
of column space of
poorly represented

This vector has large inner
product with some coordinate
axes

max
i

�V �ei� is large

L�

L� = U�V ⇥

Results

Assumption:
Columns of true are incoherent:

Theorem: (noiseless case)

Our convex program can identify upto a fraction of outliers as long as

�

1� �
⇥ c

µr

r � µr � nNote:

�

max
i
⇥V �ei⇥2 � µr

n
L�

⇥ =
3

7��n

� >
1

r + 1
Outer bound: makes the problem un-identifiable

Proof Technique

Proof Technique

A point is the optimum of
a convex function

Zero lies in the (sub) gradient
of at

x
f

�f(x)
f x�

Proof Technique

A point is the optimum of
a convex function

Zero lies in the (sub) gradient
of at

x
f

�f(x)
f x�

Idea: 1. guess a “nice” point, -- “art”
 2. show it is the optimum by showing zero is in subgradient – “math”

Proof Technique

Guessing a “nice” optimum

 (Note: in “single structure” problems like matrix completion,
 compressed sensing etc., this is not an issue)

Oracle Problem:

min
L,C

⇥M � L� C⇥F + �1⇥L⇥� + �2⇥C⇥1,2

ColSpace(L) � ColSpace(L�)

s.t. ColSupp(C) � ColSupp(C�)

(�L, �C) is, by definition, a nice point.
 Rest of proof: showing it is the optimum of original program,

 under our assumption.

Sparse + Low-Rank

Basic theory

 C = A* B* +

Unknown Low-rank Matrix

 Unknown rank, eigenvectors

Unknown Sparse Matrix

 Unknown support, values

Given
Composite

matrix

The Task

 C = A* B* +

Unknown Low-rank Matrix

 Unknown rank, eigenvectors

Unknown Sparse Matrix

 Unknown support, values

Given
Composite

matrix

Task: given (partially observed) C, recover A* and B*

? ?

Method

s.t. P�(A + B) = P�(C)

where and

When is recovery not possible ?

sparse matrix is “concentrated” Low-rank matrix is also sparse 1) 2)

3) Too few observations in a given row/column

The setting

�d � �r� =
Each location in w/ prob. po�r

Observed set

Support of sparse matrix �d � �r� =
Each location in w/ prob. �r �

Adversarial errors/erasures degree bounded

 any row or column of ⇥c
d � �d has elements � d

Low-rank matrix is incoherent: if SVD is then B� = U�V ⇥

⇥U �ei⇥2 � µr

n
⇥V �ei⇥2 � µr

n
⇥UV �⇥2

⇥ � µr

n2

µ

(same as the conditions for pure matrix completion [Candes-Recht])

Main S + L result

Theorem:

Our convex program gives exact recovery – i.e. has as its unique
optimum if

po � c1 max

�
µr log4 n

n
,

⇤
µrd

n
log n

⇥

� � c2

P�(A�), B�

� =
1�

n(d + 1)po

w/ parameter
d � c3

n

µr log2 n

Application: Latent factors in Linear
Time Series

Linear Stochastic Dynamical Systems

x(t) = [x1(t) . . . xp(t)]TVector-valued stochastic process

Continuous time:

Discrete time:

d

dt
x(t) = A x(t) +

d

dt
w(t)

x(n + 1)� x(n) = �Ax(n) + w(n)

“sampled version” : as , discrete continuous with � � 0 � t � n�

Standard brownian
 motion

N (0, �I)

Learning / System Identification

Given find . A

Maximum Likelihood:

x(0 : n)Discrete time:

min
A

�n�1
i=0 ⇥x(i + 1)�x(i)��Ax(i)⇥2

2

Known: as

 for fixed

n�⇥
�

Our focus: high-dimensional regime

 “ fewer samples than the size of ” A

�AML � A

Sampling

Many samples, but small innovation
per sample

Fewer samples, but more innovation
per sample

What does “sample complexity”
and “high-dimensional” mean ?

Latent Variables

d

dt

�
x(t)
u(t)

⇥
=

�
A B
C D

⇥

⇧ ⌅⇤ ⌃
A

�
x(t)
u(t)

⇥
+

d

dt
w(t),

�
x(n + 1)
u(n + 1)

⇥
�

�
x(n)
u(n)

⇥
= �

�
A B
C D

⇥ �
x(n)
u(n)

⇥
+ w(n)

x = observed variables = latent variables – never observed

Continuous time:

Discrete time:

Our SysID problem: Given find . Ax(0 : n)

SysID with Latent Variables

The problem: (for naïve methods like ML from before),
 latent variables spurious dependence among observed variables �

�AML = = A

�AML =

�
A B
C D

⇥
=

But we (still)
want to find A	

The Effect of Latent Variables

What is the structure of the spurious interactions caused by ?

Idea: let us solve ML anyway …

min
A

�n�1
i=0 ⇥x(i + 1)�x(i)��Ax(i)⇥2

2

from
�

A B
C D

⇥
xbut

n�⇥For and fixed �
�AML � A + BRQ�1

where R = E[uxT] Q = E[xxT]
are steady state covariances

The Effect of Latent Variables
�

A B
C D

⇥

A + BRQ�1

finding A == separating A from BRQ�1

Now: (a) when this is (not) ill-posed ?
 (b) And how do we do it ?
 (c) sample complexity, high-dimensional scaling etc.

Ill-posed-ness

== x1 x2

x1 x2

u̇ = du + ẇ

ẋ2 = a22x2 + b2u + ẇ2

ẋ1 = a11x1 + b1u + ẇ1 ẋ2 = �a12x1 + �a22x2 + ẇ2

ẋ1 = �a11x1 + �a21x2 + ẇ1

Ill-posed problems

(with infinite data / exact statistics),

If then is a low-rank perturbation of . �AMLcard(u) < card(x) A

�AML = A + BRQ�1

Recovering == separating it from a low-rank matrix A

This is the source of ill-posed-ness.

Effect of Latent variables

Each latent variable
results in a clique
of its neighbors.

“Natural” assumption:

 A sparse

& each latent var. is
“significant”
connected to many
observed

of course, they can
overlap …

Method

min
A,L

1
2�2n

�n�1
i=0 ⇥x(i + 1)�x(i)��(A + L)x(i)⇥2

2 + ⇥A⇥A⇥1 + ⇥L⇥L⇥⇥.

Idea: Look for a superposition of a sparse matrix and a low-rank one

Now: the “sample complexity” of identifying A

Simple illustrative case

p r
p

r

observed variables, each
depends on exactly one
latent variable

latent variables, each evolving
independently

each connected to p

r

L = BRQ�1 =
r

p + r
BBT

Corollary of our theorem: can uniquely
recover A when

Simple illustrative case

(Corollary): If

r <

�
p

3
a) 

b) ⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least , we have that 1� �

supp(�A) = supp(A)

and bounds on and ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)

Simple illustrative case

(Corollary): If

r <

�
p

3
a) 

b) ⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least , we have that 1� �

supp(�A) = supp(A)

and bounds on and ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)
Sampling has to be
close enough, else
“independent” samples

3
�

p

Sampling has to be
close enough, else
“independent” samples

each latent var. connected to
at least observed variables

Simple illustrative case

(Corollary): If

r <

�
p

3
a) 

b)

3
�

p

⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least , we have that 1� �

supp(�A) = supp(A)

and bounds on and ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)
Sampling has to be
close enough, else
“independent” samples

each latent var. connected to
at least observed variables

Lower bound on the total
time horizon of observation

More generally …

(assumptions similar to sparse + low-rank decomposition)

Low-rank matrix needs to be incoherent: if then L = U�V T

{max
i
⇥UT ei⇥,max

i
⇥V T ej⇥} �

�
µr

p

Number of non-zeros in any row or column of A is at most s

⇥UV T ⇥� �
�

µr

p2

Overall system needs to be stable

Q should be a good design matrix.

Theorem: recover support of A with prob. at least if 1� �

T = n⇥ � K s3 log
�

4((s + 2r)p + r2)
�

⇥

Synthetic Experiments

See where phase transition for support recovery happens as a function of

� =
�n

s3 log ((s + 2r)p + r2)
for different values of

s, �, r, p

Effect of sampling rate

Fine-ness of sampling has no effect, once � <
1

⇥max(A)

�

Effect of number of latent variables r

Effect of Sparsity of A

Empirically seems to be

 instead of

T � s2 log p

s3 log p

Recovery of vs recovery of A L

[Chandrasekaran, Parrilo, Willsky] : learning hidden variables in Gaussian
 Graphical models

 == inferring from samples an inverse covariance matrix that is S + L

 showed that sample complexity for recovery of rank(L) �(p)

Our work: only sample complexity for support recovery of A �(s3 log p)

Penalty of “not knowing the basis” of the low-rank matrix ?

Stock Market Data

1 2 3 4 5 6 7 8 9
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Training/Testing Ratio

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Our Algorithm

Pure LASSO

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

Training/Testing Ratio

M
o

d
e
l
S

p
a
rs

it
y

Our Algorithm

Pure LASSO

Clustering Partially-observed Graphs

Given : partially observed graph

(i.e. for most node pairs i , j, do not know
if they are connected or not)

(combinatorial) Objective: Find clustering that
minimizes number of disagreements

More on this in the next talk …

Sparse + Block-sparse

A Dirty Model for Multi-task Learning
in NIPS 2010
w/ A. Jalali, P. Ravikumar , C. Ruan

(Linear) Sparse Model Selection

Task: Find a (sparse) vector from a small number of linear measurements

= Convex Optimization approach:
LASSO / Compressed Sensing

Useful for a very broad and fast-growing range of applications, e.g.
 MRIs
 interpreting DNA microarrays,
 wideband spectrum monitoring,
 …

y X

�
min

x
⇥y �Ax⇥2 + �⇥x⇥1

Multiple Sparse Model Selection

Linear measurements of several unknown sparse vectors

=

Q: Can one use overlap to improve
estimate (i.e. use fewer samples) ?

A: Prior work: depends on (unknown) level of sharing

Method: block-regularization :

where

Arises in:

- DNA analysis
of related individuals

-  whenever there is
motion during
measurement

[Negahban-Wainwright]

min
X

⇥Y �AX⇥2
2 + �⇥X⇥1,�

�X�1,� =
�

i

�Xi��

Our Method

Block-sparse Sparse

Solve

(where parameters chosen by cross-validation)

X = B + S

min
B,S

⇥Y �A(B + S)⇥2 + �⇥B⇥1,� + ⇥⇥S⇥1

supp(X�) = supp(B̂ + Ŝ)Success == (and also close in values)

Performance : Gaussian case

0.5 1 1.5 1.7 2 2.5 3 3.1 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control Parameter !

P
ro

b
a

b
ili

ty
 o

f
S

u
c
c
e

s
s

p=128

p=256

p=512

Dirty Model

LASSO

L1/Linf Reguralizer

Success = correct identification of support for all tasks

When tasks share a fraction = 1/3 of their supports

(rescaled) # of Samples

�

Performance

.. when each pair shares fraction = 4/5 of their supports …

0.5 1 1.2 1.5 1.6 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control Parameter !

P
ro

b
a

b
ili

ty
 o

f
S

u
c
c
e

s
s

p=128

p=256

p=512

Dirty Model

 L1/Linf
Reguralizer

LASSO

�

Performance

… and when they share = 2/3 of their supports.

0.5 1 1.333 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control Parameter !

P
ro

b
a

b
ili

ty
 o

f
S

u
c
c
e

s
s

p=128

p=256

p=512

Dirty Model

L1/Linf Reguralizer

LASSO

�

Performance: Theory + practice

In fact, our method provably outperforms both LASSO and every time. �1/��

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

Shared Support Parameter !

P
h
a
s
e
 T

ra
n
s
it
io

n
 T

h
re

s
h
o
ld

p=128

p=256

p=512

LASSO

Dirty Model

L1/Linf Regularizer

Furthermore, this matches
exactly with theory

(down to exact constants)

Similar gains for real
datasets in classification,
prediction etc.

4� 3�

2� �

2

[N-W]

Conclusion

Usage of more than one structural model allows for increased flexibility and
robustness

 - often without too much extra computational overhead

 - leveraging the computational tractability of the component models

Robustness = separation of one structure from another

 - needs additional incoherence assumptions between objects

Flexibility = better recovery of an overall superposed structure

 - does not need incoherence

Huge range of applications

Ongoing

1.  Extensive empirical validation using more real datasets

2.  Lower-complexity methods (e.g. alternating projections)

3.  General theory

4.  Applications (and interesting modifications they motivate)

Thanks !

Papers at

 www.ece.utexas.edu/~sanghavi

 (and NIPS ‘10, ICML ‘11, ISIT ’11, Arxiv)

Also:

 we are looking for postdocs

