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Mathematics used to be about finding the best arrow to hit your target ...
... howadays, a lot of it is about painting the best target around your arrow.

- H. Narayanan (Prof., [IT Bombay)




This talk ..

Three problems of object recovery with missing information:
- Matrix completion (STOC 2013)

- Phase Recovery (NIPS 2013)
- Mixed Linear Regression (preprint)

“One” algorithmic approach: Alternating Minimization
- problems naturally formulated as non-convex optimization
- AltMin: hold one set of variables, optimize over the other, alternate

- super fast, widely applied

Our work: the first guarantees of statistical performance



Problem 1: Matrix Completion

Find a low-rank matrix from a few (randomly
sampled) elements



Problem 1: Matrix Completion

/
Vv Empirically popular approach:
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H H _ (1) Write as non-convex problem
- min |Pqo(M — UV')||r
0 - UV

.. H .. (2) Alternately optimize U and V'

B (from random initialization)
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Part of the BellKor winning entry of the Netflix prize.



AltMin for Matrix Completion
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Naturally decouples into small least-squares
problems
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No theoretical guarantees on exact/approximate recovery



Matrix Completion

[Candes, Recht ‘08] : First method with any rigorous guarantees on recovery

- based on convex optimization over 1, X 71 matrices

min || X« Input and output : O (nr°)
X
But this needs O(nZ)
sit. Po(X)=Pqo(M) memory (and computation) !

Theorem [CR,08] (and several others since):

Random samples §) +incoherent matrix M/ =  exact recovery

See also: [Keshavan, Montanari, Oh] — SVD + gradient descent on grassman
manifold



Matrix Completion

Surprisingly: AltMin seems to need fewer samples than trace-norm minimization

(empirically)
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Problem 2: Phase recovery

Recover complex vector given only magnitudes of linear eq.s

Yy = ‘Agj*‘ <an abstraction of>
Application: diffraction imaging

recover ¥ € C" from 4 and Y (e.g. in crystallography)



Problem 2: Phase recovery

—> - ¢ —>
FFT Switch phases IFFT

Keep magnitudes

Phases contain crucial information ...



Problem 2: Phase recovery

Recover complex vector given only magnitudes of linear eq.s

Yy = ‘Agp*‘ <an abstraction of>
Application: diffraction imaging
recover ¥ € C" from 4 and Y (e.g. in crystallography)

Empirically popular approach [Gerchberg-Saxton ‘72], [Fineup ‘80] etc.

(1) Write as non-convex problem min HCy — AQ;HQ

C,x /‘

Diagonal matrix of phases

(2) Alternately optimize over U and C starting from random initialization.



AltMin for Phase Recovery

(a) Solve a least-squares problem r <— arg min HCy — ACUH2
Xr

(b) Record the resulting phases Ci; < Ph(<a7;, .CL’>)

This is nothing but Expectation-Maximization (EM) for the noiseless case



Phase Recovery

[Candes, Strohmer, Voroninski ‘“12] etc. : lifting + SDP relaxation of rank

m)%n tT(X) Makes an O(n) problem into
S.t. a;Xai — y? an O(n?) problem
X psd

Theorem [CSV'12], [CL13]:

it a; ~ CN(0,I) then X = x*(2*)" whp, from O(n) samples

See also: [Waldspurger, d’Aspermont, Mallat] for alternate convex formulation



AltMin for Phase Recovery
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Phase Sensing: # Measurements Required for Recovery

50/
Again, lower number of
00! 0 samples than convex
methods
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Problem 3: Mixed linear regression

Solve linear equations, except that each is either
* _ *
yi = (i, By) or yi = (Ti, B7)

Find ﬁik, 68 given {yi, xz}

Natural for settings where linear prediction / modeling with latent classes

- Evolutionary biology: separating out mutant behavior / expression
- Quantitative Finance: detecting regime change

- Healthcare: separating patient classes for differential treatment

Several specialized R packages (see [Grun,Leisch] for overview)
- all implement variants / optimizations of EM



Mixed Linear Regression

... my netflix problem ...



Problem 3: Mixed linear regression

Solve linear equations, except that each is either
Yyi = (T, By) or Vi = (T, B7)
Find ﬁik, 68 given {yi, xz}

Only existing algorithm: Expectation Maximization (EM)

= AltMin on the non-convex problem
min min  (y; — 2z, B1) + (1 — 2;) {2, 50>)2

... starting from random initialization.

No theoretical guarantees for any method, in any setting.



Mixed Linear Regression

(a) Assign labels to the samples, based on current estimates 31, B\O

AN AN

/Z\’i =1 <~ (yz — <CE'7;,51>)2 < (y’b — <xi760>)2
2@. — () else

(b) Update estimates using new labels

B amgmin Y (i (@0.8)

1:2,=1



Mixed Linear Regresion

Samples

Synthetic experiment with isotropic gaussian samples
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The story so far

Three problems: matrix completion, phase retrieval, mixed linear regression

Empirically: Best methods involve AltMin on natural non-convex formulation

No statistical guarantees on consistent recovery, in any setting

Methods with statistical guarantees: convex optimization
(under statistical assumptions) establish consistent recovery

Slower, involve optimization in higher dimensions than warranted by
the data or output

(often) need more samples than non-convex methods,



Our motivation

Is it possible to obtain statistical guarantees for AltMin algorithms that work in

the dimension specified by the input and output ?

Equivalently:

Does the fact that convex methods have statistical
consistency represent a genuine algorithmic
advance ?

Or is it just that the statistical setting is “easy”
enough for faster methods as well ?




Our Results

Statistical guarantees for exact recovery:
Global convergence + statistical consistency for AltMin

... in the standard settings

Two key components of our analysis:

Initialization:
via leading eigenvector(s) of appropriate matrix

Re-sampling: (analytical trick)
as a work-around to vexing dependency issues



Initialization

Error on measurements
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Phase Recovery: Initialization

Problem: solve y = |Ax| ie.equations y; = |(a;,x)] , i=1,...,N

_ 1
Make a matrix M = ~ Z y? a;a) a; ~ CN(0,1)

Key observation: as [N — o0 the top eigenvector of A —> x*



Phase Recovery: Initialization

1
Given N samples, ;U(O) <— top eigenvectorof M = — Z yf aia;
N i

C

Lemma: with N = — nlog2n samples, can get Ha:(o) — at*H < €
€

Asymptotically consistent, but slow 0(1/62) convergence

Not satisfactory by itself, but useful for initialization




Effects of Initialization
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Initializations ...

Matrix Completion:

Uy < top left singular vectors of 0-filled matrix M,

Theorem: N = ¢r?°nlogn samples for constant distance

Mixed linear equations: Yi = <xi,61> or y, = <azi,52>

(0) 5(0) _ 1 ,
1 P2 " < Top two eigenvectors of M = N Z Y; CBzxé
(4

Theorem: N = cn loan samples for constant distance

All three: convergence to truth requires too many samples. So use only for init.



Re-sampling

Empirically: use all samples in every iteration
- after initialization, geometric decay of error observed

Analysis of this is hard
- because concentration results require independence between
samples and current iterate.

“Solution” : use fresh samples in every iteration
- making them independent of current iterate
- by pre-partitioning the given samples



Example: Mixed Linear Equations

Intuition: current iterate Et), ét) truth 5ik75§

samples {q. 2, } x5 ~ N(0,1)
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Example: Mixed Linear Equations

Intuition: current iterate 51, 52 truth 5;» 5;

samples {q. 2, } x5 ~ N(0,1)

If 51,62 not too far from 5;755

Then majority points will be correctly
assigned.

So, running least-squares on these
will yield better next iterate.




Example: Mixed Linear Equations

Intuition: current iterate 37, 3

truth ﬁi“, /85
samples {q. 2, } x5 ~ N(0,1)

1
1 /
@lll‘ ‘III o
P
® 1/ + _ gt
|/ b1 — B
o

.. which will give fewer error samples ...



Example: Mixed Linear Equations
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Analysis of this is hard because, after first step, samples are dependent the [ s

Idea: make them independent, by re-sampling at every iteration



Resampling

Resampling == forcing independence between samples and estimate

by modifying the algorithm to use fresh samples in every iteration.

Matrix completion: new elements in every iteration
Phase Recovery: new measurements

Mixed linear equations: new samples

Note: seems to be NOT needed empirically.

Proving this is the case would be very interesting.



Mixed Linear Regression

Theorem: [Yi, Caramanis, Sanghavi ‘13]
If the current iterate satisfies ||5; — 5 || < c||B7 — 55 |l
and we use new, independent samples, then the new error satisfies

1
I8¢ — 71l < 5118 — 55

n
provided the number of samples is greater than min{p;, p,}

Similar results (i.e. halving of error in each step) for matrix completion and
phase retrieval.




lterations with Re-sampling

So: geometric decay in the error — halving in every step.
- better than rate of convergence for (the non-smooth) convex methods

Good initialization is crucial to showing this decay in error

log(err)

-30 | =——@=== SVD Initialization
=== Random Initialization

1 2 3 4 5 6 7 8
Number of iterations

But: need log(1/¢) extra samples for accuracy of ||3; — 87 || < €

9 10



Summary

Practice: + fast + low number of samples - no guarantees

Theory: + statistical guarantees under assumptions
- slower - (often) more samples

Our work:
An (imperfect, but first) attempt to bridge this divide, via two key ideas
- Initialization — important both empirically and for proof
- Resampling — only for proof, not important empirically
We show: AltMin with these two works under similar statistical assumptions

Future:

Vast number of applications where EM etc. are the most popular methods

Removal of the re-sampling requirement (?)



Conclusion

Papers: (also on my website)

Matrix completion: STOC 2013
w/ Praneeth Netrapalli and Prateek Jain

Phase Retrieval: NIPS 2013
w/ Praneeth Netrapalli and Prateek Jain

Mixed Linear Regression: preprint
w/ Xinyang Yi and Constantine Caramanis

Thanks !



Mixed Linear Regression: Initialization

Recall: Y = <CU¢,5E§> or Yi— <55z751k>

. 1 2
Make matrix M := N Zyz T;ix,
1

Then, M — I+ 287(87) +285(55)

So, even with finite samples, top-two °
eigenspace of M a good approximation

to span(B7F5) o

Our initialization: a 1-d grid search for the
(s in this space

log(err)

| | ==—=@==== SVD Initialization

+ Random Initialization




Matrix Completion: Initialization

| | Consider the 0-filled matrix Py (M)

0) Top r-dimensional column space
N U0  Topr P
B of PQ(M)

10’ ; ; ; ; :
~-Random initialization
0 *SVD initialization |
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Lemma [Jain, Netrapalli, Sanghavi]:

! L ! L L L L
2 4 6 8 10 12 14 16 18 20
# iterations

We have dist(U©,U*) < % if the matrix is (4 -incoherent and number of

samples is Q(/<J\4/L27°2'5n log n)

N

Condition number



