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Graph Clustering
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Applications: Community detection, recommendations, ...



Sparse Graph Clustering

Sparsity makes the problem harder
(because “SNR” is lower)



Planted Partition / Stochastic Block Model

%KH

A classic model for random
graphs with clustering

Using an underlying partition
of the nodes, make a random
graph

Clustering Task: given the
graph, find the underlying
Partition (upto every last node)

Quantities govern}igg the
difficulty: P, g,

Min cluster size



Some intuition ...

SLINK: 4,7 insamecluster < N(i) N N(j) > 7

For two nodes in the same partition

K

EN(i)NN(j)] = Kp*+ (n— K)¢*

Var[N(i) N N(j)] =~ Kp®+ (n— K)q’

q For two nodes in different partitions

EING)NN(j)] = 2Kpq+ (n — 2K)¢’



Some intuition ...

E[same — different] = K(p — Q)2 Assuming K << n

And P ~
Var[same] ~ Kp* + (n — K)q* a P=4

np2

Q

For there to exist a threshold with a high likelihood of success, need

Kip—q)? = vnp e (-0 V0

p ~ K
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A classic observation
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Given adjacency matrix cluster matrix Perturbation/Error matrix

A Y S

Note: low-rank



“Generic” Spectral Algorithm

(1) Find top 7 eigenvectors of A via SVD

(2) Represent each node as a point in eigenvalue space, and do “simple, local”
clustering + rounding
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The eigenspace becomes noisier as graph parameters become harder



The Spectral SNR

Leading eigenvector is 1, so lets center the matrix

ai; = a;; — (¢ + K(p—q)/n)

1
“‘Signal’= F | —1 A1
or - B |l L]

—K(p—q)(1-K/n) ~K(p—q)

“Noise” = largest eigenvalue of “iid” random matrix where every element has
variance O(p)

~ \/ P



The Spectral SNR

Leading eigenvector is 1, so lets center the matrix

ai; = a;; — (¢ + K(p—q)/n)

1 ~
“‘Signal’= F | —1 A1
or - B |l L]

—K(p—q)(1-K/n) ~K(p—q)

“Noise” = largest eigenvalue of “iid” random matrix where every element has
variance O(p)

~ oV i . o’ Ym
~ K

So, spectral algorithms need £ 4 « V™
N/ P

However, no spectral algorithm has been demonstrated to achieve this.
Main result of our paper: we do !



Existing Work in this Model

Paper Min. cluster size K | Density difference p — ¢
Boppana (1987) n/2 %
Jerrum & Sorkin (1998) n/2 nl%
Condon & Karp (2001) n = o
Carson & Impaglizzo (2001) n/2 ‘/f_:
Feige & Kilian (2001) n/2 =
McSherry (2001) n2/3 N
Bollobas (2004) n max{,/ <, 1}
Giesen & Mitsche (2005) n @
- v
Shamir (2007) vn i
Rohe et al (2010) n3/4 e
¢ aaath v 1
Oymak & Hassibi (2011) vn max{ Y=,/ %
Sussman et al (2011) n3/4
Our result vn @




Maximum Likelihood

max log PI‘(A‘Y) Y is a cluster matrix
’ |
(assume for now P, G known) Yij = 1 < 1, insame cluster
Simplifying ...

PI‘(A‘Y) — H paij (1 L p)l_aij H qaij (1 . q)l_aij

(i,j):yijzl (i,j)iyijzo

In-cluster edges Across-cluster edges



Key Step

Rewriting the maximum likelihood via regrouping terms

PI(A‘Y) — H paq;j(l _p)l—aij | H qaij(l . q)l—aij

.. A
(ol ewgg =1

]
—]
—
<
~—

QS
—~
—~
.
1]
~
<



Optimization problem
(still combinatorial)

Thus maximum (log) likelihood becomes

m}gx C1 <Z1 yij) — C2 (Zoyij>
Q5= Q5=

Y is a cluster matrix

Where

c1 = log — —1
1 gq Co ogl_p



Why not just use SVD ?

SVD followed by truncation solves

o . Y
Y:frafﬁcl(%/):r sz:(az] yzj)

Projection onto a non-convex set; but still tractable.

However, almost any variation of this objective (e.g. weighted errors, different
norm, etc.) is intractable.

Our algorithm: tries to solve

—~ . o  (by relaxing the rank
Y = min E Cij (az’j — yij) constraint)
Y:rank(Y)=r “—
1,]



Our Algorithm

Replacing the “cluster constraint” with a penalty, and relaxing integrality

m}z}x C1 Z Yij | — C2 Z Yij — AllY][.

aijzl aij:O
Nuclear/trace
Norm
| _ :
Convex ! 0 < Vi < 1 sum of singular
values

Note: cluster matrices also satisfy Y > 0 . However, adding this
(a) Makes the convex program harder to solve

(b)< and We do not know how to use this to get better performance results ..>




Performance Analysis

Under what conditions on p, ¢, K D
will the (unrounded, un post-processed) < (>
optimum of the convex program recover

the true cluster matrix exactly ?




Main Result

Theorem:

The true cluster matrix is the unique optimum of our convex program, provided

V(L —q)n

—q > log?
pq_Oé K Ogn

In the paper: a way to estimate P, ¢ from the graph itself ....

... and an overall theorem guaranteeing that using estimated parameters also
works




Remarks

log4 n

« If K € ©(n) then algorithm can cluster even when P;q ~ o

- close to the connectivity threshold, matches previous results

4
nlog™n
e If K e Q(\/ﬁlog2 n) , our method works with p — q € © (—Kg2 )
2
| n
- previous best result needed p —¢q € © (ﬁ)

* Ours is the first result on weighted sparse + low-rank (in any setting)

- shows order-wise better performance than unweighted.



Proof Technique

Apointz is the optimum of Zero lies in the (sub) gradient O f(x
a convex function  f @ of f at & (sub) g f(x)



Proof

Step 1: Y ™is the unique optimum <> there exists a matrix W such that

)\wij S C1Qi5 — 62(1 — aij) — 1 )\wij Z Cla’ij R 62(1 R a’ij)
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Proof

Step 2: Alternative first-order conditions:
Constructing such a W is hard. So instead relax orthogonality, and
tighten the inequalities.

Step 3: Construct a W that is a sum of three matrices, each with iid random
entries
- so we can control their spectral characteristics

Step 4: Use matrix concentration results to show that (with high probability)
these conditions satisfied and Tmax(W) <1



Empirical Performance
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Extensions

Lemma: (monotonicity)
Consider a realization A , and let }/} be the optimum of the algorithm.
Then, consider an arbitrary perturbation g ofA, obtained as follows:
(a) Choose some pairs %, forwhich @i; =0 put ?/J\z'j =1,

and set ziij =1
(b) Choose some pairs %, j for which a;; = 1 but y;; =0,

and set aij =2\

Then, if the algorithm is run with A , the optimum will still be Y

Direct implication: Heterogenous edge probabilities allowed




Extensions

Outliers:

q Nodes that are not part of any
cluster.

If every edge out of such a node

has probability upper bounded by
q

Then algorithm will still find the
clusters.




Implications: Hierarchical Clustering

If we run algorithm with

P = lower bound on top-level cluster’s
probability

q = upper bound on every other level's
probability

then will find all top level clusters.
... and can repeat hierarchically.




Open Question

An empirically better algorithm: iterative / alternating minimization

mUin |1C - (A-=UU"||F

“tall” matrix Element-wise product

This is also ML, but with cluster constraint replaced by explicit rank constraint
. /
U1 = min |C-(A=UU)|F

Is “distributed”: each node updates its vector based on
(a) Its neighbors, and
(b) one global variable per row/column.

Q: What can the “locally tree-like” line of analysis tell us about this procedure ?



Summary

New algorithm for clustering sparse graphs
- maximum-likelihood, with regularization replacing combinatorial
- convex program, with fast specialized algorithms

Beats all previous performance bounds
Close to “fundamental spectral limit” (?)

Extends to hierarchical clustering

Similar results can be shown for dense graph clustering, planted coloring etc.
Open problem:

Lower bounds — none known for case of more than two clusters.
- maybe via connection to Planted clique



Thanks + Questions



