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High-dimensional Problems 

# of observations 
or samples 

# of variables to determine 
or choices to make 

Task: given             recover  
 
Dimensionality reduction : use structure in the data to reduce its effective 

 dimension 

y = A(X) + w

� Rp� Rn

n << p

y = A(X) + w“solve” 

“s.t.” X � C

e.g.      = sparse vectors, 
               low rank matrices 
               sparse MRFs,…   

C

y,A X



Common Structural Assumptions 

Sparsity
  

y = Ax+ w

= 

Sample Application Areas: 
 
Natural and medical images – sparse in fourier / wavelet etc. bases 
 
User modeling from website usage data  
 
“Generic” linear regression where 

 out of many possible causes, only a few are relevant / expressed 

Most / all of the mass of x in a  
very small (but a-priori unknown) 

 set of coordinates. 



Sparsity: Recovery via    ̀1

To solve: 

For an x that has “many” zero  
variables 

y = Ax



Recovery via    ̀1

Algorithm: 

min kxk1

s.t. y = Ax

Intuitively:  
         norm penalizes non-sparse 
         vectors more 
 
Formally: 
     It is the atomic norm arising 
     from 1-sparse vectors 

`1



Recovery via    ̀1

Succeeds Fails 

Recent research (last 6 years): detailed understanding of when  we can expect  
success 



Common Structural Assumptions 

Low rank 

= When represented as 
an appropriate matrix, 
data is approx / exactly 
low rank 

Sample Application Areas: 
 
Principal components analysis (PCA) – the most popular dimensionality reduction  

 technique 
 
Data embedding (MDS / Isomap) and localization  
 
Collbaorative Filtering 
 
Graph clustering / community detection 



Recovery via Trace / “Nuclear” Norm 

min kXk⇤

s.t. Xij = mij for (i, j) 2 ⌦

E.g. matrix completion: find low-rank matrix 
from random subset      of elements ⌦

kXk⇤ = Sum of singular values of a matrix 

Intuitively: encourages sparsity in the singular values, aka low-rank-ness 
 (recall: rank = number of non-zero singular values) 

 
Formally: is the atomic norm arising from rank-1 matrices 



Common Structural Assumptions 

Group Sparsity
  = 

Variables organized  
into known groups. 
 
Only very few (a-priori unknown) of the groups are non-zero.  
Different values possible within a group. 

Y = AX +W

For a set G of groups, the norm that encourages group-sparsity is 

kXkG =
X

g2G

kXgk2 Intuition: like an      norm at the level of groups  `1



The story so far … 

y = A(X) + w X � C

High-dimensional problems: Consistent recovery possible via structural  
assumptions 

Convex optimization: a generic framework – penalize with the appropriate  
atomic norm 

solve s.t. 

Last decade: huge amount of work on two aspects of this approach 
 
(a) Statistics: under what conditions does this find a good X ? 

(b)  Algorithms: fast/iterative methods that use structure of resulting convex  
 programs 

min
X

L(y,A;X) + � r(X)



Our motivation 

(a) Can we substantially expand the modeling power of such methods ? 
 
 
 
(b) Can we make these methods robust to errors / outliers ? 



Example: Modeling 

xt+1 = Axt + nt

Application: sparse linear predictive modeling of (log of) stock prices 

Task: find sparse A given 

x1, x2, . . .

Amazon 

Walmart 

BarnesNoble 

BestBuy 



Example: Modeling 

Simple       minimization gives a dense model !  
 
(also not very predictive) 

`1

(one possible) Reason:  
 
Each stocks seems to depend  
on many others because of  
co-dependence on latent factors 
 
(e.g. US Fed Interest rates,  
price of gas, etc.) 
 
Question: can we learn both the  
direct dependence and latent factors from only stock price data ? 



Example: Robustness 

PCA: given      points in     -dim space, 
find the low-dimensional subspace that  
best approximates them. 
 
Standard approach: 
Organize points into data matrix 
Take SVD, and retain significant components 
 
Structural assumption: low-rank 

n p

points 



Standard approach: 
Organize points into data matrix 
Take SVD, and retain significant components 
 
Structural assumption: low-rank 

Gross outliers bounded corruption 
in constant fraction  
of entries 

Fragile to: 

Example: Robustness 



Collaborative Filtering w/ Adversaries 



Collaborative Filtering 

Common Assumption: low rank Users 

“user ratings based on a  
few relevant features” 
[Srebro] 

Popular approach: [Candes-Recht] 

min
X

X

(i,j)2⌦

(xij �mij)
2 + � kXk⇤



Collaborative Filtering w/ Adversaries 
Users 

Some users malicious (e.g, “shilling for” or “nuking” a product, or generally disruptive) 
 
If these provide inconsistent ratings (which defy the low-rank approx. that works 
for everyone else), we should be able to negate their effects. 
 
Main challenge: figuring out identities of the adversaries from v. few observations of 
both their and the true users’ rankings 



Our Idea 

+ 

Given Low-rank Column-sparse 

Idea: Represent data as the superposition of more than one structural model 
 

 (both of which now have to be learnt from data) 



Basic Idea 

Our methods: 

(linear) Superposition of more than one structural model class 

-  Each individual model class already used in isolation 

-  computationally efficient by combining efficient methods for the  
  component classes. 
 
- But can now be more robust / flexible 

“solve” 

“s.t.” 

y = A(X1 + X2) + w

X1 � C1 X2 � C2



Approach: Convex Optimiation 

min
X

L(y,A;X) + � r(X)Single structure 

Our approach: 

Loss function regularizer 

(same) Loss function 

min
X1,X2

L(y,A;X1 + X2) + �1 r1(X1) + �2 r2(X2)

Weighted sum of regularizers 

Focus of our analysis: statsitical 
 when does this approach succeed in recovering the true structure ? 

 
Not our focus today: fast algorithms to solve these convex programs …. 



Objectives 

Robustness:  
 

       ==  the target we want to recover 
 

        == “errors” we want to separate out 
 

 Requires the objects to be separately identifiable / “incoherent” 
       (need to exclude the possibility of                           )  

 
Flexibility:  
 

 Recover only the sum                  from few measurements 
 

 (faster) Consistency in settings not captured by any one class 
 

 Do not need objects to be separately identifiable 
  because all we anyway care about is their superposition 

X2

X1

X1, X2 � C1 ⇥ C2

X1 + X2

No hope if errors completely 
arbitrary 



Our Work 

Sparsity Low-rank 

Block-sparse 

S + L 

S + B L + B 

PCA w/ corruptions, Latent variables 
in linear time series,  
Graph Clustering … 

PCA w/ outliers, 
Robust 
Collaborative 
Filtering, … 

Multiple sparse 
Model selection 



Low-rank + Column-sparse 



PCA with Outliers 
Points 

Objective: find identities of outliers 
 (and hence col. space of true matrix) 



Robust PCA 
Points 

min
L

⇥M � L⇥F

min
L,C

⇥M � L� C⇥F

col(C) = c

Standard PCA 

s.t. rank(L) = r
s.t. rank(L) = r



Robust PCA 
Points 

min
L,C

⇥M � L� C⇥F + �1⇥L⇥� + �2⇥C⇥1,2

We propose: 

(L�, C�)When does this recover the true  



When does it (not) work ? 

When certain directions  
of column space of  
poorly represented 

This vector has large inner 
product with some coordinate 
axes 

max
i

�V �ei� is large 

L�

L� = U�V ⇥



Results 

Assumption: 
Columns of true        are incoherent: 

Theorem: (noiseless case) 
 
Our convex program can identify upto a fraction     of outliers as long as 

�

1� �
⇥ c

µr

r � µr � nNote: 

�

max
i
⇥V �ei⇥2 � µr

n
L�

⇥ =
3

7��n

� >
1

r + 1
Outer bound:                     makes the problem un-identifiable 



Proof Technique 



Proof Technique 

A point     is the optimum of  
a convex function 

Zero lies in the (sub) gradient 
of      at  

x
f

�f(x)
f x�



Proof Technique 

A point     is the optimum of  
a convex function 

Zero lies in the (sub) gradient 
of      at  

x
f

�f(x)
f x�

Idea: 1. guess a “nice” point, -- “art” 
         2. show it is the optimum by showing zero is in subgradient – “math” 



Proof Technique 

Guessing a “nice” optimum 
 

 (Note: in “single structure” problems like matrix completion, 
  compressed sensing etc., this is not an issue) 

Oracle Problem: 

min
L,C

⇥M � L� C⇥F + �1⇥L⇥� + �2⇥C⇥1,2

ColSpace(L) � ColSpace(L�)

s.t. ColSupp(C) � ColSupp(C�)

(�L, �C) is, by definition, a nice point. 
 Rest of proof: showing it is the optimum of original program,  

 under our assumption. 



Sparse + Low-Rank 



Basic theory 

  C  =  A* B* + 

Unknown Low-rank Matrix 
 

  Unknown rank, eigenvectors 

Unknown Sparse Matrix 
 

 Unknown support, values 

Given 
Composite 

matrix 



The Task 

  C  =  A* B* + 

Unknown Low-rank Matrix 
 

  Unknown rank, eigenvectors 

Unknown Sparse Matrix 
 

 Unknown support, values 

Given 
Composite 

matrix 

Task: given (partially observed) C, recover A*  and  B* 

? ? 



Method 

s.t. P�(A + B) = P�(C)

where and 



When is recovery not possible ? 

sparse matrix is “concentrated” Low-rank matrix is also sparse 1) 2) 

3) Too few observations in a given row/column 



The setting 

�d � �r� =
Each location in        w/ prob. po�r

Observed set  

Support of sparse matrix �d � �r� =
Each location in        w/ prob.   �r �

Adversarial errors/erasures degree bounded 
 

 any row or column of  ⇥c
d � �d has              elements � d

Low-rank matrix is     incoherent: if SVD is                          then B� = U�V ⇥

⇥U �ei⇥2 � µr

n
⇥V �ei⇥2 � µr

n
⇥UV �⇥2

⇥ � µr

n2

µ

(same as the conditions for pure matrix completion [Candes-Recht]) 



Main S + L result 

Theorem: 
 
Our convex program gives exact recovery – i.e. has                    as its unique  
optimum if 

po � c1 max

�
µr log4 n

n
,

⇤
µrd

n
log n

⇥

� � c2

P�(A�), B�

� =
1�

n(d + 1)po

w/ parameter 
d � c3

n

µr log2 n



Application: Latent factors in Linear 
Time Series 



Linear Stochastic Dynamical Systems 

x(t) = [x1(t) . . . xp(t)]TVector-valued stochastic process 

Continuous time: 

Discrete time: 

d

dt
x(t) = A x(t) +

d

dt
w(t)

x(n + 1)� x(n) = �Ax(n) + w(n)

“sampled version” : as                , discrete         continuous with  � � 0 � t � n�

Standard brownian 
                   motion 

N (0, �I)



Learning / System Identification 

Given                  find    . A

Maximum Likelihood: 

x(0 : n)Discrete time: 

min
A

�n�1
i=0 ⇥x(i + 1)�x(i)��Ax(i)⇥2

2

Known:                     as   
 

                for fixed  

n�⇥
�

Our focus: high-dimensional regime 
 

 “ fewer samples than the size of    ” A

�AML � A



Sampling 

Many samples, but small innovation 
per sample 

Fewer samples, but more innovation 
per sample 

What does “sample complexity” 
and “high-dimensional” mean ? 



Latent Variables 

d

dt

�
x(t)
u(t)

⇥
=

�
A B
C D

⇥

⇧ ⌅⇤ ⌃
A

�
x(t)
u(t)

⇥
+

d

dt
w(t),

�
x(n + 1)
u(n + 1)

⇥
�

�
x(n)
u(n)

⇥
= �

�
A B
C D

⇥ �
x(n)
u(n)

⇥
+ w(n)

x = observed variables =  latent variables – never observed 

Continuous time: 

Discrete time: 

Our SysID problem: Given                  find    . Ax(0 : n)



SysID with Latent Variables 

The problem: (for naïve methods like ML from before), 
 latent variables         spurious dependence among observed variables �

�AML = = A

�AML =

�
A B
C D

⇥
=

But we (still)  
want to find A	




The Effect of Latent Variables 

What is the structure of the spurious interactions caused by       ? 

Idea: let us solve ML anyway … 

min
A

�n�1
i=0 ⇥x(i + 1)�x(i)��Ax(i)⇥2

2

from 
�

A B
C D

⇥
xbut 

n�⇥For                        and fixed �
�AML � A + BRQ�1

where R = E[uxT ] Q = E[xxT ]
are steady state covariances 



The Effect of Latent Variables 
�

A B
C D

⇥

A + BRQ�1

finding A == separating A from BRQ�1

Now: (a) when this is (not) ill-posed ? 
         (b) And how do we do it ? 
         (c) sample complexity, high-dimensional scaling etc. 



Ill-posed-ness 

== x1 x2

x1 x2

u̇ = du + ẇ

ẋ2 = a22x2 + b2u + ẇ2

ẋ1 = a11x1 + b1u + ẇ1 ẋ2 = �a12x1 + �a22x2 + ẇ2

ẋ1 = �a11x1 + �a21x2 + ẇ1



Ill-posed problems 

(with infinite data / exact statistics), 

If                                      then            is a low-rank perturbation of     . �AMLcard(u) < card(x) A

�AML = A + BRQ�1

Recovering       == separating it from a low-rank matrix A

This is the source of ill-posed-ness. 



Effect of Latent variables 

Each latent variable 
results in a clique 
of its neighbors. 

“Natural” assumption: 
 
          A sparse 
 
& each latent var. is 
“significant”  
connected to many  
observed 
 
of course, they can 
overlap … 



Method 

min
A,L

1
2�2n

�n�1
i=0 ⇥x(i + 1)�x(i)��(A + L)x(i)⇥2

2 + ⇥A⇥A⇥1 + ⇥L⇥L⇥⇥.

Idea: Look for a superposition of a sparse matrix and a low-rank one 

Now: the “sample complexity” of identifying A 



Simple illustrative case 

p r
p

r

observed variables, each 
depends on exactly one 
latent variable 

latent variables, each evolving 
independently  
 
each connected to  p

r

L = BRQ�1 =
r

p + r
BBT

Corollary of our theorem: can uniquely 
recover A when  



Simple illustrative case 

(Corollary): If  

r <

�
p

3
a)                  

b)   ⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least           , we have that  1� �

supp( �A) = supp(A)

and bounds on                           and  ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)



Simple illustrative case 

(Corollary): If  

r <

�
p

3
a)                  

b)   ⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least           , we have that  1� �

supp( �A) = supp(A)

and bounds on                           and  ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)
Sampling has to be 
close enough, else  
“independent” samples 

3
�

p

Sampling has to be 
close enough, else  
“independent” samples 

each latent var. connected to 
at least            observed variables 



Simple illustrative case 

(Corollary): If  

r <

�
p

3
a)                  

b)   

3
�

p

⇥n � K log
4(1 + 2r)p + 4r2

�

Then, w.p. at least           , we have that  1� �

supp( �A) = supp(A)

and bounds on                           and  ⇥ �A�A⇥� ⇥�L� L⇥2

� <
1

⇥max(A)
Sampling has to be 
close enough, else  
“independent” samples 

each latent var. connected to 
at least            observed variables 

Lower bound on the total 
time horizon of observation 



More generally … 

(assumptions similar to sparse + low-rank decomposition) 
 
Low-rank matrix needs to be incoherent: if                       then L = U�V T

{max
i
⇥UT ei⇥,max

i
⇥V T ej⇥} �

�
µr

p

Number of non-zeros in any row or column of A is at most s 

⇥UV T ⇥� �
�

µr

p2

Overall system needs to be stable 

Q should be a good design matrix.  

Theorem: recover support of A with prob. at least              if  1� �

T = n⇥ � K s3 log
�

4((s + 2r)p + r2)
�

⇥



Synthetic Experiments 

See where phase transition for support recovery happens as a function of 

� =
�n

s3 log ((s + 2r)p + r2)
for different values of 

s, �, r, p



Effect of sampling rate    

Fine-ness of sampling has no effect, once � <
1

⇥max(A)

�



Effect of number of latent variables    r



Effect of Sparsity of A 

Empirically seems to be                                               
 

    instead of 

T � s2 log p

s3 log p



Recovery of      vs recovery of     A L

[Chandrasekaran, Parrilo, Willsky] : learning hidden variables in Gaussian 
 Graphical models 

 
 == inferring from samples an inverse covariance matrix that is S + L 

 
    showed that           sample complexity for recovery of rank(L)    �(p)

Our work: only                          sample complexity for support recovery of A  �(s3 log p)

Penalty of “not knowing the basis” of the low-rank matrix ? 



Stock Market Data 
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Our Algorithm

Pure LASSO
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Our Algorithm

Pure LASSO



Clustering Partially-observed Graphs 

Given : partially observed graph 
 
(i.e. for most node pairs i , j, do not know  
if they are connected or not) 
 
 
(combinatorial) Objective: Find clustering that  
minimizes number of disagreements 

More on this in the next talk … 



Sparse + Block-sparse 

A Dirty Model for Multi-task Learning 
in NIPS 2010 
w/ A. Jalali, P. Ravikumar , C. Ruan  



(Linear) Sparse Model Selection 

Task: Find a (sparse) vector from a small number of linear measurements 

= Convex Optimization approach: 
LASSO / Compressed Sensing 

Useful for a very broad and fast-growing range of applications, e.g. 
 MRIs 
 interpreting DNA microarrays, 
 wideband spectrum monitoring,  
 … 

y X

�
min

x
⇥y �Ax⇥2 + �⇥x⇥1



Multiple Sparse Model Selection 

Linear measurements of several unknown sparse vectors 

= 

Q: Can one use overlap to improve 
estimate (i.e. use fewer samples) ? 
 
A: Prior work: depends on (unknown) level of sharing  
 
Method: block-regularization : 
 
where  

Arises in: 
 
- DNA analysis 
of related individuals 

-  whenever there is  
motion during  
measurement 

[Negahban-Wainwright] 

min
X

⇥Y �AX⇥2
2 + �⇥X⇥1,�

�X�1,� =
�

i

�Xi��



Our Method 

Block-sparse Sparse 

Solve 

(where parameters chosen by cross-validation) 

X = B + S

min
B,S

⇥Y �A(B + S)⇥2 + �⇥B⇥1,� + ⇥⇥S⇥1

supp(X�) = supp(B̂ + Ŝ)Success ==  (and also close in values) 



Performance : Gaussian case 
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p=128

p=256

p=512

Dirty Model

LASSO

L1/Linf Reguralizer

Success = correct identification of support for all tasks 
 
When tasks share a fraction      = 1/3 of their supports 

(rescaled) # of Samples 

�



Performance 

.. when each pair shares fraction     = 4/5 of their supports … 
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Performance 

… and when they share     = 2/3 of their supports. 
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Performance: Theory + practice 

In fact, our method provably outperforms both LASSO and               every time. �1/��
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p=128

p=256

p=512

LASSO

Dirty Model

L1/Linf Regularizer

Furthermore, this matches 
exactly with theory 
 
(down to exact constants) 
 
Similar gains for real 
datasets in classification, 
prediction etc. 

4� 3�

2� �

2

[N-W] 



Conclusion 

Usage of more than one structural model allows for increased flexibility and  
robustness 
 

 - often without too much extra computational overhead 
 

 - leveraging the computational tractability of the component models 
 
 
Robustness = separation of one structure from another 
 

 - needs additional incoherence assumptions between objects 
 
Flexibility = better recovery of an overall superposed structure 
 

 - does not need incoherence 
 
Huge range of applications 



Ongoing 

1.  Extensive empirical validation using more real datasets 

2.  Lower-complexity methods (e.g. alternating projections) 

3.  General theory 

4.  Applications (and interesting modifications they motivate) 



Thanks ! 

Papers at 
 

 www.ece.utexas.edu/~sanghavi 
 

 (and NIPS ‘10, ICML ‘11, ISIT ’11, Arxiv) 
 
Also: 
 

 we are looking for postdocs 


