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Research Areas

SSL lab conducts research in the area of optimization and control of stochastic dynamic systems -

• Stochastic control and optimization

• Reinforcement learning

• Multi-agent systems and stochastic games

• Machine learning and pattern recognition

• Communication and wireless networks

• Vehicular tra�c control

• Data mining

Two-level k-means Clustering

Relation between k and τ :
When k′ = 1, i.e. we directly cluster dataset into

(R/τ)n clusters, we can obtain a relationship be-

tween the radius threshold τ and the �nal number

of clusters k. The number of distance computations
required in this scenario should not be greater than

the number of computations required to cluster the

dataset into k clusters. Therefore, we have

2Nk − k2 ≥ 2N(R/τ)n − (R/τ)2n

⇒ ((R/τ)n − k)((R/τ)n + k − 2N) ≥ 0

Since the maximum values that (R/τ)n and k can

take are N , the expression ((R/τ)n+k−2N) cannot
be positive. Hence, the following two inequalities

must be satis�ed:

(R/τ)n ≤ k and (R/τ)n ≤ (2N − k)

⇒ τ ≥ R/(k)1/n and τ ≥ R/(2N − k)1/n

This gives us the following relation between τ and

k:

max(R/(k)1/n, R/(2N − k)1/n) ≤ τ ≤ R

Ref.: Radha Chitta and M. Narasimha Murty. �Two-

level k-means clustering algorithm for k−τ relationship
establishment and linear-time classi�cation�. Journal of

Pattern Recognition, Vol. 43, pp. 796-804, Elsevier,

2010.

Traffic Signal Control

Tra�c signal control via reinforcement learning

techniques such as Q-learning.

Ref.: Prashanth L. A. and Shalabh Bhatnagar. �Q-

Learning based algorithm for tra�c signal control�.

IEEE Transactions on Vehicular Technology, Submitted

2009.

Ant Colony Optimization

T k
ij(t+ 1) = (1− ρ)T k

ij(t) + ρQRk
ij(t)

Xk
ij(t+ 1) = Xk

ij(t) + a(t)Xk
ij(t)T k

ij(t+ 1)

Ref.: Sudha Rani K., Lakshmanan K. and S. Bhatna-

gar. �Ant Colony Optimization Algorithms for Shortest

Path Problems�. Proceedings of Second Workshop on

NET-COOP, LNCS 5425, pp.37-44, Springer, 2008.

Natural Actor-Critic Algorithm

fst
: state-features

ψst,at = ∇lnπ(st, at) : state-action features

ξt = cαt, βt = o(αt)∑
t αt =

∑
t βt =∞,

∑
t α

2
t ,
∑

t β
2
t <∞

Avg. Reward Update: Ĵt+1 = (1− ξt) Ĵt+ξtrt+1

TD Error: δt = rt+1 − Ĵt+1 + v>t fst+1 − v>t fst

Fisher information matrix inverse:

G−1
t =

1
1− αt

[
G−1

t−1−αt

(
G−1

t−1ψstat

) (
G−1

t−1ψstat

)>
1− αt + αtψ>stat

G−1
t−1ψstat

]

Critic Update: vt+1 = vt + αtδtfst

Actor Update: θt+1 = Γ
(
θt + βtG

−1
t δtψstat

)
Ref.: Shalabh Bhatnagar, Richard S. Sutton, Moham-

mad Ghavamzadeh and Mark Lee. �Natural Actor-

Critic Algorithms�. Accepted as a Regular Paper in

Automatica, 2009.

Stochastic Games

Stochastic game model of terrain exploration.

Object
AgentTerra
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• Any gradient-descent method converges to a

Nash equilibrium strategy for discounted re-

ward stochastic games.

• Herskovits two-stage direction method with

suitable modi�cations gives a good o�ine

computational technique.

Ref.: Prasad H. L., S. Bhatnagar, and N. Hemachan-

dra. �A computational procedure for general-sum

stochastic games�. CSA, IISc, Tech. Rep. IISc-CSA-

TR-2009-5, May 2009.

Semi-supervised Learning

Gaussian Process Classi�er Semi-supervised Learning GPC

A simple and e�cient algorithm for semi-supervised learning using Gaussian processes is designed. Semi-

supervised learning uses unlabelled data along with labeled data to improve generalization performance of

classi�er.

Ref.: Amrish Patel, S. Sundararajan and Shirish Shevade. �Semi-supervised Classi�cation using Sparse Gaussian

Process Regression�. International Joint conference on Arti�cial Intelligence (IJCAI), 2009
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