
Spectral Clustering with Jensen-type kernels and their multi-point extensions

Debarghya Ghoshdastidar, Ambedkar Dukkipati, Ajay P. Adsul and Aparna S. Vijayan
Department of Computer Science & Automation

Indian Institute of Science
Bangalore 560012, India

{debarghya.g,ad,ajay.adsul,aparna}@csa.iisc.ernet.in

Abstract

Motivated by multi-distribution divergences, which orig-
inate in information theory, we propose a notion of ‘multi-
point’ kernels, and study their applications. We study a
class of kernels based on Jensen type divergences and show
that these can be extended to measure similarity among
multiple points. We study tensor flattening methods and
develop a multi-point (kernel) spectral clustering (MSC)
method. We further emphasize on a special case of the pro-
posed kernels, which is a multi-point extension of the linear
(dot-product) kernel and show the existence of cubic time
tensor flattening algorithm in this case. Finally, we illus-
trate the usefulness of our contributions using standard data
sets and image segmentation tasks.

1. Introduction
Divergences, though introduced at the birth of informa-

tion theory, Jensen-Shannon (JS) divergence appeared in the
literature relatively recently [10], and the unique character-
istic of this divergence is that one can measure a divergence
between more than two probability distributions. Hence,
one can term this as a multi-distribution divergence.

Recently, there have been a growing interest in kernel
connections of the JS divergence in the machine learning
community that started from the works of Endres and Schin-
delin [5], who observed that

√
JS is a Hilbertian metric.

This renewed interests in viewing Jensen-type divergences
as dissimilarity measures. Studies by Martins et al. [12] ex-
tend the idea further to the nonextensive case to formulate
the so-called Jensen-Tsallis (JT) kernels on finite measures,
that has proved to be quite useful in text classification [12]
and shape recognition [3].

Though the JT-kernels and their applications have been
well studied, two significant implications of these kernels
have not been explored yet. The first one lies in the simple
observation that JT-kernel retrieves the linear/dot-product
kernel (xT y) in a special case, and hence, these kernels may

have interesting properties even on the Euclidian space. The
second is multi-distribution nature of JS-divergence. This
fact easily extends to Jensen-type kernels, in particular the
JT-kernel, which leads to the notion of multi-point kernels
studied in this paper.

The concept of multi-point similarities can be traced
back to the studies on n-metrics, which started during works
of Hayashi [8]. But its applications to unsupervised learn-
ing has been observed relatively recently [7, 1]. The works
of Govindu [7] and Chen and Lerman [4] is worth mention-
ing in this respect, who combined multi-point similarities to
spectral clustering in context of computer vision. However,
the proposed methods are model specific, and hence, are
restricted to applications like hybrid linear modeling and
motion segmentation. On the other hand, spectral meth-
ods [14, 13] are quite general and their scope is broad rang-
ing from image segmentation [14] to analysis of correlated
mutations in HIV-1 protease [11]. To cater to the widely
varying application of spectral clustering and to improve
upon the Gaussian distance measure commonly employed
in spectral based learning, it is quite tempting to study the
spectral clustering using multi-point kernels as done in this
work. Our approach distinctly deviates from the existing
multi-point spectral methods in the use of multi-point ker-
nel not restricted to model dependent similarities as in spec-
tral curvature clustering (SCC) [4]. The contributions in this
paper are listed below:
(1) We extend the JT-kernels on finite measures to define
similar kernels on the d-dimensional unit cube [0, 1]d, that
encompass the linear (dot-product) kernel. Further, we use
the idea of multi-distribution divergences to define multi-
point extensions of above kernels.
(2) We develop a model-independent spectral clustering al-
gorithm using multi-point kernels, which we call as MSC.
Though MSC has an exponential complexity, like SCC [4],
we prove that a cubic time complexity can be achieved in
the special case of multi-point extension of linear kernel.
(3) We study the performance of the proposed method and
the kernels in the context of image segmentation.
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2. Nonextensive Jensen-type kernels
Before going into the main discussions of this paper, we

briefly review the JT-kernels on probability measures [12].
It suffices to study kernels on the d-dimensional probability
simplex, denoted by ∆d−1 = {(p(1), . . . , p(d)) : p(j) ∈
[0, 1]∀j,

∑d
j=1 p(i) = 1}. The Jensen-Tsallis q-difference

among n p.m.f.s pi = (pi(1), . . . , pi(d)) ∈ ∆d−1, i =
1, . . . , n is defined as [12, Section 5]

Tq (p1, . . . , pn) = Hq (p̄)− 1

nq

n∑
i=1

Hq(pi), (1)

where p̄ = (p̄(1), . . . , p̄(d)) is the p.m.f. defined as p̄(i) =
1
n

∑n
j=1 pj(i), i = 1, . . . , d, and Hq is the nonextensive or

Tsallis entropy [15] that has been extensively used in statis-
tical mechanics to study multifractal concepts. It is given by
Hq(p) = 1

(q−1)
(
1−

∑d
j=1 p(j)

q
)
, where q ∈ R, q 6= 1 is

a parameter related to the nature of the physical system. As
q → 1, the classical case of Shannon entropy is retrieved,
H1(p) = −

∑d
j=1 p(i) ln

(
p(j)

)
, and the q-difference (1) in

this case corresponds to the JS-divergence.
Martins et al. [12] showed the theoretical justifications

behind the definition of JT q-difference, and observed that
Tq (p1, p2) 6 lnq(2) for all p1, p2 ∈ ∆d−1. Based on this,
a kernel on probability measures k̃q : ∆d−1 × ∆d−1 7→
[0,∞) was proposed as [12, Definition 26]

k̃q (p1, p2) = 2q (lnq(2)− Tq (p1, p2))

= 1
(q−1)

d∑
j=1

(
(p1(j) + p2(j))

q − p1(j)q − p2(j)q
)

(2)

for q 6= 1, which is the Jensen-Tsallis (JT) kernel between
the two probability measures p1 and p2. The above class of
kernels k̃q is positive definite on ∆d−1 for 0 6 q 6 2 [12].
For q = 2, we have a dot-product kernel on ∆d−1

k̃2 (p1, p2) = 2

d∑
j=1

p1(j)p2(j) = 2 (p1(j))
T

(p2(j)) , (3)

and in the limit of q → 1, we have the JS-kernel defined as

k̃1 (p1, p2) =

d∑
j=1

(
(p1(j) + p2(j)) ln (p1(j) + p2(j))

− p1(j) ln (p1(i))− p2(j) ln (p2(j))
)
. (4)

3. The notion of multi-point kernels
We now present the main idea of this paper – multi-point

extensions of the JT-kernels, (2)-(4). To extend the scope of
these kernels, we first extend them to the real space. More
specifically, we present extensions to the set [0, 1]d. This is

a technical requirement, and is not restrictive since it is a
common practice to normalize features of data and such a
set suffices for most datasets. We proceed along the lines of
the defined probability kernel (2), and define an extension
of JT-kernel kq : [0, 1]d × [0, 1]d 7→ [0,∞) of the form

kq(x, y) =

1
(q−1)

d∑
j=1

(
(x(j) + y(j))q − x(j)q − y(j)q

)
for q 6= 1

d∑
j=1

(
(x(j) + y(j)) ln(x(j) + y(j))

−x(j) ln(x(j))− y(j) ln(y(j))
)

for q = 1,

(5)

where x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)) ∈
[0, 1]d. The special case of linear kernel on [0, 1]d follows
similar to (3). The significance of JT-kernel is the fact that
while the Gaussian kernel follows the nature of the Euclid-
ian distance, similar to the linear kernel, the distance in case
of Jensen-type kernels usually exhibit a skewed behavior.
Further, localization effects are much less in the Jensen-type
kernels as compared to the Gaussian kernel, since they are
not exponentially decaying. The following result shows that
the above extension does not affect the positive definiteness
of the kernel. This can be proved by mimicking the proof
of [12, Proposition 27] using the above kernel function.

Proposition 1. JT-kernels kq are positive definite on [0, 1]d

for all dimensions d and all q ∈ [0, 2].

We now present the multi-point extensions of the JT-
kernel (5). The idea is based on the multi-distribution def-
inition of Jensen-Tsallis q-difference (1) where n need not
be equal to 2. We extend the JT-kernel for arbitrary num-
ber of points in X = [0, 1]d to obtain a class of multi-point
kernels {Kq,n}n∈N with Kq,n : Xn 7→ [0,∞) defined as

Kq,n (x1, . . . , xn) =

1
(q−1)

d∑
j=1

[( n∑
i=1

xi(j)

)q
−

n∑
i=1

(xi(j))
q

]
for q 6= 1

d∑
j=1

[( n∑
i=1

xi(j)

)
ln

( n∑
i=1

xi(j)

)
−

n∑
i=1

xi(j) lnxi(j)

]
for q = 1.

(6)

The above definition is consistent with the multi-
distribution extensions of JT q-difference. Since it naturally
extends a positive definite kernel, we refer to it as a kernel.
In the linear case, i.e., for q = 2, we retrieve a multi-point



version of the dot-product kernel as

K2,n(x1, . . . , xn) = 2

n∑
i=1

n∑
j=i+1

xTi xj , (7)

which will be discussed in greater detail in sequel. The
above extension of two-point kernels captures information
about similarity among multiple points, and is capable of
providing a more global measure of similarity. Further, the
proposed multi-point similarity is not dependent on any ge-
ometric model, unlike the ones in [7, 4], and hence, it is
applicable in a more general framework. Next, we present
a spectral clustering method based on multi-point kernels.
The basic approach is similar to the spectral curvature clus-
tering (SCC) [4], but it is applicable for any multi-point ker-
nel.

4. Multi-point spectral clustering
4.1. Algorithm

We consider the problem of clustering N points,
{x1, . . . , xN} ∈ X , into m clusters, C1, . . . , Cm, using
any n-point similarity measure K : Xn 7→ R. The sim-
ilarity among different points is represented by a nth or-
der N -dimensional real tensor A, where Ai1,i2,...,in =
K (xi1 , xi2 , . . . , xin) for ij = 1, . . . , N with j = 1, . . . , n.
We observe from (6) that K is permutation invariant, i.e.,
the similarity does not change if the arguments are re-
ordered. Hence, the tensor A is super-symmetric. The idea
is to construct a similarity (or, affinity) matrix fromA. This
is done by tensor unfolding or mode-1 matricization [9],
where we construct a matrix A ∈ RN×Nn−1

whose jth col-
umn, for j = 1 +

∑n
l=2(il − 1)N l−1 is the stack of ten-

sor A obtained by varying the first index, and fixing others
at (i2, . . . , in). From A, the affinity matrix is constructed
as V = AAT that preserves the left eigenvectors of A (or
mode-1 eigenvectors of A). Below, we state the algorithm
based on spectral clustering algorithm due to Ng et al. [13].

The complexity of MSC is quite large since computation
of each element in V requires 2Nn−1 kernel computations,

Algorithm 1 Multi-point Spectral Clustering (MSC)
Given: nth order tensor A representing affinity among
data points {x1, . . . , xN} ∈ X .
1. UnfoldA to obtain flattened matrixA, and let V = AAT .
2. Normalize affinity matrix as Z = D−1/2V D−1/2, where
D is a diagonal matrix with dii =

∑N
j=1 Vij .

3. Compute u1, . . . , um, top-m unit eigenvectors of Z.
4. Normalize rows of U = [u1, . . . , um] to have unit length.
5. Cluster the rows of U into m clusters using k-means,
and partition {x1, . . . , xN} accordingly.

and hence, complexity of determining V turns out to be
O(Nn+1). We can incorporate the heuristic approach men-
tioned in [7], to approximate V as V ≈

∑c
k=1 wjkw

T
jk

, by
uniformly sampling c columns from all the Nn−1 columns
of A, where wjk denotes the jkth column of A. Though
computation reduces to a great extent to O(cN2) for c �
Nn−1, the performance of the algorithm is quite poor in
general, when model underlying the data is not known a
priori. In fact, since MSC does not assume geometric struc-
tures, the effect of such approximations is quite severe in
this case. More efficient methods discussed in [4] in context
of SCC can be used. We do not discuss such approximations
here, but focus on a special case of multi-point JT-kernel,
where cubic time complexity is achieved for MSC.

4.2. MSC using multi-point linear kernel

Recall that the multi-point JT-kernel for q = 2 (7), which
is a multi-point extension of linear kernel. The structure of
this multi-point linear kernel helps to compute the affinity
matrix V explicitly in cubic time as shown below.

Proposition 2. Let X = (x1, x2, . . . , xN ) ∈ [0, 1]d×N

represent the given data matrix and x̄ :=
∑N
i=1 xi be the

component-wise addition of the vectors. Then, the affin-
ity matrix V corresponding to the n-point linear kernel
K2,n (7) can be written as

V = 4
(
n−1
1

)
Nn−2 (XTX

)2
+ 8
(
n−1
2

)
Nn−3 (XT x̄x̄TX

)
+ 8
(
n−1
2

)
Nn−3 (XTXXT x̄11×N + 1N×1x̄

TXXTX
)

+ 12
(
n−1
3

)
Nn−4‖x̄‖22

(
XT x̄11×N + 1N×1x̄

TX
)

+ 4
(
n−1
2

)
Nn−5

(
N2
∥∥XTX

∥∥2
F

+ 2(n− 3)N
∥∥XT x̄

∥∥2
2

+ 2
(
n−3
2

)
‖x̄‖42

)
1N×N (8)

where 1r×s denotes a r × s matrix of all 1’s, ‖.‖F is the
Frobenius norm.

Proof. We provide a brief sketch of the proof. Note that
V = AAT and it can be written as

V = 4

N∑
i2,...,in=1

[
XT

(
n∑
l=2

n∑
r=2

xilx
T
ir

)
X

+XT

(
n∑
l=2

n∑
r=2

n∑
s=r+1

xilx
T
irxis

)
11×N

+ 11×N

(
n∑
r=2

n∑
l=2

n∑
k=l+1

xirx
T
il
xik

)
X

+

(
n∑
l=2

n∑
r=2

n∑
k=l+1

n∑
s=r+1

xTilxisx
T
irxis

)
1N×N

]
, (9)

where we use the fact that given i2, . . . , in, the jth col-
umn of A, where j =

(
1 +

∑n
l=2(il − 1)N l−2), is simply



2XT (
∑n
l=2 xil) + 2

(∑n
l=2

∑n
k=l+1 x

T
il
xik
)
1N×1. Com-

paring (9) and (8), we observe that the first term in (9) de-
composes into the first two terms of (8). The second and
third terms of (9) contribute to the third and fourth terms
of (8), while the last term of (9) is equal to the last term
in (8). Also, the outer summation in (9) may be pushed
inside to simplify the results of the inner summations as
shown below. For the first term, we consider the outer prod-
uct of same and distinct vectors separately as

N∑
i2,...,in=1

n∑
l=2

n∑
r=2

xilx
T
ir (10)

= Nn−2
n∑
l=2

N∑
il=1

xilx
T
il

+Nn−3
n∑

r,l=2,r 6=l

N∑
il,ir=1

xilx
T
ir

since the terms act as constants while summing over all in-
dices other than il and ir, and each such summation adds up
N similar terms, leading to the constants outside the sum-
mations. Now, one can verify thatXXT =

∑N
i=1 xix

T
i and

x̄x̄T =
∑N
i,j=1 xix

T
j . Plugging this in (10), and noting that

there are (n − 1) terms in the first summation and 2
(
n−1
2

)
terms in the second leads to the first two terms of (8). To
deal with the second term of (9), it is enough to show that

N∑
i2,...,in=1

n∑
l=2

n∑
r=2

n∑
s=r+1

xilx
T
irxis

= 2
(
n−1
2

)
Nn−3XXT x̄+ 3

(
n−1
3

)
Nn−4‖x̄‖22x̄ . (11)

The constants Nn−3 and Nn−4 appear as before due to
summation over indices, which are absent from the terms
involved. We consider the cases r = l and r 6= l sepa-
rately. For r = l, we obtain half of the first term in (11)
since

∑n
r=2

∑n
s=r+1

∑N
ir,is=1 xirx

T
ir
xis =

(
n−1
2

)
XXT x̄.

For r 6= l, the situation becomes complicated as we may
have s = l. But this happens only in

(
n−1
2

)
cases, which

adds up to give the remaining half of the first term in (11).
The rest of the terms on the left in (11) have distinct in-
dices, and hence, summing over them gives a term of the
form

∑N
i,j,k=1 xix

T
j xk = ‖x̄‖22x̄. But, there are 3

(
n−1
3

)
such terms, and hence, the result. Similarly, computing the
other terms in (9), one can derive the expression in (8).

The key fact in above result is that all computations in (8)
are at most O(N3), which implies that V is computable
in cubic time. Further, though the above result holds for
any n ∈ N, few simplifications are possible for n 6 4.
For instance, if n = 2, all terms vanish except first, giv-
ing V = 4(XTX)2, which has the same eigen structure as
XTX . Hence, spectral clustering with V is equivalent to
the case of constructing affinity using the Gram matrix. We
illustrate the behavior of the multi-point linear kernel with a
simple example of two concentric arcs in [0, 1]2 (Figure 1).

This is an example where k-means algorithm fails. We use
both Gaussian spectral clustering and MSC with n-point
linear kernel, and observe that for small n (MSC) and large
σ (Gaussian) both methods are quite similar to k-means.
Accurate clustering can be achieved for Gaussian, but this
requires proper tuning of σ as we see that even for small
variations of σ-values considered, the results vary consider-
ably. On the other hand, if the large number of points are
considered, MSC gives accurate results. In fact, in this ex-
ample, we observed that results improved with increase in
n, and for n > 7 correct clustering were always achieved.

Figure 1. (top row). Clustering obtained using MSC with n-point
linear kernels for n = 2, 7, 20, and (bottom row) results for Gaus-
sian spectral clustering with σ = 0.09, 0.12, 0.15, respectively.

5. Experimental results
We compare the performance of MSC using the pro-

posed multi-point JT-kernels with Gaussian spectral clus-
tering. We do not compare our approach with methods pro-
posed in [4, 7] since these methods require prior knowledge
of geometric structures, and cannot be applied to arbitrary
data sets. We perform preliminary study on standard data
sets from [6]. Table 1 shows the accuracy of spectral clus-
tering with Gaussian and 2-point JT-kernels, as well as MSC
with 3-point JT-kernel and n-linear kernel. The perfor-
mance measure considered is the purity of clusters obtained.
For 3-point JT-kernel, the O(Nn+1) unfolding method is
used since approximations give poor performance. For JT-
kernels, q is varied over [0, 2] in steps of 0.25, where JS-
kernel is used for the case q = 1. We also consider MSC
with the n-point linear kernel, where we vary n from 2 to
12 in steps of 2. Similarly, for Gaussian case, we tune σ to
improve performance. We note here that tuning σ properly
appeared to be more difficult than the parameters of our al-
gorithms. The accuracy is averaged over multiple runs of
k-means step. In Table 1, we present the best accuracy re-
sults achieved with each method. In general using 3-point
JT-kernel is more effective, though computationally exten-
sive, which indicates that considering multiple points can
improve performance. The n-point linear kernels, which
have reduced computational complexity also perform quite



Table 1. Comparison of MSC and Gaussian spectral clustering (for Isolet dataset, we consider only classes A,B,C).
Dataset Gaussian SC (σ) 2-point JT kernel (q) 3-point JT kernel (q) n-point linear kernel (n)

Breast Cancer 0.968 (0.5) 0.963 (2.00) 0.971 (1.0) 0.966 (6-12)
Isolet (ABC) 0.863 (10.0) 0.965 (1.25) 0.965 (1.0-1.25) 0.929 (4)

Iris 0.930 (0.15) 0.860 (0.0-0.5) 0.965 (0.5) 0.792 (10)
Mammographic mass 0.799 (0.3) 0.807 (2.0) 0.776 (1.5) 0.810 (4-12)
Semeion hand-written 0.604 (5.0) 0.534 (1.25) 0.569 (0.25) 0.561 (4)

Figure 2. Segmentation of images using spectral clustering with Gaussian and JT-kernels, and MSC with n-point linear kernel. Each row
shows results for one image, and the best parameter value for each similarity is indicated (q = 1 for JT denotes the JS-kernel).

Original Gaussian JT-kernel n-point Original Gaussian JT-kernel n-point
image kernel linear image kernel linear

baby σ = 0.02 q = 1.25 n = 8 balloon σ = 2.0 q = 1.0 n = 6

duck σ = 0.2 q = 1.25 n = 6 chain σ = 0.02 q = 1.0 n = 10

eggs σ = 0.02 q = 0.5 n = 8 building σ = 0.2 q = 1.25 n = 8

number σ = 0.02 q = 0.75 n = 6 leaf σ = 0.2 q = 0.5 n = 6

smiley σ = 2.0 q = 1.0 n = 12 flowers σ = 2.0 q = 1.25 n = 10

tower σ = 0.2 q = 1.25 n = 8 texture σ = 2 q = 1.25 n = 12

well.

We use 2-point JT-kernel and n-point linear kernel for
segmentation of a number of images from [2] and other
sources (shown in Figure 2), where each image is reduced
to 60 × 60 or 80 × 60. We incorporate MSC and the
proposed kernels into the segmentation approach proposed
in [14]. For this, we apply JT and n-point linear kernels
on the pixel intensities (in texture image, the intensities of
the pixel and its neighbouring 8 pixels is quantized into a

histogram of 16 bins) and compute the matrix V using (8).
To make our method compatible with the partitioning al-
gorithm, spectral clustering is performed using the affinity
matrixM = V (1−λ)Rλ, where λ = 0.008 andR represents
the similarity matrix for pixel locations computed as below.
If pi is location of the ith pixel, then Ri,j = e−‖pi−pj‖

2

if
‖pi − pj‖ < r, and zero otherwise. The idea is to parti-
tion the pixels into a number of clusters (m = 10), and then
group neighboring clusters till we have desired segments,



such that Ncut of the graph is minimized at each iteration.
Figure 2 shows the best results for each of Gaussian, JT and
n-point linear kernels after tuning parameters. On an aver-
age, relative times of JT and n-point linear were 0.99 and
1.03, respectively, compared to Gaussian. We observe that:
(1) JT-kernel with q close to 1 (0.75–1.25) gives best results
among all values of q in most cases.
(2) Though 2-point linear kernel gives poor results, as n in-
creases better partitions are obtained and mostly linear ker-
nel over n = 6 to 10 points captures all necessary details.
(3) On the whole, Figure 2 makes it evident that in most
cases, JT and n-point kernel perform at par with Gaus-
sian similarity, and in fact, in some cases, JT-kernel shows
significant improvements (for instance, texture, duck, eggs,
building). The n-point linear kernel has a very simple
structure, that of the dot-product, and hence, is relatively
poor. However, there are instances where it still outper-
forms Gaussian (balloon, texture). To this end, Gaussian
works significantly better than others only in smiley image,
while segments in flowers for all kernels are quite different.
(4) In one case (flowers), the segments obtained with JT
and n-point kernels are same, but this is different from that
of Gaussian. This can be justified by the similar nature of JT
to n-point (extension of JT with q = 2), that is significantly
different from Gaussian.

One can note that similarities were constructed only us-
ing the pixel intensities and locations as considered in [14].
One can easily incorporate more sophisticated features into
this setting, and easily use JT or n-point linear kernels to
evaluate their similarities. However, by construction and
justifications given in Section 3, the JT-kernel appears to be
more applicable for histogram type of data such as pixel in-
tensities. On the other hand, Gaussian similarity is more
applicable for pixel distances as used here.

6. Discussions and concluding remarks
We develop a spectral clustering (MSC) technique that

uses a similarity among more than two points. Our method
is more general than existing algorithms of similar na-
ture [7, 4], as the algorithm does not depend on the simi-
larity measure considered. Though not discussed here, but
one can easily incorporate out-of-sample extensions such as
Nyström’s approximation to MSC. To extend the idea fur-
ther, it would be interesting to see if spectral methods can
be used on the similarity tensor, without unfolding it.

We also introduced the notion of multi-point kernels and
proposed a class of multi-point similarity measures that
arise out of extension of positive definite two-point ker-
nels. We also derived a multi-point extesion of linear ker-
nels, obtained for q = 2 in multi-point JT-kernel that sig-
nificantly simplifies computation of MSC algorithm. Toy
examples similar to Figure 1 were studied, which revealed
that n-point linear kernels were always able cluster accu-

rately (above some n) when the clusters are linearly separa-
ble. This promises a new direction of study: linear separa-
bility in the spectral clustering framework.
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