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Abstract
In recent years, deep architectures have gained a
lot of prominence for learning complex AI tasks
because of their capability to incorporate com-
plex variations in data within the model. How-
ever, these models often need to be trained for a
long time in order to obtain good results. In this
paper, we propose a technique, called ‘stretch-
ing’, that allows the same models to perform
considerably better with very little training. We
show that learning can be done tractably, even
when the weight matrix is stretched to infinity,
for some specific models. We also study tractable
algorithms for implementing stretching in deep
convolutional architectures in an iterative man-
ner and derive bounds for its convergence. Our
experimental results suggest that the proposed
stretched deep convolutional networks are capa-
ble of achieving good performance for many ob-
ject recognition tasks. More importantly, for a
fixed network architecture, one can achieve much
better accuracy using stretching rather than learn-
ing the weights using backpropagation.

1. Introduction
In recent years, there has been a growing amount of re-
search to map the raw representation of input (primar-
ily, images and speech signals) to a feature representa-
tion suitable for classification. This has led many re-
searchers to wonder about whether or not the representa-
tion learning stage should be kept independent of the clas-
sification stage. Most feature extraction algorithms, such
as SIFT (Lowe, 2004) and SURF (Bay et al., 2006) keep
the two stages separate and have been shown to obtain
good performance for object recognition tasks. Further-
more, many feature learning algorithms introduced in the
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past decade, such as sparse coding (Lee et al., 2006), re-
stricted Boltzmann machines (Hinton, 2002), deep Boltz-
mann machines (Salakhutdinov & Hinton, 2009), autoen-
coders (Bengio et al., 2007), k−means (Coates et al.,
2011), also learn features independently of the classifica-
tion stage. Recent results have shown that using one or
more layers of these feature learning algorithms is suffi-
cient to obtain state of the art results for many object recog-
nition tasks (Bo et al., 2012; Coates et al., 2011).

On the other end of the spectrum, there are learning mod-
els that support the coupling of the two stages. Neural net-
works form the primary examples of such models. While
neural networks were introduced three decades back, the
lack of a proper way to initialize their weights and the ex-
tensive time and memory required for training these mod-
els, have kept these models dormant for a long time. In re-
cent years, the development of unsupervised feature learn-
ing algorithms, new weight-initialization methods and in-
expensive GPUs have brought back neural networks into
the main stream of machine learning research. In fact,
many state of the art results for object recognition tasks
have been obtained using deep convolutional neural net-
works (Ciresan et al., 2012; Zeiler & Fergus, 2013b).

The reason behind the exceptional performance of neural
networks as compared to other classifiers, is that, unlike
other classifiers, representational learning is already em-
bedded into the neural network architecture. Hence, if we
can provide a proper feature representation for other clas-
sifiers, they may be able to perform as well as neural net-
works, as has been shown in many recent results (Bo et al.,
2012; Coates et al., 2011; Pandey & Dukkipati, 2014).
Towards this end, we introduce a method for computing
kernel (equivalent to representational learning), which can
then be fed to a kernel-based classifier. The method for
computing the kernel involves ‘stretching’ the weight ma-
trix learnt by an arbitrary feature learning algorithm.

Contributions: We introduce a technique called ‘stretch-
ing’, that uses minimal amount of learning to achieve rea-
sonable performance for classification tasks. The technique
takes a feature learning algorithm as the input and stretches
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the weight matrix learnt by the algorithm to generate new
weight vectors.

1. We show that when the weight matrix has been
stretched to infinity, learning can be done tractably
with the help of kernels for a special case. The re-
sult utilizes the derivation of arc-cosine kernels given
by Cho & Saul (2010). We refer to the correspond-
ing architecture as stretched deep network (SDN). In
our experimental results, we show that for character
recognition tasks, SDNs can achieve reasonable per-
formance with minimal training.

2. In order to deal with realistic images of moderate size,
we need to resort to a convolution + pooling based ar-
chitecture (LeCun et al., 1998). We show the limi-
tations of implementing infinite stretching in such an
architecture.

3. We give an iterative method to compute an approxi-
mation to infinite stretching. Such an architecture is
referred to as convolutional stretched deep network or
convolutional SDN.

4. We show that the approximate kernel matrix indeed
converges to the kernel matrix corresponding to in-
finite stretching, when the convolutional SDN has a
single convolution + pooling layer.

5. In our experimental results, we show that convo-
lutional SDNs are capable of achieving good per-
formance for many well-known object recognition
datasets.

2. Randomly Weighted Neural Networks and
the Arc-cosine Kernel

It has long been known that the shallow architectures with
random features are capable of achieving reasonable per-
formance for many machine learning tasks (Amit & Ge-
man, 1997). In (Rahimi & Recht, 2008), it was shown
that training a shallow neural network by randomly choos-
ing the non-linearities, results in a network that performs
no worse than a network where the weights are optimally
chosen. This was the motivation for considering randomly
weighted neural networks with an infinite number of neu-
rons by Cho & Saul (2010), where they show that learning
can be performed tractably for such models by using the
kernel trick for many thresholding based non-linearities.

In particular, let the non-linearity under consideration be
max(0,x), which is denoted by (x)+. Let x,y ∈ RD

be two input instances, and let hx and hy be their cor-
responding feature representations in a single-layer neural
network with random weights, i.e., hx = 1√

L
(WTx)+ and

hy = 1√
L

(WTy)+, where W ∈ RD×L is a Gaussian ran-
dom matrix with independent entries. AsL→∞, the inner
product between the feature representations converges, and
is given by

k(x,y) =
1

2π
‖x‖‖y‖(sin θ + (π − θ) cos θ) ,

where θ is the angle between x and y (Cho & Saul, 2010).
This kernel is known as the arc-cosine kernel. Feature
learning can be incorporated into this kernel, by sampling
the columns of W from a multivariate Gaussian distribu-
tion with 0 mean and covariance matrix Σ, where Σ has
been learnt from the data. Such an approach has been con-
sidered by Pandey & Dukkipati (2014). The corresponding
kernel is also known as covariance arc-cosine kernel.

3. The Notion of Stretching
In representation learning, one often fixes the desired num-
ber of features to a fixed finite quantity. Then, one of the
possibly many unsupervised learning algorithms (for in-
stance, RBMs, autoencoders, k−means) are used to learn
the features from the data. The most commonly used
feature learning algorithms include restricted Boltzmann
machine and autoencoders. In recent years, triangular
k−means (Coates et al., 2011), has also been shown to be
effective for representation learning from data. Irrespective
of the algorithm used, the motive of feature learning is to
find a set of weight vectors (centroids in k−means) that op-
timize some objective. The weight vectors have the same
dimension as the input data.

The idea behind the introduced concept of stretching is to
take the weight vectors learnt by a representation learning
model, and generate new weight vectors from the original
weight vectors. One possibility is to look at linear combina-
tion of the learnt weight vectors. In our model, we assume
that the scalars corresponding to these linear combinations
have been sampled independently from Gaussian distribu-
tion N (0, 1). Hence, formally we define stretching for our
model as follows:

Definition 3.1 (Matrix stretching). Let A ∈ RD×M be a
matrix whose columns denote the weight vectors learnt by
some feature learning algorithm. If no feature learning al-
gorithm is used,A can be assumed to be an identity matrix.
Let W ∈ RM×L, L > M be a matrix whose entries have
been sampled from the standard normal distribution. Then,
the stretched matrix Acst is defined as

Acst =
1√
L

(A×W )

We illustrate the concept of column stretching in two di-
mensions in Figure 1. As can be observed readily from the
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Figure 1. Original weight vectors (in red) and the weight vectors
obtained after stretching (in blue)

figure, the new weight vectors appear to be generated from
a multivariate Gaussian distribution, whose covariance is
controlled by the original points. We will make this result
more formal as follows:

Theorem 3.2. Let A ∈ RD×M be a fixed real valued ma-
trix and Acst ∈ RD×L be the matrix obtained after ap-
plying column stretching to A. Then the columns of Acst

are distributed according to a multivariate Gaussian dis-
tribution with mean 0 and covariance matrix Σ, where Σ is
given by

Σ =
1

M

M∑
m=1

ama
T
m =

1

M
AAT . (1)

Here, am denote the columns of A.

4. Single Layer Stretched Network
A single layer stretched architecture comprises of a visible
layer, a stretched feature layer and an output layer. Let x
be an instance and A be a matrix whose columns indicate
the weight vectors learnt by a feature learning algorithm.
Let W ∈ RK×L be a random matrix whose entries have
been sampled from the standard normal distribution. The
encoding of a node in the stretched feature layer is then
given by

hj =
1√
L
f(x, Awj) , 1 ≤ j ≤ L , (2)
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Figure 2. The plot depicts the improvement in classification per-
formance for MNIST data, as the weight matrix learnt by an RBM
for the dataset is stretched to increase the number of features. The
dotted red line indicates the classification performance achieved
by an RBM without stretching.

where f is an activation function that depends upon the fea-
ture learning algorithm used. For instance, in case of ReLu
RBM, f(x, w) = (xTw)+ and f(x, w) = σ(xTw) in case
of sigmoid RBM. As is obvious from the above expression,
we have just replaced the original weight vectors by their
linear combinations.

In order to evaluate the effect of stretching on the perfor-
mance of the subsequent classifier, we compare the un-
stretched model with the stretched model for ReLu RBM
for increasing values of L for MNIST dataset. The classi-
fier used at the output layer is a linear SVM. No fine-tuning
is performed for either of the models. In order to account
for the randomness introduced by the matrix W , we aver-
age the results over 10 iterations. The weight matrix used
for the stretched and the unstretched model is the same and
is obtained after training the model for 5 epochs (∼ 150s).
The results are plotted in Figure 2.

It can be observed from the figure that stretching affects
the performance of the subsequent classifier. Furthermore,
the performance of the classifier improves as the num-
ber of units in the stretched layer increase. Hence, it is
particularly interesting to study the case when the num-
ber of weight vectors in the stretched matrix Acst, tend
to infinity. This means that Acst consists of infinitely
many linear combinations of the original weight vectors,
where the scalars for these linear combinations are sam-
pled independently from the standard normal distribution.
In matrix notation, one can rewrite the above statement as
Acst = A ×W , where A ∈ RD×M is the original weight
matrix, and W ∈ RM×∞ is the random matrix whose en-
tries have been sampled independently from the standard
normal distribution.

Learning can be made feasible for infinitely stretched net-
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works by using the kernel trick for the special case, when
the activation function is of the form f(x) = (xTw)+. In
particular, we note that learning a linear classifier is equiv-
alent to learning a kernel machine with the linear kernel.
Here, the linear kernel corresponds to an inner product in
the feature space, where the feature representation of an
instance x is obtained by using equation (2). The next the-
orem allows us to compute the inner product in the feature
space as L→ +∞.

Theorem 4.1. Let A be the weight matrix learnt by ReLu
RBM. Let W ∈ RK×L be a random matrix whose entries
have been sampled indepependently from standard normal
distribution. Let x and y be two instances whose feature
representations are given by

h`(x) =
1√
L

(xTAw`)+, 1 ≤ ` ≤ L and

h`(y) =
1√
L

(yTAw`)+, 1 ≤ ` ≤ L .

Let hx = (h`(x))T
1≤`≤L and hy = (h`(x))T

1≤`≤L. Then
the inner product between the feature representation of x
and y as L→∞ is given by

lim
L→∞

hT
xhy =

1

2π
‖ATx‖‖ATy‖(sin θA+(π−θA) cos θA),

(3)
where θA = cos−1 xTAATy

‖Ax‖‖Ay‖ .

The proof of the above theorem is given in the supplemen-
tary material. If we replace Σ = 1

MAAT in the equa-
tion (3), we get

kΣ(x,y) = lim
L→∞

hT
xhy

=
M

2π
‖x‖Σ‖y‖Σ(sin θΣ + (π − θΣ) cos θΣ) ,

where ‖x‖Σ =
√
xTΣx and θΣ = cos−1 xTΣy√

xTΣx
√

yTΣy
.

This is a scaled version of the covariance arc-cosine kernel
proposed by Pandey & Dukkipati (2014).

5. Incorporating Translational Invariance in
SDNs

As we show in our experimental results, infinitely stretched
networks allow us to obtain good performance for object
recognition tasks when the images are all centred and have
few pose variations, for instance, MNIST data set. How-
ever, for complex real world tasks such as scene labelling,
the above technique can not be expected to perform equally
well, since no prior information about the data (for in-
stance, the information that objects can be present at any
location in the model) is incorporated in the model. The
usual way to incorporate translational invariance in neural

networks is to divide the image into overlapping patches,
where each patch is a d × d square of pixels in an image.
The patches are flattened from matrices to vectors and the
same weight matrix is then learnt using each flattened patch
in either supervised or unsupervised mode. The features
are then pooled over a region in the image, where the re-
gion may be fixed a priori (LeCun et al., 1998), or chosen
stochastically (Zeiler & Fergus, 2013a). The above process
is then repeated by treating the pooled feature maps from
the previous layer as input. Such an architecture is called a
convolutional neural network.

5.1. Convolutional Stretched Deep Networks

Assuming that one prefers to use average pooling and a
single pooling layer, there is a straightforward method to
incorporate translational invariance in infinitely stretched
networks. Let {p1, .., pI} be the flattened patches in a re-
gion of an image x, and {q1, ..., qI} be the flattened patches
of the corresponding region in y. Let A be the weight ma-
trix learnt by some feature learning algorithm. If no feature
learning algorithm is used,A can be assumed to be an iden-
tity matrix. Then, the inner product between the stretched
and pooled feature representation of x and y for the chosen
region is given by

hT
xhy =

1

LI2

(
I∑

i=1

(pT
i AW )+

)(
I∑

i=1

(qT
i AW )+

)
.

As L→∞, the above inner product can be rewritten as

k(x,y) = lim
L→∞

hT
xhy

= lim
L→∞

1

LI2

I∑
i=1

I∑
j=1

L∑
`=1

(pT
i Aw`)+(qT

j Aw`)+

=
1

I2

I∑
i=1

I∑
j=1

kΣ(pi, qj) .

Several important points can be noted about the manner
in which the above kernel has been defined. Firstly, the
above approach can be applied only if the pooling mech-
anism used is sum pooling or average pooling. Currently,
we are not aware of any other approach to incorporate more
general pooling mechanisms exactly in infinitely stretched
networks. Secondly, the computation of a single entry of
the pooled kernel matrix involves O(I2) kernel computa-
tions, where I is the number of patches in the region. In
general, the number of patches can be as high as the number
of pixels in the region. Assuming a region of size 100×100,
this means that computation of one entry of the pooled ker-
nel matrix may require 108 kernel computations, clearly a
prohibitively large number.

However, the main drawback of the above architecture is
not its practical infeasibility, but the inherent limitation
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of the model itself. In a general convolutional architec-
ture (LeCun et al., 1998), the first pooling layer pools the
features over a smaller region, with successive layers pool-
ing over larger and larger regions. The possible exception
is the architecture in (Coates et al., 2011), where the fea-
tures are pooled over a large region in a single pooling
layer. However, in the approach described above, once we
obtain the kernel matrix after first layer pooling, all infor-
mation about location of pixels in the original image is lost.
Hence, there is no way to apply a second layer pooling to
the model. Hence, we are limited to using single layer pool-
ing only.

5.2. Approximating Convolutional SDNs

Because of the limitations of using pooling in infinitely
stretched networks, we need to resort to an approximation
of the model. In Algorithm 1, we describe the architec-
ture of an approximately stretched network with a single
convolution layer and a pooling layer. The architecture ad-
dressed the first two issues associated with a convolutional
SDN mentioned in Section 5.1. The issue of multiple pool-
ing layers is addressed in Section 5.3. In order to convey
the most important points of the algorithm, we have as-
sumed that each image has a single pooling region in the
first pooling layer. It is quite straightforward to extend the
model for the case where each image has multiple pooling
regions in the first pooling layer.

The proposed algorithm gives an iterative, memory-
efficient method of computing the pooled kernel matrix.
We show below that if the algorithm is run long enough,
the resulting pooled kernel matrix indeed converges to the
true pooled kernel matrix, that we obtained in the previ-
ous section. Here, we have shown the result for average
pooling. For max-pooling, we need to use the inequal-
ity var(maxI

i=1Xi) ≤
∑I

i=1 var(Xi), where var(X) de-
notes the variance of the random variableX . Note that, one
can not obtain the mean (k(x,y) in equation (6)) in closed
forms for max-pooling. However, the result will still re-
main valid.

Theorem 5.1. The pooled kernel matrix of approximately
stretched network converges in probability to the pooled
kernel matrix of infinitely stretched network. Furthermore,
let T be the number of iterations for which Algorithm 1 has
been run. Then, for fixed instances x and y, with probabil-
ity at least 1-δ,

|kap(x,y)− k(x,y)|

≤
√

2

TLδ

√√√√ 1

I2

I∑
i=1

I∑
j=1

‖Api‖2‖Aqj‖2 , (5)

where k(x,y) is the exact value of the kernel entry and
kap(x,y) is the approximate kernel value after T itera-

Algorithm 1 Iterative computation of the convolved kernel
matrix
Input: A set of training instances
Output: The pooled kernel matrix

• Initialize the kernel matrix kap to all zeros.

• Learn the weight matrixA from patches of images us-
ing an unsupervised feature learning algorithm.

• Repeat the following steps till convergence

1. Sample the entries of the random matrix W ∈
RD×L independently from standard normal dis-
tribution

2. Compute the pooled feature representation of
each instance using the random matrix W . In
particular, the pooled feature representation of x
is given by

hx =
1

I
√
L

I∑
i=1

(WATpi)+ ,

where pi are the patches in x.
3. Update the approximate kernel matrix by using

the following equation

k(t+1)
ap (x,y) =

1

t+ 1
(t× k(t)

ap (x,y) + hT
xhy)

(4)

• Return the kernel matrix kap.

tions.

The proof of the above theorem is give in the supplemen-
tary material. The above result implies that, if the differ-
ence between a kernel entry in approximate and exact ker-
nel matrix after 1 iteration is εwith probability at least 1−δ,
one can say that with the same probability, we obtain a 10
fold reduction in estimation error by scaling L ten times
and repeating the experiment for ten iterations.

By using the above approximation, one can incorporate any
non-linearity in the model architecture. One disadvantage
of the model is that one may need to run the algorithm mul-
tiple number of times to obtain the pooled kernel matrix.
However, since the entries of the random matrix W are
sampled independently, it is trivial to parallelize the model
on multiple nodes or adapt it to any distributed system. Fur-
thermore, in our experiments, we found that 20 iterations
were often enough to obtain good results for many object
recognition tasks.
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Figure 3. A convolutional SDN with two pooling layers. A convolutional SDN is equivalent to a convolutional neural network with
infinitely many random filters in each convolutional layer. The dotted lines indicate infinitely many feature maps/filters.

5.3. Extension to multiple layers

Instead of using the output of the first pooling layer to com-
pute the kernel matrix, one can feed it to another layer of
convolution + pooling. Specifically, let x be an image of
size m×m and U be a tensor of size d×d×L1 whose en-
tries are sampled from N (0, 1). Let u1, ..., uL1 ∈ Rd×d be
the sub-tensors of U obtained by fixing the last dimension
of U . For the sake of clarity, we assume that the matrix
A learnt from flattened patches of x, is an identity matrix.
It is straightforward to merge the matrix A with tensor U ,
when it is not an identity matrix.

In the first convolutional layer, x is convolved with
u1, ..., uL1 (followed by rectification) to obtain L1 feature
maps of size (m − d + 1) × (m − d + 1), which are then
pooled using any of the possible pooling methods. Let the
resultant size of each feature map be m1 ×m1. Let us de-
note the feature maps at the output of the first pooling layer
as f1, ..., fL1

. Hence, fi = pool(x ∗ ui), where * denotes
the 2D convolution operator and pool(.) denotes the pool-
ing operation.

Next, the L1 feature maps at the output of the first pool-
ing layer are divided into L2 overlapping subsets, where
each subset consists of Q feature maps. One can repre-
sent each subset as a tensor of size m1 × m1 × Q. Let
us denote them as x̂1, ..., x̂L2

. Let V ∈ Rd×d×Q×L2 be
a tensor whose entries have been sampled from N (0, 1).
Let v1, ..., vL2 ∈ Rd×d×Q denote the sub-tensors of V ob-
tained by fixing the last dimension. Each subset x̂1, ..., x̂L2

is convolved (3-D convolution) with its corresponding sub-
tensor to obtain L2 feature maps, which are then pooled.

We denote the resultant feature maps as g1, ...gL2
, where

gi = pool (x̂i ∗ vi).

One can add further layers in a similar manner. The out-
put of the last pooling layer is then fed to a linear kernel.
This entire procedure corresponds to one single iteration of
kernel computation. A pictorial representation of SDN is
given in Figure 3. The entire algorithm for computing the
kernel is informally described in Algorithm 2.

Algorithm 2 Iterative computation of the convolved kernel
matrix for multiple stages of convolution + pooling
Input: A set of training instances
Output: The pooled kernel matrix

• Initialize the kernel matrix kap to be all zeros.

• Repeat until the kernel matrix kap converges

– Sample the entries of tensors U , V etc., from
N (0, 1).

– Use the steps described in Section 5.3 to compute
the feature maps at the output of the last pooling
layer for each instance. Let they be denoted as
g1, ...gL2

. Flatten it to get a single vector g.
– Update the kernel matrix as

k(t+1)
ap (x,y) =

1

t+ 1
(t× k(t)

ap (x,y) + gT
xgy)

• Return the kernel matrix kap.

Finally, we would like to mention that in all our exper-
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iments using convolution SDNs, we assume an infinite
fully-connected random layer as the final layer, while com-
puting the final kernel matrix. Let kap be the kernel matrix
obtained after multiple stages of convolution + pooling and
kfull be the kernel matrix after the fully connected random
layer. Furthermore, let gx and gy be the feature represen-
tation of two instances x and y after the the last pooling
stage.

kfull(x,y) =
1

2π
‖gx‖‖gy‖(sin θ + (π − θ) cos θ)

=
1

2π

√
kap(x,x)

√
kap(y,y)(sin θ + (π − θ) cos θ) ,

where θ is the angle between gx and gy and is given by

θ = cos−1

(
kap(x,y)√

kap(x,x)
√
kap(y,y)

)
.

Hence, the kernel matrix after the fully connected stage
only depends upon the kernel matrix after the last pool-
ing stage and hence, it can be computed after Algorithm 2
stops.

6. Experimental results
We tested the performance of stretched networks for clas-
sification on various data sets. We have separated the re-
sults for non-convolutional stretched networks from those
of convolutional SDNs. Furthermore, whenever we refer to
convolutional SDNs, we mean the approximated convolu-
tional SDN derived using Algorithm 1. The classifier used
in all the experiments for SDN, is kernel SVM.

6.1. Experiments results for SDNs

6.1.1. MNIST

MNIST (LeCun et al., 1998) is a standard dataset for char-
acter recognition with 50000 training and 10000 test sam-
ples of digits ranging from 0 to 9. It is a relatively sim-
ple dataset for the task of object recognition, and gives
good performance with non-pooling architectures as well.
Hence, we use this dataset to test the performance of SDN
against other well-known classifiers.

Among architectures that don’t incorporate translational in-
variance, the best results for MNIST have been obtained by
using deep Boltzmann machines (DBM). However, unsu-
pervised pre-training of deep Boltzmann machines is very
costly. Even for the MNIST dataset, pretraining a DBM
with 500 units in the first hidden layer and 1000 units in the
second hidden layer, takes nearly 2 days to achieve an ac-
curacy of 99.05% (after fine-tuning with backpropagation
and no dropout). In contrast, we obtained the same result
by infinitely stretching the weight matrix learnt by a ReLu

Table 1. Classification accuracies on MNIST dataset using vari-
ous algorithms. Here, SDN-RBM refer to a single layer infinitely
stretched network, whose weight matrix has been learnt using
RBM. Unsupervised training of RBM took 200 seconds while
learning the parameters of kernel SVM took about 30 mins. DBN
stands for a deep belief network as described by Hinton et al.
(2006). The numbers in parenthesis indicate the number of hidden
units in each layer.

ALGORITHM ACCURACY TIME TAKEN

(APPROX.)

SDN-RBM (1000) 99.05% < 1 HR
DBN-RBM (1000) 98.35% < 1 HR
DBN-RBM (1000-500-2000) 98.8% 1.5 HRS
DBM (NO DROPOUT) 99.05% 2 DAYS
DBM (WITH DROPOUT) 99.21% 2 DAYS

Table 2. Classification accuracies on Caltech-101 dataset using
various algorithms. The numbers in parenthesis indicate the num-
ber of hidden units in each layer. The state of the art is achieved
by an 8 layered convolutional DBN with 5 convolution layers and
3 pooling layers (Zeiler & Fergus, 2013b).

ALGORITHM ACCURACY

CONV. SDN-RBM (64-256) 74.3%
CONV. DBN (64-256) (NOT FINETUNED) 64.1%
CONV. DBN (64-256) (FINETUNED) 65.5%
CONV. DBN (8 LAYERED) 86.5%

RBM with 1000 hidden units after unsupervised training
for nearly 200 seconds (6 iterations). No fine-tuning is used
for this model.

6.2. Experimental results for Convolutional SDNs

Next, we present the results obtained by using convolu-
tional SDNs for standard image recognition tasks for im-
ages of moderate size.

6.2.1. CALTECH-101 DATASET

The Caltech-101 dataset (Fei-Fei et al., 2007) consists of
pictures of objects belonging to 101 categories with about
40 to 800 objects per categories. For each object class, we
used 30 samples for training and a maximum of 30 samples
for testing. We use the same preprocessing as done by Jar-
rett et al. (2009). Furthermore, we average the result over
5 draws from the training set.

Effectively, we use a similar architecture as used by Jar-
rett et al. (2009). Three stages of feature extraction are
used. The first two stages are convolution + pooling stages,
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while the last stage is a fully connected layer. We randomly
extract 9 × 9 patches from the images and learn a weight
matrix with 64 weight vectors from these patches using an
ReLu RBM. The weight matrix is then stretched by mul-
tiplication with a random matrix of size 64 × 64. We use
average pooling with a 10 × 10 boxcar filter and 5 × 5
down-sampling. The output of first stage of feature extrac-
tion stage is 64 feature maps of size 26× 26. In the second
stage, we randomly combine 30 feature maps from the pre-
vious layers using 256 9×9 kernels . Again, we use average
pooling in this layer with a 6× 6 boxcar filter with a 4× 4
down-sampling step. The output of the second layer of fea-
ture extraction is 256 feature maps of size 4 × 4. In both
stages, we use the max(0, x) non-linearity and local con-
trast normalization. In the third stage, we map the output
of the second stage (256 feature maps of size 4 × 4) to in-
finitely many feature maps using an arc-cosine kernel. We
repeat the entire process for 20 iterations to construct the
final kernel matrix as discussed in Algorithm 2.

By iterating over the above architecture for 20 iterations,
we obtain an accuracy of 74.3%. We plot the change in
classification performance with the no. of iterations for
Caltech-101 dataset in Figure 4 for the first 10 iterations.
The result should be compared with accuracy achieved
by an unstretched architecture of the same size, which is
64.1%. The accuracy achieved by finetuning the same ar-
chitecture is 65.5% as mentioned in (Jarrett et al., 2009).
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Figure 4. The plot depicts the improvement in classification per-
formance for Caltech-101 dataset with the respect to no. of itera-
tions of stretching.

6.2.2. STL-10 DATASET

STL-10 dataset (Coates et al., 2011) is an image recogni-
tion dataset with 10 classes and 500 training and 800 test
images per class. We use the same preprocessing as in the
previous case. Again, three layers of feature extraction are
used with the final layer being a fully connected layer. As
in the previous case, we randomly extract 9 × 9 patches
from the images and learn a weight matrix with 64 weight

Table 3. Classification accuracies on STL-10 dataset using vari-
ous algorithms. The best result is obtained using the algorithm
proposed in (Swersky et al., 2013)

ALGORITHM ACCURACY

CONV. SDN-RBM (64-256) 65.7%
CONV. DBN (64-256) (NOT FINETUNED) 53.9%
CONV. DBN (64-256) (FINETUNED) 55.3%
MULTI-TASK BAYESOPT 70.1%
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Figure 5. The plot depicts the improvement in classification per-
formance for STL-10 dataset with the respect to no. of iterations
of stretching.

vectors from these patches using an ReLu RBM. The first
pooling layer uses an 8× 8 boxcar filter with 3× 3 average
sampling. The second pooling layer uses 5×5 boxcar filter
with 4 × 4 average sampling. The rest of the architecture
remains the same as in the previous case. The output of the
second stage is mapped to infinitely many feature maps by
using the arc-cosine kernel. After iterating over the above
architecture for 20 iterations, we achieve an accuracy of
65.7%. The change in accuracy of an SDN with the num-
ber of iterations is given in Figure 5. The result should be
compared with accuracy achieved by an unstretched archi-
tecture of the same size, which is 53.9%. The accuracy
achieved by finetuning the same architecture is 55.3%.

7. Conclusion
In this paper, we proposed the technique called stretch-
ing for deep networks, and gave exact as well as approxi-
mate algorithms to compute the kernel matrix for stretched
deep networks. We showed that for convolutional SDNs
with a single pooling layer, the approximate kernel entry
converges to the true kernel entry. Results on benchmark
datasets suggests that stretching a convolutional neural net-
work can sometimes give much better performance than
fine-tuning it using backpropagation.
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