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Abstract

Matrix spectral methods play an important role
in statistics and machine learning, and most often
the word ‘matrix’ is dropped as, by default, one
assumes that similarities or affinities are mea-
sured between two points, thereby resulting in
similarity matrices. However, recent challenges
in computer vision and text mining have ne-
cessitated the use of multi-way affinities in the
learning methods, and this has led to a consider-
able interest in hypergraph partitioning methods
in machine learning community. A plethora of
“higher-order” algorithms have been proposed in
the past decade, but their theoretical guarantees
are not well-studied. In this paper, we develop
a unified approach for partitioning uniform hy-
pergraphs by means of a tensor trace optimiza-
tion problem involving the affinity tensor, and a
number of existing higher-order methods turn out
to be special cases of the proposed formulation.
We further propose an algorithm to solve the
proposed trace optimization problem, and prove
that it is consistent under a planted hypergraph
model. We also provide experimental results to
validate our theoretical findings.

1. Introduction

The underlying problem in most clustering approaches is
to optimize a certain objective function involving pairwise
relations among all data instances, where the optimiza-
tion is performed over all possible cluster assignment ma-
trices. Various relaxations of this NP-hard problem are
common in practice. For instance, k-means (Lloyd, 1982)
uses a greedy approach for achieving a local optimum,
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while spectral clustering does not restrict the optimization
to binary-valued assignment matrices (Donath & Hoffman,
1973). On the other hand, non-negative matrix factoriza-
tion (Lee & Seung, 2001) derives an approximation of the
assignment matrix by decomposing the similarity matrix.

Still, there are numerous applications, where pairwise sim-
ilarities are either inappropriate for the purpose or provide
poor performance, for example, subspace clustering (Agar-
wal et al., 2005), graph matching (Duchenne et al., 2011)
etc. To tackle such problems, a wide class of algorithms,
often coined as “higher-order” methods, have been pro-
posed in the last decade. The basic idea in these approaches
is to use a m-way similarity measure with m > 2. While
it is common to simply pose this as an optimization prob-
lem, where the objective function is justified from various
perspectives (Kim et al., 2011; Rota Bulo & Pelillo, 2013),
there are works that formulate above problem as a hyper-
graph partitioning problem and use hypergraph reduction
techniques (Agarwal et al., 2005; 2006; Arias-Castro et al.,
2011) or alternative solution strategies (Hein et al., 2013;
Karypis & Kumar, 2000). Since, the constructed hyper-
graph is m-uniform, i.e., every edge spans m vertices, it is
more natural to exploit the structure of the m"-order affin-
ity tensor of the hypergraph. Hence, one can partition the
hypergraph using higher-order SVD of tensors (Govindu,
2005), non-negative tensor factorization (Shashua et al.,
2006) or tensor power iterations (Duchenne et al., 2011).

Despite the wide variety of solution strategies, one finds
that most of the above algorithms attempt to solve a similar
optimization problem. This is not surprising because, as in
the case of graph based clustering (Shi & Malik, 2000), the
primary objective in above methods is to obtain a grouping
with high intra-cluster similarity. Unfortunately, unlike the
case of graphs, there still remains a lack of unified treat-
ment of above methods from a common perspective. This
paper fills the gap between graph and uniform hypergraph
partitioning by providing a general notion of associativity
maximization and its formulation as a tensor trace maxi-
mization problem involving the affinity tensor of the hyper-
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graph. Our formulation encompasses normalized spectral
clustering as well as several existing higher-order methods.

Another concern with the related literature is the absence of
provable higher-order clustering algorithms. Most standard
clustering algorithms with pairwise information have been
well studied using tools from spectral graph theory (Chung,
1997) or matrix theory (Stewart & Sun, 1990). In fact,
perturbation bounds (Ng et al., 2002) and consistency re-
sults (von Luxburg et al., 2008; Rohe et al., 2011) have be-
come standard techniques for proving correctness of spec-
tral clustering and similar algorithms. On the other hand,
spectral theory of uniform hypergraphs (Cooper & Dutle,
2012; Hu & Q4i, 2012) is still in its early stage, and is yet to
provide guarantees for partitioning algorithms. Moreover,
the role of tensor decompositions (De Lathauwer et al.,
2000; Lim, 2005) and tensor perturbation analysis (Anand-
kumar et al., 2014) in higher-order clustering is rarely stud-
ied in the literature. Till date, error bounds for clustering
have only been studied in the context of hybrid linear mod-
eling (Arias-Castro et al., 2011), and recently, in a planted
partition setting (Ghoshdastidar & Dukkipati, 2014). Our
second contribution is an algorithm for solving the pro-
posed trace maximization problem. We prove that, under a
planted hypergraph model, the proposed algorithm is con-
sistent. The techniques used in our results are significantly
different from existing analysis (Arias-Castro et al., 2011;
Ghoshdastidar & Dukkipati, 2014). We also supplement
our studies with numerical results on benchmark datasets.

2. Partitioning Uniform Hypergraphs

An undirected hypergraph is a structure on n vertices, V =
{v1, va,...,v,}, where each edge connects a subset of ver-
tices and may have a non-negative weight associated with
it. The aim is to partition V into k disjoint sets, V1, ..., Vi,
based on the presence or weight of edges. For m-uniform
hypergraphs, every edge is a collection of exactly m ver-
tices and the associated weights are often termed as m-way
affinities. One often represents such affinities in a m*"-
order n-dimensional symmetric tensor, W, usually called
the affinity tensor of the hypergraph. A special case is that
of graphs (2-uniform hypergraphs), where the affinities are
given by a n-dimensional symmetric matrix W. In nor-
malized spectral clustering, one partitions the graphs such
that the normalized cut of the partition is minimized. The
problem can be alternatively formulated in terms of max-
imization of normalized associativity (Shi & Malik, 2000)
that can be expressed as a trace maximization problem (von
Luxburg, 2007)

maxi}IInize Trace(H'WH), (1)

where the maximum is taken over all matrices H € R?**

with H;; = ﬁl{vievﬂ- Here, W = D12 pD~1/2

is the normalized affinity matrix, and D is a diagonal ma-
trix containing degrees of every vertex. One can see that H
contains orthonormal columns, and hence, a spectral relax-
ation of the NP-hard problem in (1) is usually solved as

maximize Trace (Z'WZ) st. Z"Z=1, (2)
ZeRnXk

which is maximized by the k leading eigenvectors of .

2.1. Maximizing Normalized Associativity

We formulate an objective for partitioning hypergraphs that
is similar in essence to the objective of spectral clustering
given in (1)-(2). For this, we introduce the following notion
of associativity in a uniform hypergraph.

Definition 1 (Normalized Associativity). Let V1 C V rep-
resent a set of vertices in a m-uniform hypergraph with
mt-order affinity tensor W € R"*"* X" The associa-
tivity of V is defined as

Assoc(Vy) =

E Witis.ipn-

Vi yVigseees Vi, €EV1

Further, if V1, ...,V is such that Ulevi CVand V; N
V; = ¢ forall i # j, then the normalized associativity of
the partition is defined as

k

Assoc(V;)
N-associativity(V1,..., V) = —_—, Q3
vy ) ; Dk 3)
where |V;| denotes the size of it" partition.

For m = 2, the above normalization is similar to that used
in ratio cut (von Luxburg, 2007). For higher values of m,
the normalizing factor increases to counter the increase in
the number of edges. Our objective for hypergraph parti-
tioning is based on maximization of above notion of asso-
ciativity. We later show that this leads to standard tensor
problems more naturally as compared to a cut formulation.
One can find definitions of hypergraph cuts and Laplacians
and related partitioning approaches in (Hein et al., 2013;
Hu & Qi, 2012). We now provide an equivalent problem
based on tensor trace maximization similar to (2). To make
the notation simple, we use following definition from (De
Lathauwer et al., 2000).

Definition 2 (mode-k product). Let A € RPX" and m*h-
order tensor W € RM *n2X--X"m  The mode-k product of
W and A is a mt"-order tensor, represented as W X A €
R71X k-1 XPXNEt1 X Nm yphoge elements are

ngk

(W Xk A)iy i gk i = E Wi iy vigingaim Ajin-

ip=1
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Theorem 3. Let W be the affinity tensor of a m-uniform
hypergraph, and 1.y denote indicator function. The prob-
lem of partitioning the vertices into k disjoint clusters while
maximizing normalized associativity (3) is equivalent to

maxiénize Trace(W x1 HY xg...x,m HY), (4)

where the maximum is taken over all matrices H € R"*F

with Hij = \/ﬁl{?)iEVg}'

Though the above problem is NP-hard, one can observe that
the columns of H are orthonormal. So, we may relax (4) as

Trace(W x1 Z7 ... x,, ZT), (5)

maximize
ZeRnxk.ZT Z=]

which is similar to the spectral relaxation in (2).

2.2. Related Problems in Tensor Algebra

In this section, we discuss the connections of the problem
in (5) to general problems studied in the context of ten-
sors. A dedicated discussion on the literature of higher-
order clustering is postponed till the next section.

In (5), we essentially maximize the trace of a tensor via or-
thogonal transformations. This has been previously studied
in the signal processing community for blind source separa-
tion problems (Comon, 2014). One also solves a variant of
this where the sum of squares of diagonal elements is max-
imized. Such an objective leads to the approach studied
in (Ghoshdastidar & Dukkipati, 2014). Thus, our formu-
lation complements the above work in the sense that both
methods try to perform higher-order clustering by formu-
lating the problem as two well-known tensor problems re-
lated to maximization of diagonal terms.

Our proposed partitioning objective (5) is also related to
the tensor eigenvalue problem (Lim, 2005), where the
mt-order tensor W is viewed as a m-linear functional.
This is easy to observe since for any z1,...,z,, € R",
W(z1,...,2m) i= W x1 27 Xg ... X, zl is a scalar
function, linear in each argument x4, ..., x,,. The maxi-
mizers of this function under unit £-norm constraints are
known as the ¢5-eigenvectors of W (Lim, 2005). Based on
this definition, we observe the following regarding (5).

Corollary 4. Let z1,. ..,z be the columns of Z, then

k
Trace (W x1 27 Xom ZT) = ZW(ZJ', v 2i)y (6)

=1

where each term in the sum is the normalized associativity
of individual clusters. So, if one relaxes the orthogonality
constraint in (5) but retains the constraint ||z;||2 = 1 for
all j, then the stationary points of the trace maximization
are matrices whose columns are {5-eigenvectors of W.

3. Relation with Existing Clustering Methods

The purpose of this section is to show that a wide variety of
pairwise and higher-order clustering algorithms solve some
variant of the optimization problems in (4)-(5). This es-
tablishes the generality of the associativity based objective
presented in Section 2.1.

Spectral Methods. The similarity of the formulation in (5)
to standard spectral clustering (2) is quite evident, though
one may note that, in our framework, one considers a graph
with affinities given by W instead of W. In this respect,
our framework is more similar to a spectral relaxation of
the k-means algorithm (Zha et al., 2001). However, the de-
coupling of the normalization from the eigenvalue problem
gives the freedom to use alternative normalizations. For in-
stance, one can use a doubly stochastic normalization (Zass
& Shashua, 2006), which gives superior performance.

Non-negative tensor factorization. Shashua et al. (2006)
generalized the use of non-negative matrix factorization for
clustering to the case of tensors. The objective is to ap-
proximate a hyperstochastic affinity tensor W by a sum
of k non-negative rank-one tensors. Note that for a vec-
tor h € R™, the m*"-order rank-one tensor, h®™, has the
entries (h®™), . . = hi hiy ... h;,. The reason for
such an approximation is that W contains the total prob-
ability that m points lie in same cluster, whereas, under
conditional independence, each rank-one tensor represent
the joint probability that m vertices lie in each cluster. So
the optimization problem in (Shashua et al., 2000) is

Um *

2

C e . k RXm T _
minimize ||W —3 ", 2; st z; 25 = 1gi—zy, (1)
21,..,2 €ERY o
where || - ||2 is the sum of squares of entries in the tensor.

Non-negativity of z;’s is due to probabilistic reason, and
orthogonality ensures hard clustering. The objective func-
tions of (4) and (7) are related by following relation.
2
W= = W+ k
—2Trace(W x1 Z7 x5... % ZT), (8)

where Z = [z1...z;). It immediately follows that (7) is
a relaxation of (4), which is tighter than (5) because of the
non-negativity constraint.

Hypergraph reduction by clique averaging. A common
approach to partitioning general hypergraphs is by reduc-
ing it to a graph, and subsequently partitioning the equiva-
lent graph. Two standard reductions include the clique and
star expansions (Agarwal et al., 2005). In fact, Agarwal
et al. (2006) showed that a variety of popular hypergraph
Laplacian formulations are equivalent one of these expan-
sions. Moreover, it is known that for uniform hypergraphs,
the eigenvectors for both expansions are similar (Agarwal
et al., 2006), proving generality of clique expansion.
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We show that the use of clique expansion for hypergraph
partitioning is a relaxation of (5). This is true as the affinity
matrix obtained after clique averaging is

We =

Z Woisiim W ln, .o 1y) ©)
W (m—2)! (m —2)! ’
where we view W€ as a bilinear functional, and 1,, is a vec-
tor of all ones. A similar reduction of W was used in the
case of local linear approximation based grouping (Arias-
Castro et al., 2011). The final form in (9), ignoring con-
stant scaling, clearly indicates that a spectral clustering of
the reduced graph is same as finding orthonormal vectors
21, .., 2% that maximizes

k

k
ZWC(zj,zj) :ZW(zj,zj,ln....,ln). (10)
j=1

j=1

From the representation in (6), we clearly see that the above
problem is a relaxation of (5), where we fix the last m — 2
arguments to reduce (5) to a spectral problem.

Matching via tensor power iterations. In the matching
problem, given two sets of points (for instance, sets of fea-
tures in two images), one needs to extract the points of cor-
respondence. Let s be the size of each set, then one can find
s? candidate matches. If X € {0, 1}**¢ denotes the corre-
spondence matrix, then || X ||% = s. Duchenne et al. (2011)
optimizes a score function over a vectorized form of X as

maximize Z Wi, ioxi ez, sto|z||2 =5, (11)
ze{0,1}+?

11y-5tm

where W is constructed from m-way similarities among
the candidate matches. A similar optimization has been
considered in (Lee et al., 2011). Duchenne et al. (2011)
relaxed the search space to RSZ, and solved (11) using ten-
sor power iterations. Since, the objective in (11) is simply
W(z,...,z), above problem and its relaxation are identi-
cal to (4)-(5), where one finds a single cluster that maxi-
mizes normalized associativity, i.e., k = 1.

Methods with ¢;-norm constraint. Given a m!"-order
similarity tensor W among n data instances, this class of
algorithms extract a cluster by solving a generic problem

Wil”imxil...xim S.t. ||le = ]. (12)

115005%m

The justification for such an optimization varies in different
approaches. For instance, Rota Bulo & Pelillo (2013) orig-
inally viewed the above objective as the expected payoff
when each of m players in an evolutionary game chooses
one of n vertices of the hypergraph. The solution of (12),
x, is the probability distribution corresponding to the equi-
librium strategy of the game (Rota Bulo & Pelillo, 2013).

On the other hand, (12) corresponds to maximizing the en-
semble m-way affinity of a cluster in (Liu et al., 2010;
Leordeanu & Sminchisescu, 2012). In practice, the use of
£1-norm makes the solution sparse, and hard clustering is
achieved by sequentially extracting clusters and removing
them from the problem. The latter works further restrict the
search space to [0, €]™ to extract larger clusters.

Though (12) involves a ¢1-norm constraint, we claim that
the problem is a special case of (5). This can be seen by
constructing a (2m)-uniform hypergraph on the given n
vertices, whose affinities are given by the tensor W with

W’ilig...igm = W’i1i3...i2m_11{il:il+1vl:1,3,..,m—l}' (13)

Now, for z € [0,1]™, ||z||; = 1 and y = /= (element-wise
root), one can verify that W (y, ...,y) = W(x, ..., ) and
|lyll2 = 1. This immediately implies that the equivalence
of (12) with the single cluster case of (5).

4. Higher-order Clustering Algorithm

Here, we propose a spectral method that solves a relaxed
form of (5). We also provide a theoretical analysis of this
algorithm under a planted partition model. Note that, in
the literature, theoretical guarantees for higher-order clus-
tering algorithms have been mostly overlooked. We note
that some of the tools used in our analysis are quite dif-
ferent from existing analysis for clustering (Arias-Castro
et al., 2011; Ghoshdastidar & Dukkipati, 2014) and in the
case of tensors (Anandkumar et al., 2014).

4.1. The Proposed Method

The proposed method, listed in Algorithm 1, relaxes the
problem in (5), following the lines of the clique averaging
technique. To be precise, in (5), we replace Z in mode-3
to mode-m multiplication by a n x k matrix with all en-
tries as % The substituted matrix is not orthonormal, but
has columns of unit norm. Retaining Z in modes-1 and 2
relaxes (5) to a matrix eigendecomposition problem.

Algorithm 1 Tensor Spectral Hypergraph Partitioning

input m-way affinity tensor W; number of partitions k.

T T
1: Compute matrix A = W X3 (\1/5) e Xom (%) s
where 1,, is a n-dimensional vector of ones.
2: Compute matrix Z € R™*¥ of k leading orthonormal
eigenvectors of A.
3: Cluster rows of Z into k clusters by k-means.
output Assign node-¢ to partition-j if row-¢ of Z lies in
cluster-j.

Before we proceed to the analysis of the algorithm few
comments are in place. Note that the Algorithm 1 is listed
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in such a way that it is suitable for a theoretical analysis.
In practice, one can incorporate few modifications, for in-
stance, one can normalizes the rows of Z before perform-
ing k-means (Ng et al., 2002). Moreover, the complexity
of Algorithm 1 is O (kn™). Such complexity is due to the
computation of the tensor, and is common in tensor based
approaches. In practice, one uses sampling techniques to
reduce the complexity (Ghoshdastidar & Dukkipati, 2015).

4.2. Consistency of Algorithm 1

We analyze Algorithm 1 under a planted partition model
defined as follows. Consider a m-uniform random hyper-
graph on n vertices, where every m-edge occurs with prob-
ability ¢ € [0, 1). Divide the vertices into k disjoint classes
of sizes n1,...,n,. Letcy,...,cp € {0,1}" be the as-
signment vector for each class, and for j = 1,... k, let
pj € [0,1 — ¢]. Generate additional m-edges within each
class such that for vertices in class-j, m-edges occur with
probability (p; + ¢). The goal of Algorithm 1 is to de-
termine the true assignments cq, ..., c; from the affinity
tensor W of a random realization of the hypergraph.

‘We note that the above model includes a number of learn-
ing problems, where higher-order methods are used. For
instance, the models for subspace clustering and feature
matching presented in (Ghoshdastidar & Dukkipati, 2014)
are both special cases of the above model. We also men-
tion here that the model in (Ghoshdastidar & Dukkipati,
2014) in more general, and allows complicated random hy-
pergraphs. However, our model suffices for standard learn-
ing problems. Few settings are mentioned below.
Example 1. When all classes are of equal size, and p; =
... = pg are strictly positive, we obtain the model for sub-
space clustering (Ghoshdastidar & Dukkipati, 2014).
Example 2. One may extend this model to incorporate the
presence of outliers. The outliers are modelled as an addi-
tional class that is not strongly connected, i.e., px4+1 = 0.
Example 3. For the matching problem, there are k = 2
classes — the set of correct matches of size y/n, while the re-
maining n — v/n matches are incorrect, and hence, po = 0.

The following result bounds the error incurred by Algo-
rithm 1 under the above random model.

Theorem 5. If there exists ny such that §,, > /nlogn
for all n > ng, then the number of misclustered vertices

is O (M%) almost surely as n — co. Thus, Algo-

n

rithm 1 is consistent whenever 6,, = w (\/k;nmaxn log n)

We validate the significance of Theorem 5 in the case of
subspace clustering model (Example 1). Similar results can
be studied for other models. We let the number of partitions
to grow with the size of the hypergraph as k = O(n'/?™).
This has been considered in (Ghoshdastidar & Dukkipati,
2014).

Corollary 6. Let k = O(n'/?™) in the subspace clustering
problem where nj = 7 and p; = p forall j = 1,... k.
Then almost surely as n — 00, the misclustering error of
Algorithm 1 is at most

logn
1
p2nm*3+ﬁ

|Mn|:O< ) forallm > 2, and p > 0.

Thus, Algorithm 1 is almost surely consistent for allm > 3,

M,
while u eventually vanishes for m = 2.
n

We observe that the above bounds are quite similar to
the bounds obtained for the HOSVD based algorithm in
(Govindu, 2005; Ghoshdastidar & Dukkipati, 2014), which
is subsequently referred to as HOSVD. To elaborate on
their differences, we note that under the setting of Corol-
lary 6, the misclustering error for HOSVD is

_ (logmn)?

m—3+ 5

|M,’;’OSVD:O< > form > 2,p > 0.

pin

Comparison of above two results clearly shows that the er-
ror bounds for Algorithm 1 are clearly better than that of
HOSVD, particularly in terms of the density gap p. More
precisely, if the gap between the intra-cluster and inter-
cluster edge probabilities are small or decrease with n, then
Algorithm 1 is less affected compared to the HOSVD algo-
rithm in (Ghoshdastidar & Dukkipati, 2014).

4.3. Proof of Theorem 5

Here, we present an outline of the proof of Theorem 5. The
proofs of the technical lemmas are given in the supplemen-
tary material. The key to our analysis is the correctness of
Algorithm 1 in the expected case. One can verify that in
presence of the partitions, the expected affinity tensor can
be expressed as

k
W= E[W]cy,...,cx] :ijc?m—i-ql%m, (14)
j=1

where 1%’” is a rank-one tensor formed from vector 1,,. We
note that Y has a CP-decomposition of rank (k+1), which
means that )V can be expressed as a sum of (k + 1) rank-1
tensors, i.e., each of the (k+1) terms can be written as a m-
way outer product of a vector. But, the vectors forming the
rank-1 terms are not orthogonal or incoherent. Hence, one
cannot use standard tensor perturbation bounds (Anandku-
mar et al., 2014) to comment on the error of determining
the rank-one terms. The next result shows that Algorithm 1
is accurate in the expected case. We require the following.



A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning

Let j* = argmin; (pjn;"_l),

1 _ B )
9= s (i (o)~ ().

i
—1 _
Py gqnj-n(0-5m U) 15)

and 9, = <2n(0-5m—1) +

The quantity 6, is a lower bound on the eigen-gap that sep-
arates the largest £k eigenvalues from other eigenvalues.

Lemma 7. Let W be the input for Algorithm 1, and let Z €
R"™** be the corresponding eigenvector matrix. If 6,, > 0
for the model, then the rows i and j of Z are identical if
and only if vertices i and j belong to the same class.

2(g + qn®m)

Above result implies that the k-means algorithm clusters all
rows accurately in this case. However, in practice, we work
with a random realization W instead of YV, which can be
viewed as a perturbation of W, ie W = W + £. We quan-
tify the perturbation in terms of the following definition of
norm of a tensor (Anandkumar et al., 2014).

Definition 8 (Operator norm). The operator norm of a
mt"-order n-dimensional tensor € is defined as

||8Hoz>: |E(z1, ...

7xm)| )
lz1lle=...=[|zm|2=1

where the maximum of the m-linear functional is taken over
all vectors 1, ..., Ty € R™ with ||z;||2 = 1 for all i.

In addition, if € is symmetric, it is known that (Chen et al.,
2012)

I€llop = max |E(x,...,z)|.
[lz]l2=1

Let Z be the eigenvector matrix associated with W. The
following result provides an upper bound on the perturba-
tion of Z from Z in terms of the perturbation &.

Lemma9. If||€||op < Oy, then there exists an orthonormal
(rotation) matrix Q € R*** such that

2k|€]]
12~ 2Qlp < YL
where || - || is the Frobenius norm.

The above result is useful only if ||€|,,, is reasonably small.
This is ensured in the following lemma, where we use an
e-net argument to bound ||£||,, with high probability.

Lemma 10. For any A > 0,

22
P(I€]lop > A) <2(1+2m)"exp | — .

mlm?

One needs to choose A appropriately. In our case, choosing
A = y/nlogn ensures that, for any m, the above bound
vanishes as n — 00. So, ||€||op < v/nlogn almost surely

as n — oo. This bound is appears to be significant even
in the context of existing works on random tensors. For
instance, though bounds on the expected operator norm are
known (Nguyen et al., 2010), Lemma 10 provides a similar,
yet simpler, bound that holds with high probability.

Combining the bound on ||€||,, with Lemma 9, we obtain
a bound on the difference in eigenspaces for the random
and expected cases. This result becomes interesting due to
the some keys observations (Rohe et al., 2011). These are
summarized in the next lemma, which uses the following
notations. Let ny,,x = max; n;. Let 7; be the it" row of
ZQ), and «; be the center of the cluster in which ith row of
Z is grouped. The following result characterizes the set

1
M,=<ie{l,....n}:|lag —7ilo > —— ¢ .
n { { ) ) } H % 71”2—%}
Lemma 11. Whenever i ¢ M,, and vertices i,j are in dif-
ferent classes, ||o; — vill2 < || — ;2. Also, if global
optimum is achieved in k-means, then

| M| < 8numax 12 — ZQ)[3 (16)
The above lemma claims that for any vertex not in M,,,
the k-means objective is reduced if the vertex is correctly
clustered. Hence, all misclustered vertices must belong to
M.,,, and a bound on the number of such vertices is given
by (16). We note that, in practice, standard k-means al-
gorithm finds a local minimum. However, there are vari-
ants of the k-means algorithm, for instance (Kumar et al.,
2004), which provide a near-optimal solution with error at
most (1 4+ €) times the optimal error for some € > 0. Using
such a method allows one to relax the condition of global
optimality, while the bound in (16) increases only by a con-
stant factor of (1 + €)2. At this stage, one can combine the
above results to arrive at the claim of Theorem 5.

5. Experimental Results

We now numerically demonstrate the performance of Al-
gorithm 1 in a number of problems.

5.1. Partitioning Uniform Random Hypergraphs

We first compare the performance of Algorithm 1 with
the HOSVD based algorithm in an artificial setting based
on the planted partition model. Here, we randomly gen-
erate uniform hypergraphs from the model described in
Section 4.2. In Figure 1, we consider bi-partitioning of
a m-uniform hypergraph, with inter-class edge probability
q = 0.2, and density gap p1 = p2 = 0.1. So, within class
edges occur with probability (p1 + ¢) = (p2 + q) = 0.3.
We consider 2, 3 and 4-uniform hypergraphs with varying
number of nodes. The results are averaged over 50 inde-
pendent runs. Figure 1 shows that error incurred by Algo-
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rithm 1 is less than HOSVD algorithm. It also shows that
the error reduces for tensors of higher order.

[ e~
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10 20 30 40 50 =]
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Figure 1. Number of nodes misclustered by HOSVD based ap-
proach (dashed lines) and Algorithm 1 (solid lines) as the total
number of nodes increases. The black, red and blue lines corre-
spond to cases with m = 2, 3 and 4, respectively.

We conduct another study on bi-partitioning 3-uniform hy-
pergraphs, where we fix ¢ = 0.2 but the density gaps, p1,
pa, are varied. We let p; = po = p, which varies over
{0.025,0.05,0.075,0.1}. Figure 2 shows the number of
misclustered nodes, averaged over 50 runs, as the hyper-
graph grows. Note that the problem becomes harder as
p reduces, and the performance of HOSVD is highly af-
fected. But, the effect is much less in case of Algorithm 1.

7
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Figure 2. Number of nodes misclustered by HOSVD based ap-
proach (dashed lines) and Algorithm 1 (solid lines) as total num-
ber of nodes increases. The black, red, blue and green lines corre-
spond to density gap p = 0.025, 0.05, 0.075 and 0.1, respectively.

5.2. Comparison with Pairwise Similarity

Before discussing about problems, where higher-order re-
lations are essential, we present a comparative study with
normalized spectral clustering (Ng et al., 2002). In spec-
tral clustering, one often defines the pairwise similarity be-

’ Dataset \ Spectral \ Algorithm 1 ‘
Iris 0.11740.138 | 0.094+0.114
Vertebral Column 0.34540.017 | 0.333+0.002
Wine 0.34240.084 | 0.331+0.040
Tonosphere 0.325£0.000 | 0.316+0.000
Haberman’s Survival | 0.4234+0.082 | 0.3924+0.000
Blood Transfusion 0.325+0.000 | 0.31940.000

Table 1. Performance of spectral clustering and Algorithm 1.

tween two data instances x, y as exp(—/3||x — y||3) with 8
being a tuning parameter. We show that simple 3-way ex-
tension of this gives more robust performance. For any 3
points, x, y, z, we compute the similarity among them as

exp (—fmax {|lz —yll3, lly — 213, |z — «l3}) . (A7)

We run spectral clustering and Algorithm 1, with above 3-
way similarity, on some 2 and 3 class datasets from UCI
repository (Frank & Asuncion, 2010), where each dataset
is normalized. Table 1 reports the mean and standard devia-
tion of the fractional error incurred by both algorithms over
100 runs of k-means. The results show that slight reduction
in error is obtained in case of Algorithm 1. This is expected
since the 3-way similarity in (17) is essentially constructed
from pairwise relations. Moreover, in most cases, there is a
significant reduction in the standard deviation of the errors.
Since randomness is only at the k-means steps, this implies
that 3-way relations provide better embedding of the data
points, making the k-means step more consistent.

The above results indicate that even simple higher-order
extensions can improve the performance of the algorithm.
We show a sample result of how this approach can be ex-
tended to image segmentation. Figure 3 shows an image of
a maze, which is divided into two segments based on only
color and distance information. We can see that better seg-
ments are obtained when Algorithm 1 is run with the 3-way
similarity of (17). We note that above approaches are quite
simple, and do not use any filters or post-processing of the
segments. Better segments can be obtained using sophisti-
cated hypergraph based methods (Kim et al., 2011).

In large datasets, for instance, in image segmentation, it
is expensive to compute the 3-way tensor. So, we use the
following approximation. We observe that in Algorithm 1,
the matrix A can be approximated (upto a scaling factor) as

1 & 1 <
Aj=—7> Wim—=> Wi, 18
VT R Vi~ S

where we randomly select s out of n samples. Alterna-
tively, this implies that one select s data points, and con-
structs s similarity matrices, each computed by fixing one
data. A is approximated as a sum of these matrices.



A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning

Figure 3. (left) Original image; (middle) Segments obtained from
spectral clustering; (right) Segments obtained from Algorithm 1.

5.3. Subspace (Line) Clustering

We now focus on problems, where higher-order clustering
is required as pairwise relations are inappropriate in these
cases. For instance, in subspace clustering, each cluster
is formed by points that closely represent a subspace of
dimension less than the data dimension. In this section, we
conduct experiments on the line clustering problem, where
each cluster is a one-dimensional subspace (line).

We generate three random lines in [—1, 1], and sample 20
points from each line. The points are perturbed by Gaus-
sian noise of standard deviation o = (.02 and 0.05, respec-
tively. For each value of o, 20 random examples are gener-
ated, and clustered using the higher-order approaches dis-
cussed in this paper. Two such instances are shown in Fig-
ure 4. A 3-uniform hypergraph is constructed with affinities
among three points as exp ( — (03 4 03)), where o; is i'"
singular value of the 5 x 3 matrix containing data vector in
each column. Note that (03 + 03) is the least squared error
of fitting a line through these three points.

For clustering, we use non-negative tensor factorization
(SNTF) (Shashua et al., 2006), game theoretic method with
¢1-norm constraint (HGT) (Rota Bulo & Pelillo, 2013),
clique averaging (CA) (Agarwal et al., 2005) and Algo-
rithm 1. All these algorithms solve the trace maximiza-
tion problem (5). In addition, we also run HOSVD based
algorithm (Ghoshdastidar & Dukkipati, 2014) and a hyper-
graph partitioning algorithm popular in VLSI community
(hMETIS) (Karypis & Kumar, 2000). Table 2 shows the
percentage errors incurred by each method. As noted be-
fore, Algorithm 1 is better than HOSVD. The relaxation in
CA is similar to Algorithm 1, and so their performances

0.5 0.4
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.
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.‘ .'. 0.2 L] . e o ®
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Figure 4. (left) 2-dimensional projection of three random lines in
-1, 1]5 perturbed by Gaussian noise with o = 0.02; (right)
three lines perturbed by Gaussian noise with o = 0.05.

are comparable. However, SNTF does not relax the prob-
lem (5), and hence, achieves minimum error. hMETIS is
poor than CA and Algorithm 1. HGT is known to be good
in removing outliers, but also labels true data as outliers.

[ Algorithm | Error (o = 0.02) [ Error (o = 0.05) |

SNTF 2.50 8.58
hMETIS 4.50 11.75
HGT 8.33 22.17
HOSVD 5.17 12.58
CA 3.33 10.92
Algorithm 1 3.25 10.33

Table 2. Mean percentage error for different algorithms.

A real-world application of subspace clustering is encoun-
tered in motion segmentation, where one needs to group
different moving objects in a video. We conducted experi-
ments on the Hopkins 155 database (Tron & Vidal, 2007),
and the results are given in the supplementary material. The
results show that Algorithm 1 performs better than most
approaches, but best results are obtained by sampled vari-
ants of HOSVD (Jain & Govindu, 2013; Ghoshdastidar &
Dukkipati, 2015). Thus, the accuracy of Algorithm 1 may
be improved by using better sampling techniques.

6. Concluding Remarks

This paper provides a unified objective for partitioning uni-
form hypergraphs by maximizing the normalized associa-
tivity of the partition. This general idea appears to be at
the heart of various higher-order clustering algorithms, but
was not previously formalized in the literature. The above
objective can be posed as a tensor trace maximization prob-
lem (Theorem 3) that is quite similar in spirit to the under-
lying problem of spectral clustering. Theorem 5 provides
an almost sure error bound for the proposed Algorithm 1
in a random setting. The result shows higher-order cluster-
ing is consistent, and Algorithm 1 is provably better than
the approach in (Ghoshdastidar & Dukkipati, 2014). Ex-
periments validate this fact, and also provide insights into
different formulations of the trace maximization problem.

In summary, this paper addresses two important aspects
that has been crucial for the popularity of matrix spectral
methods, but has been overlooked in the case of higher-
order methods: (1) a well-defined objective for hypergraph
partitioning, and (2) guarantees on the error incurred by
tensor-based clustering. In the process of addressing above
aspects, we also provide more general results. For instance,
the operator norm of tensors are often used to quantify per-
turbations in recent literature (Anandkumar et al., 2014).
Lemma 10 provides a bound on the tail probability of the
operator norm that is applicable in other problems as well.
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