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Learning with Jensen-Tsallis Kernels
Debarghya Ghoshdastidar, Ajay P. Adsul and Ambedkar Dukkipati

Abstract—Jensen-type (Jensen-Shannon and Jensen-Tsallis)
kernels were first proposed by Martins et al. (2009). These
kernels are based on Jensen-Shannon divergences that originated
in information theory. In this paper, we extend the Jensen-
type kernels on probability measures to define positive definite
kernels on Euclidean space. We show that special cases of
these kernels include dot-product kernels. Since Jensen-type
divergences are multi-distribution divergences, we propose their
multi-point variants, and study spectral clustering and kernel
methods based on these. We also provide experimental studies
on benchmark image database and gene expression database that
show the benefits of the proposed kernels compared to existing
kernels. The experiments on clustering also demonstrate the use
of constructing multi-point similarities.

Index Terms—Kernels, multi-distribution divergence, multi-
point similarity, segmentation.

I. INTRODUCTION

Information theoretic divergences have been often employed
as distance measures in the context of learning [2], [3]. Such
distance measures tend to be a natural choice when the solution
is computed in the probability simplex. To this end, Csiszár’s
f -divergences [4] and the Jensen-type divergences [5], [6], are
quite special. This is primarily because these divergences are
multi-distribution divergences, and hence, provide a measure
of dissimilarity among more than two probability distributions.
However, when one computes distances in the real domain, the
obvious choice turns out to be the Bregman divergences [7]
that generalizes the standard Euclidean distance along with
other distance metrics. To this end, machine learning methods
make little use of the fact that the square-root of the Jensen-
Shannon (JS) divergence is a Hilbertian metric [8].

On the other hand, there is a completely new generalization
of divergences that arose due to the introduction of Tsallis
entropy [9] in physics. This entropy involves a parameter q
and as q → 1 one can retrieve Shannon entropy. Suyari [10]
generalized the Shannon-Khinchin axioms to this case, while
Dukkipati et al. [11] provide a measure theoretic formulation
of continuous form Tsallis entropy functional. Jensen-Shannon
(JS) divergence in its generalized form are called Jensen-
Tsallis divergence [12] and Jensen-Tsallis q-difference [13].
In this paper, we refer to all the above divergences as Jensen-
type divergences.

The recent kernel connections of the square-root of JS-
divergence [8] encouraged the machine learning community
to view Jensen-type divergences as dissimilarity measures, and

This work is supported by Department of Science and Technology
(DST:SB/S3/EECE/093/2014).

Part of this paper has been presented at IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014 [1].

D. Ghoshdastidar, A. P. Adsul and A. Dukkipati are with the Department
of Computer Science & Automation, Indian Institute of Science, Bangalore –
560012, India (e-mail: {debarghya.g,ajay.adsul,ad}@csa.iisc.ernet.in).

subsequently, the works in [14], [15] proposed new kernels on
probability measures based on the JS-divergence. Studies by
Martins et al. [13] extend the idea further to the Tsallis case
to formulate the so-called Jensen-Tsallis (JT) kernel on the
space of finite measures that has proved to be quite useful in
text classification [13] and shape recognition [16].

Though the significance of JT-kernel has been well estab-
lished in [13], [16], one still finds a lack of study in two
directions.
• The JT-kernel retrieves the linear kernel (xT y) in a

special case, and hence, this kernel may have interesting
properties even on the Euclidean space.

• The multi-distribution nature of the Jensen-type diver-
gences provides an opportunity to construct multi-point
variants of JT-kernel.

The notion of multi-point similarities has been often used
in recent times for several vision tasks, such as face cluster-
ing [17], motion segmentation [18], [19] and image registra-
tion [20]. These approaches rely on a certain decomposition
of higher-order tensors [21] by means of tensor flattening.
However, till date, the use of multi-point similarities have
been restricted to specific areas of computer vision as the
multi-way similarities are constructed from certain geometric
models. In this work, we broaden the use of multi-point
similarities by presenting multi-point generalization of some
positive definite kernels. We also present a general technique
for constructing positive definite kernels from these multi-
point similarities. Thus, we are able to extend the use of multi-
point similarities to the widely varying applications addressed
by kernel methods [22], [23] and spectral clustering [24], [25],
that range from image processing [24] to the analysis of gene
expressions [26].

Contributions in this paper

The contributions in this paper are listed below:
1) We extend the JT-kernel on finite measures and its

exponential variant to define similar kernels on the d-
dimensional unit cube [0, 1]d that encompass the linear
(dot-product) kernel. Further, we use the idea of multi-
distribution divergences to define multi-point extensions
of above kernels.

2) We develop a technique for constructing positive definite
kernels from multi-point similarities based on tensor
flattening approach used in tensor singular value decom-
positions [21].

3) As common in tensor based methods, the above kernel
computation has high computational complexity. Hence,
we discuss approximate methods for kernel computation,
and also characterize special cases where the complexity
can be significantly reduced.
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4) We study the performance of the proposed kernels in the
context of classification and clustering.

Organization of this paper

In Section II, we briefly review kernels and in particular,
the class of Jensen-Tsallis kernels. We study the JT-kernel
and its exponential variant on Euclidean space in Section III,
and then propose the multi-point variants of the same in
Section IV. Section V presents a multi-point generalization
of the linear kernel that is derived from the multi-point JT-
kernel. Section VI provides an experimental evaluation of
the proposed kernels with existing kernels. This comparison
is performed using standard UCI datasets (Section VI-A),
gene expression data (Section VI-B) and image segmentation
database (Section VI-C). Finally, we provide concluding re-
marks in Section VII. Proofs of the theoretical results are given
in the Appendix.

II. PRELIMINARIES AND BACKGROUND

A. Kernels and similarities

One of the fundamental problems in machine learning is to
obtain a map between an input space X and an output space Y .
The objective varies depending on the nature of the problem.
In linear methods of learning, the Euclidean distance between
data points is used to distinguish them. In other words, the dot
product between two vectors is used as a measure of similarity
between them. But this approach does not work well when the
data is not linearly separable.

In such cases, a better method, known as kernel trick [23],
is to transform the data into a higher dimensional space H
through a mapping Φ : X 7→ H, such that the data is linearly
separable inH. The similarity between two points in this trans-
formed space is given by a kernel function K : X × X 7→ R
defined as

K(x, y) = Φ(x)TΦ(y) x, y ∈ X . (1)

Berg et al. [27] has shown that for any symmetric function K,
there exists a mapping Φ such that (1) holds if and only if K
is a positive definite kernel.

Kernel functions are also often used in the literature when
achieving linear separability is not the primary concern. This
is mostly found in graph based approaches [24], where one
constructs graphs among the data instances such that the edges
are weighted by kernel functions. Such a construction usually
helps to obtain a low-dimensional embedding of the data
points that is more suitable for data clustering [25]. Recent
works in computer vision have generalized this technique to
the case of hypergraphs, where one constructs edges that join
multiple data instances, and are weighted by some multi-way
similarity relation. The commonly used similarity relations are
based on some geometric structure related to the data points
that cannot be captured by pairwise similarities [18], [17].

In this paper, we propose multi-way similarities that have
information theoretic connections.

B. Jensen-type Divergences and Kernels

We briefly review the JT-kernel on the d-dimensional prob-
ability simplex

∆d−1 =

(p(1), . . . , p(d)) : p(j) ∈ [0, 1] ∀j,
d∑
j=1

p(j) = 1

 .

The Jensen-Tsallis q-difference among n p.m.f.s pi =
(pi(1), . . . , pi(d)) ∈ ∆d−1, i = 1, . . . , n is defined as [13]

Tq (p1, . . . , pn) = Hq (p̄)− 1

nq

n∑
i=1

Hq(pi), (2)

where p̄ = (p̄(1), . . . , p̄(d)) is the p.m.f. defined as p̄(i) =

1
n

n∑
j=1

p
(i)
j , i = 1, . . . , d, and Hq is the Tsallis entropy [9]

given by

Hq(p) =
1

(q − 1)

1−
d∑
j=1

(
p(j)
)q ,

where q ∈ R, q 6= 1 is a parameter related to the nature of
the physical system. As q → 1, the classical case of Shannon
entropy [28]

H1(p) = −
d∑
j=1

p(i) ln
(
p(j)
)

is retrieved, and the q-difference (2) in this case corresponds
to the JS-divergence.

Based on (2), Martins et al. [13] defined a kernel k̃q :
∆d−1 ×∆d−1 7→ [0,∞) as

k̃q (p1, p2) = 2q (lnq(2)− Tq (p1, p2))

=
1

(q − 1)

d∑
j=1

((
p
(j)
1 + p

(j)
2

)q
−
(
p
(j)
1

)q
−
(
p
(j)
2

)q)
(3)

for q 6= 1, which is the Jensen-Tsallis (JT) kernel between
the two probability measures p1 and p2. The above class of
kernels k̃q is positive definite on ∆d−1 for 0 6 q 6 2 [13].
For q = 2, we have a dot-product kernel on ∆d−1

k̃2 (p1, p2) = 2

d∑
j=1

p
(j)
1 p

(j)
2 = 2

(
p
(j)
1

)T (
p
(j)
2

)
, (4)

and in the limiting case of q → 1, we have the JS-kernel

k̃1 (p1, p2) =

d∑
j=1

((
p
(j)
1 + p

(j)
2

)
ln
(
p
(j)
1 + p

(j)
2

)
− p1(j) ln

(
p
(j)
1

)
− p2(j) ln

(
p
(j)
2

))
. (5)

Martins et al. [13] also indicated a similar possible general-
ization based on exponential JS-kernel [14]. This nonextensive
kernel called exponential JT-(expJT) kernel is defined as

k̃(e)q (p1, p2) = exp (−tTq(p1, p2))

= exp
(

2qt
(
k̃q(p1, p2)− lnq(2)

))
(6)

for t > 0, q 6= 1, and it retrieves the exponential JS-kernel as
q → 1.
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Fig. 1. Variation of the JT-kernel kq(x, x0) and the expJT-kernel k(e)q (x, x0) defined over [0, 1]2. In first three columns, magnitude of the kernels are displayed
as function of x, when the second argument is fixed at x0 = (0.5, 0.5). The bottom left point of each figure denotes (0, 0) and top right corresponds to
(1, 1). A brighter shade indicates a higher similarity of the point with x0 as measured by the corresponding kernel. The last column corresponds to the case
when the first argument x varies along a line from (0, 0) to (1, 1). The horizontal axis denotes the abscissa of the first argument, and the vertical axis shows
the value of the kernel function.

III. JENSEN KERNELS ON EUCLIDEAN SPACE

We first extend the above kernels to the Euclidean space.
More specifically, we present extensions to the set [0, 1]d. This
is not restrictive since one usually normalizes features of data,
and such a set suffices for most datasets. We proceed along
the lines of the defined probability kernel (3), and define an
extension of JT-kernel kq : [0, 1]d × [0, 1]d 7→ [0,∞) of the
form

kq(x, y) =

1
(q−1)

d∑
j=1

((
x(j) + y(j)

)q − (x(j))q − (y(j))q) ,
for q 6= 1,

d∑
j=1

( (
x(j) + y(j)

)
ln
(
x(j) + y(j)

)
−x(j) ln

(
x(j)

)
− y(j) ln

(
y(j)
) )
, for q = 1,

(7)

where x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)) ∈ [0, 1]d. The
special case of linear kernel on [0, 1]d follows similar to (4).
The same approach can be used to extend the expJT-kernel to
define k(e)q : [0, 1]d × [0, 1]d 7→ [0,∞) as

k(e)q (x, y) = exp
(
2qt
(
kq(x, y)− lnq(2)

))
for t > 0.

For simplified representation, we propose to define the expo-
nential JT-kernel as

k(e)q (x, y) = exp (tkq(x, y))) for t > 0. (8)

We note here that though one can define various measures
to capture similarity among data instances, approaches such as
kernel machines or kernel k-means can be used only when the

similarity or kernel defines an inner product in a transformed
space, as given in (1). It is well-known that this is ensured
when the kernel function is positive definite [27]. We show
that the proposed kernels in (7) and (8) are indeed positive
definite.

Proposition 1. JT-kernel kq and its exponential variant k(e)q
are positive definite for all q ∈ [0, 2] and t > 0.

The above result is proved in the Appendix. We do not
delve into the reproducing kernel Hilbert space (RKHS) for
these kernels, i.e., the space where the kernels define an inner
product. However, it intuitively seems that the RKHS of this
class of kernels changes significantly with q. For instance, it
is obvious that the RKHS of JT-kernel is same as the input
space for q = 2, whereas one can argue that for q → 1, the
RKHS is an infinite dimensional space. We rather focus on
the practical implication of the variation in RKHS.

Figure 1 illustrates the behavior of the proposed kernels. To
be precise, we consider the kernels defined over [0, 1]2. The
first three columns in Figure 1 show the variation of kq(x, x0)

and k
(e)
q (x, x0) when x0 is fixed at x0 = (0.5, 0.5) and x

varies over the entire domain. Note that the JT-kernel k2 is
the standard linear kernel, and clearly shows a linear variation
in the similarity as x changes. However, the other cases exhibit
variations of different nature. In fact, for smaller values of q,
both kernels tend towards a constant function over the entire
domain. To further illustrate this effect, we have plotted the
variation of the kernel values when x is varied such that both
its coordinates are equal. This is plotted in the last column of
Figure 1, which shows how the JT-kernel deviates from the
linear kernel. Similarly, the variation of the expJT-kernel also
shows the effect of q on the non-linear nature of the kernel.
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We observe that in this case, q = 1 exhibits an almost linear
nature, while the rate of exponential increase is higher for
larger values of q. This suggests that the exponential variant
has a more flexible structure, and can be expected to provide
better performance.

IV. MULTI-POINT KERNELS

A. Multi-point Jensen-type kernels

We present multi-point extensions of the JT-kernel (7)
and the expJT kernel (8). The idea is based on the multi-
distribution definition of Jensen-Tsallis q-difference (2), where
n need not be equal to 2. We extend the JT-kernel for arbitrary
number of points in X = [0, 1]d to obtain a class of multi-
point kernels {Kq,n}n∈N with Kq,n : Xn 7→ [0,∞) defined
as

Kq,n (x1, . . . , xn)

=
1

(q − 1)

d∑
j=1

[( n∑
i=1

x
(j)
i

)q
−

n∑
i=1

(
x
(j)
i

)q ]
(9)

for q 6= 1. In the case of q → 1, we define the kernel as

K1,n (x1, . . . , xn)

=

d∑
j=1

[( n∑
i=1

x
(j)
i

)
ln

( n∑
i=1

x
(j)
i

)
−

n∑
i=1

x
(j)
i lnx

(j)
i

]
. (10)

The above definition is consistent with multi-distribution ex-
tensions of the JT q-difference. Since it naturally extends a
positive definite kernel, we refer to it as a kernel. In the
sequel, we discuss a method for constructing a positive definite
kernel from above multi-point kernel (see Proposition 2).
A similar multi-point extension holds for the expJT-kernel
K

(e)
q,n : Xn 7→ [0,∞) defined as

K(e)
q,n(x1, ..., xn) = exp (tKq,n(x1, ..., xn)) (11)

for t > 0. The above extension of two-point kernels captures
information about similarity among multiple points, and is
capable of providing a more global measure of similarity.
Further, the proposed multi-point similarity is not dependent
on any geometric model, unlike the ones in [18], [20], and
hence, it is applicable in a more general framework.

The standard tools in machine learning often depend on the
use of a symmetric similarity or kernel matrix. On the other
hand, the above multi-point kernels lead to symmetric higher
order tensors [21]. In this section, we comment on how one
can interface these kernels with standard learning algorithms.

We begin our discussion with spectral clustering [25], [24].
To this end, in order to incorporate multi-point kernels into
spectral clustering, we can rely on the higher order singular
value decomposition of tensors [21]. According to this decom-
position, given a symmetric tensor, one can derive an orthonor-
mal matrix U that generalizes the notion of eigenvector matrix.
Furthermore, U can be obtained from the eigen decomposition
of a certain matrix V computed from the entries of the tensor.
Hence, we propose to use V in our kernel computation.

3-point JT 3-point expJT
(q = 1.0) (q = t = 1.0)
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Fig. 2. Nature of the 3-point JT and expJT-kernels defined over [0, 1]2. The
setting is same as that of Figure 1. The top row shows the variation of the
3-point kernels as a function of the first argument. The bottom row compares
the nature of these kernels with corresponding 2-point kernels, when the first
argument varies along a line from (0, 0) to (1, 1). The maximum value of
the kernel functions have been normalized to unit value for better illustration.

Formally, given N data points x1, . . . , xN ∈ [0, 1]d and some
n-point kernel K, the matrix V ∈ RN×N is given by

Vij =

N∑
i2,...,in=1

K(xi, xi2 , ..., xin)K(xj , xi2 , ..., xin) (12)

for i, j = 1, . . . , N . One may also view V as a pairwise
similarity matrix, where Vij denotes certain similarity between
data xi and xj . Following the methods in [18], one can directly
use the matrix V as the affinity matrix in normalized spectral
clustering [25]. Theoretical analysis for this technique can be
found in [29].

While spectral clustering allows one to use any similarity
measure, methods such as kernel k-means [22] or kernel
support vector machines (SVM) [30] require the function to
be such that the constructed similarity matrix is positive semi-
definite. We show that the construction shown in (12) defines
such a matrix.

Proposition 2. Any multi-point kernel along with the compu-
tation in (12) defines a positive definite pairwise kernel.

In Figure 2, we illustrate the nature of the 3-point Jensen-
type kernels by conducting a similar exercise as in the previous
section. The result shows that the structure of the kernels
does not change drastically when we use multi-point variants.
However, one can still expect a more flexible nature for the
expJT kernel, as shown in the right column of Figure 2.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

B. Approximate multi-point kernels

It is easy to observe that if one uses (12), then the com-
putation of the kernel matrix requires a time complexity of
O(Nn+1). For large datasets, such a time complexity for
kernel computation turns out to be quite inefficient, thereby
limiting the applicability of multi-point kernels only to small
data. In this section, we present an approximate method for
computing the kernel matrix in (12). This approach is based on
the column sampling technique for tensor flattening suggested
in [18], [19]. The method is listed below.

1) For some given C, randomly select C sets of data
instances, each of size (n− 1).

2) Let {x1,l, ..., x(n−1),l} denote the lth set of instances for
l = 1, . . . , C. Compute each entry of kernel matrix V as

Vij =

C∑
l=1

K(xi, x1,l, ..., x(n−1),l)K(xj , xi,l, ..., x(n−1),l).

(13)

Based on the proof of Proposition 2 and observing the structure
of (13), one directly arrives at the following conclusion.

Corollary 3. For a fixed C, any multi-point kernel along with
the computation in (13) defines a random positive definite
pairwise kernel matrix, that can be computed in O(N2) time.

This complexity is same as that of computing standard
2-point kernels. In Section VI, we present the empirical
performance of above approximation. To this end, we also note
that in the case of large datasets, such as the ones encountered
in image segmentation, one can easily combine the approxi-
mation of (13) with divide and conquer approaches [31] or
Nyström approximation [32] to achieve a further reduction in
computational complexity.

V. THE MULTI-POINT LINEAR KERNEL

Here, we demonstrate a special case of the multi-point JT
kernel, which is a natural generalization of the linear kernel.
The interesting feature of this kernel is that in this case,
one can compute V , defined in (12), exactly in cubic time
complexity irrespective of the value of n. Observe that in the
linear case, i.e., for q = 2, the multi-point JT-kernel retrieves
a multi-point version of the linear kernel as

K2,n(x1, . . . , xn) = 2

n∑
i=1

n∑
j=i+1

xTi xj , (14)

Henceforth, we call this the n-point linear kernel. The structure
of this kernel helps to compute the matrix V explicitly in cubic
time as shown below.

Proposition 4. Let X = (x1, x2, . . . , xN ) ∈ [0, 1]d×N

represent the given data matrix and x̄ :=
∑N
i=1 xi be the

component-wise addition of the vectors. Then, the matrix V

computed in (12) using the n-point linear kernel K2,n (14)
can be written as

V = 4
(
n−1
1

)
Nn−2 (XTX

)2
+ 8
(
n−1
2

)
Nn−3 (XT x̄x̄TX

)
+ 8
(
n−1
2

)
Nn−3 (XTXXT x̄11×N + 1N×1x̄

TXXTX
)

+ 12
(
n−1
3

)
Nn−4‖x̄‖22

(
XT x̄11×N + 1N×1x̄

TX
)

+ 4
(
n−1
2

)
Nn−5

(
N2
∥∥XTX

∥∥2
F

+ 2(n− 3)N
∥∥XT x̄

∥∥2
2

+ 2
(
n−3
2

)
‖x̄‖42

)
1N×N (15)

where 1r×s denotes a r × s matrix of all 1’s, ‖.‖F is the
Frobenius norm.

The key fact in above result is that all computations in (15)
are at most O(N3), which implies that V is computable
exactly in cubic time. Further, though the above result holds
for any n ∈ N, few simplifications are possible for n 6 4.
For instance, if n = 2, all terms vanish except first, giving
V = 4(XTX)2, which has the same eigen structure as XTX .
Hence, spectral clustering with V is equivalent to the case of
constructing affinity using the Gram matrix.

One can also have a more general case of Proposition 4,
which also leads to cubic time complexity. This is given in the
following result, whose proof is similar to the above proof.

Proposition 5. Let k : X × X → R be a symmetric kernel
map, which defines a symmetric kernel matrix K ∈ RN×N on
N given data points. Let K : Xn → R be a n-point extension
of k defined as

K(x1, . . . , xn) =

n∑
i=1

n∑
j=i+1

k(xi, xj). (16)

From the above multi-point kernel, the matrix V computed
from (12) can be expressed as

V =
(
n−1
1

)
Nn−2K2 + 2

(
n−1
2

)
Nn−3K1N×NK

+ 2
(
n−1
2

)
Nn−3 (K21N×N + 1N×NK2

)
+ 3
(
n−1
3

)
Nn−411×NK1N×1 (K1N×N + 1N×NK)

+
(
n−1
2

)
Nn−5

(
N2 ‖K‖2F + 2(n− 3)N11×NK21N×1

+ 2
(
n−3
2

)
11×NK1N×NK1N×1

)
1N×N .

Following the discussion in Section IV-B, we can also
approximate the computation of multi-point linear kernel in
O(N2) time. In the following result, we state this approxima-
tion in the general setting of Proposition 5.

Corollary 6. If the approximate method of Section IV-B is
used in the case of a n-point extension of a kernel, as defined
in (16), then the kernel matrix V ∈ RN×N is of the form

V = (S + 1N×1s
T )(S + 1N×1s

T )T ,

where S ∈ RN×C such that Spl =
n−1∑
j=1

k(xp, xj,l), and s ∈

RC such that s(l) =
∑
p<j

k(xip,l, xij ,l).

The above result makes it clear that the computation of V
can in done in O(N2) time.
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VI. EXPERIMENTAL RESULTS

In this section, we compare the proposed kernels with
some popular kernels used in practice. Before presenting the
numerical results, we list the computational complexity of
computing the proposed kernels which we use for experiments.
This is presented in Table I, where N denotes the number of
data instances. The table also lists the abbreviations that will
be later used to refer to different kernels. The 2-point kernels
have a time complexity of O(N2), which is standard in the
literature. In case of large datasets, one can further reduce this
complexity by considering various sampling strategies [32].
Table I shows that sampled variants of the multi-point kernels
can be computed as efficiently as standard pairwise kernels.

TABLE I
COMPLEXITY OF COMPUTING DIFFERENT KERNELS.

Kernel Abbreviation Complexity

2-point Jensen-Tsallis JT2 O(N2)
3-point Jensen-Tsallis JT3 O(N4)

Sampled variant of JT3 JT3+ O(N2)
2-point exponential Jensen-Tsallis expJT2 O(N2)
3-point exponential Jensen-Tsallis expJT3 O(N4)

Sampled variant of expJT3 expJT3+ O(N2)
n-point Linear nLin O(N3)

Sampled variant of nLin nLin+ O(N2)

A. Experiments on UCI datasets

We first study the performance of the proposed kernels in
clustering and classification, in particular, when they are used
to define similarities in algorithms such as spectral clustering,
kernel k-means or kernel support vector machines (SVM). We
conduct our experiments on some benchmark datasets from
UCI repository [33]1. The datasets and their characteristics are
listed in Table II. These datasets have been previously used
for comparative study of some clustering algorithms in [34],
and kernel SVMs in [35].

TABLE II
LIST OF UCI DATA SETS CONSIDERED FOR COMPARATIVE STUDY. THE

TOP 8 DATASETS HAVE BEEN USED IN CLUSTERING EXPERIMENTS, AND
THE BOTTOM 5 FOR CLASSIFICATION.

Data set # instances # attributes # classes
Balance 625 4 3
Breast 569 30 2

Diabetes 768 8 2
German 1000 24 2

Ionosphere 351 34 2
Heart 270 13 2
Iris 150 4 2

Wine 178 13 3
Glass 214 10 6
Sonar 208 60 2

We compare the performance of the Jensen-Tsallis kernels
with some existing kernels such as Gaussian and polynomial
kernels. In case of clustering, we also compare the results with
the performance of some other clustering algorithms such as
standard k-means algorithm (KM), spectral clustering with k

1Available at: http://archive.ics.uci.edu/ml/datasets/

nearest neighbor based adjacency (SCNN), mean shift algo-
rithm (MS), variants of maximum margin clustering (MMC),
and minimal entropy encoding (MEE).

The performance measure considered is the Adjusted Rand
index of the obtained clusters, defined as [34]

ARI = 2(N00N11−N01N10)
(N00+N01)(N01+N11)+(N00+N10)(N10+N11)

where N11 denotes the number of pairs which are in the
same clusters according to both true labels as well as obtained
clusters, and N00 is the number of pairs which have different
labels and are also in different clusters. On the other hand,
N01 and N10 are the number of pairs for which there is
disagreement in the true and obtained clusters, where the
former denotes the case of clustering pairs with different
labels into the same cluster. ARI , also sometimes termed
as corrected Rand index [26], is bounded above by 1, with
larger value of ARI indicating better clustering. The results for
KM, SCNN, MS, MMC and MEE have been taken from [34].
For the different variants of MMC, we mention only the best
reported result for each dataset.

In the experiments2, we tune the parameters of the pro-
posed and existing kernels, and report the best result in each
case. This way of presenting the results have been adapted
from [34]. For nLin, we vary n ∈ {2, 3, . . . , 10}, while for
other Jensen-type kernels q is tuned as q = 0.01 or in the
range [0.25, 2] in steps of 0.25. Both t (for expJT) and σ2

(for Gaussian) is varied from 0.01 to 100 in multiplicative
step with a factor of 10, and for Polynomial kernel, we vary
the degrees as 1, 2, . . . , 10. Moreover, for sampled variants of
multi-point kernels, we sample only 50 columns to compute
the approximate kernels. To account for the randomness in
k-means initialization, as well as sampling, we average the
results over 20 independent runs, as considered in [34].

Table III shows that Jensen-type kernels, particularly the
exponential variety, perform quite well compared to other
methods. Relative merits of the 2-point and 3-point kernels
depend mostly on the data under study. We also observe that,
except for the balance dataset, approximate kernel computa-
tion performs give performance quite close to that given using
explicit kernel computation. In few cases, the nLin kernel is
also observed to work with reasonable accuracy, particularly
in comparison with KM, which is based on the linear kernel.
We also study the variation in performance of the Jensen-
type kernels as q varies. Figure 3 shows the variation of ARI
obtained when spectral clustering is performed with JT2 and
JT3 kernels with varying q. It is observed that the nature of
variation in ARI is mostly dependent on the data, but trends
for 2-point and 3-point kernels are mostly similar.

Next, we turn to kernel SVMs, and compare the perfor-
mance of the Jensen-type kernels with the kernels studied
in [35]. The results are presented in Table IV, where we
report the accuracy of kernel SVMs with various kernels.
The experiments have been conducted along the lines of [35],
where each data is randomly partitioned into two sets of equal
size for training and testing. The kernel parameters are chosen

2The MATLAB codes for our implementations are available at http://
sml.csa.iisc.ernet.in/SML/code/TNNLS15_code.zip
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TABLE III
ARI OBTAINED FROM DIFFERENT METHODS FOR CLUSTERING UCI DATASETS. FOR EACH DATASET, THE BEST RESULT IS IN BOLD FACE, AND THE BEST

RESULTS OBTAINED FROM KERNEL k-MEANS OR SPECTRAL CLUSTERING ARE UNDERLINED.

Method Balance Breast Diabetes German Heart Ionosphere Iris Wine
KM 0.14 0.73 0.07 0.03 0.29 0.18 0.64 0.36

SCNN 0.09 0.80 0.00 0.03 0.33 0.17 0.79 0.38
MS 0.16 0.74 0.02 0.01 0.34 0.00 0.71 0.39

MMC 0.18 0.74 0.10 0.02 0.31 0.30 0.73 0.37
MEE 0.20 0.74 0.08 0.06 0.31 0.58 0.90 0.42

K
er

ne
l
k

-m
ea

ns

Gaussian 0.13 0.73 0.10 0.02 0.29 0.18 0.74 0.89
Polynomial 0.14 0.73 0.18 0.02 0.38 0.17 0.71 0.84

JT2 0.16 0.76 0.10 0.02 0.30 0.29 0.70 0.87
JT3 0.02 0.69 0.15 0.06 0.37 0.27 0.62 0.40

JT3+ 0.01 0.69 0.15 0.05 0.36 0.27 0.62 0.40
expJT2 0.16 0.76 0.17 0.03 0.41 0.37 0.73 0.88
expJT3 0.02 0.69 0.18 0.06 0.43 0.32 0.64 0.40

expJT3+ 0.02 0.69 0.18 0.05 0.41 0.32 0.64 0.40
nLin 0.01 0.66 0.15 0.06 0.33 0.15 0.63 0.30

nLin+ 0.01 0.66 0.15 0.06 0.32 0.14 0.62 0.31

Sp
ec

tr
al

cl
us

te
ri

ng

Gaussian 0.26 0.68 0.10 0.03 0.13 0.17 0.74 0.87
Polynomial 0.26 0.57 0.09 0.03 0.21 0.06 0.58 0.80

JT2 0.43 0.57 0.05 0.03 0.30 0.14 0.65 0.81
JT3 0.54 0.52 0.05 0.03 0.26 0.16 0.61 0.87

JT3+ 0.26 0.55 0.05 0.02 0.23 0.16 0.62 0.82
expJT2 0.49 0.79 0.10 0.04 0.25 0.19 0.60 0.95
expJT3 0.47 0.68 0.10 0.05 0.27 0.17 0.62 0.93

expJT3+ 0.28 0.67 0.09 0.03 0.26 0.17 0.63 0.92
nLin 0.43 0.67 0.09 0.06 0.20 0.15 0.55 0.88

nLin+ 0.22 0.62 0.08 0.02 0.18 0.12 0.55 0.83

Diabetes Ionosphere
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Fig. 3. Variation in performance of spectral clustering with 2-point and 3-
point JT-kernels as parameter (q) varies. Each group of bars denote the ARI
values for 9 different q values in a particular case, where the bars are arranged
from left to right in increasing order of q values.

from the previously mentioned ranges using a two-fold cross
validation in the training set. The chosen kernels are then used
to evaluate accuracy on the test set. We have used standard
implementations in LIBSVM [36]3 for our experiments.

The kernels considered for comparison include Gaussian
and diffusion kernels, along with some geometry-aware ker-
nels such as geometry-aware Gaussian (GA-Gaussian), geome-
try aware ideal kernel (GA-Ideal), order spectral kernel (OSK),
simple non-parametric kernel (SimpleNPK) and geometry-
aware metric learning (GML). The results for these kernels
have been reported in [35]. In Table IV, we conduct 10
independent runs of the experiment, and report the mean and
standard deviation of the percentage accuracy. The results
show that while Jensen-type kernels give best performance

3Software available at:
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

in some cases, it does not work well in others. For instance,
both in clustering and classification of iris dataset, this class
of kernels is not able to extract the structure of clusters. In
case of SVM, we also observe that multi-point kernels usually
perform worse than the two-point kernels.

B. Clustering cancer gene expressions

We also conduct experiments on clustering gene expres-
sions. The cancer gene expression database [26]4 contains
data sets related to two types of gene expressions: cDNA type
and Affymetrix data sets. Some statistics of the data sets are
provided in Table V. Further details are available in [26].

TABLE V
STATISTICS OF CANCER GENE EXPRESSION DATASETS.

Data # datasets # instances # attributes # classes
type min max min max min max

cDNA 14 37 179 86 4554 2 5
Affy. 21 22 248 183 2527 2 14

The performance of a number of clustering algorithms and
proximity measures have been compared in [26]. The study
concluded that best performance is usually obtained from k-
means or mixture models, and spectral clustering works well in
certain cases. We restrict our comparisons only to k-means and
spectral clustering, but with different proximity measures or
kernels. In [26], both algorithms were performed with proxim-
ity measures such as Pearson’s correlation, cosine, Spearman
correlation coefficient and Euclidean distance, where different
data normalizations have been considered in the last case.

4Available at: http://bioinformatics.rutgers.edu/
Static/Supplements/CompCancer/index.htm
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TABLE IV
MEAN AND STANDARD DEVIATION OF ACCURACY FOR KERNEL SVM WITH DIFFERENT KERNELS. THE HIGHEST AVERAGE ACCURACY FOR EACH

DATASET IS IN BOLD.

Kernels Glass Heart Iris Sonar Wine
Gaussian 39.0±10.7 67.7±4.2 93.6±3.3 74.1±3.9 78.5±4.5
Diffusion 56.7±8.3 65.1±3.9 95.1±4.0 75.7±4.4 67.5±4.0

OSK 57.0±6.6 66.0±2.9 91.2±4.8 79.8±3.4 68.1±5.3
SimpleNPK 56.4±3.7 63.2±3.3 94.5±4.3 75.4±5.5 70.7±4.5

GML 51.5±5.8 62.1±2.9 94.9±3.8 77.1±3.6 65.2±3.1
GA-Gaussian 55.4±8.4 73.0±3.3 93.6±4.3 77.0±3.2 97.4±1.1

GA-Ideal 58.7±3.1 83.0±2.7 95.5±4.2 78.5±3.3 97.0±1.4
JT2 76.6±3.7 82.1±2.1 87.6±11.4 66.3±9.3 97.4±1.1
JT3 34.0±9.3 79.5±2.0 66.8±17.4 51.4±6.6 35.5±4.9

JT3+ 33.7±8.5 79.5±2.2 65.9±17.8 51.4±6.6 35.5±4.9
expJT2 60.3±8.7 83.0±1.6 85.1±5.1 61.2±8.4 97.4±2.4
expJT3 52.5±8.6 80.1±2.3 76.0±7.5 56.0±6.4 66.0±3.4

expJT3+ 50.6±10.7 80.0±2.3 75.7±7.1 55.8±6.3 65.7±3.4
nLin 34.7±11.3 79.7±2.9 84.4±2.8 53.6±6.0 57.5±8.7

nLin+ 34.3±10.2 79.4±2.4 84.1±2.9 53.5±6.0 57.8±9.5

Along with the reported results for above proximity measures,
we also present the performance of the algorithms when
we use the kernels listed in Table I. For Euclidean distance
measure, we report only the result when data is normalized to
the unit cube (termed as Z2 in [26]), same as that considered
for the other kernels. To account for the random initializations
in k-means, [26] considered best result over 30 independent
runs. We follow the same approach to obtain a fair comparison.
However, to account for randomness in sampling in case of
multi-point kernels, we still average over the results over 30
runs in this case.

Table VI presents a comparison of the different algorithms
in terms of the corrected or adjusted Rand index (ARI) as
considered in [26]. The ARI is averaged over all datasets over
each type, and the best result for each type and each algorithm
is underlined. The results show that in most cases, the expJT
kernels surpass other similarity measures by some margin.
While JT2 and expJT2 give good results in case of kernel k-
means, their 3-point counterparts dominate in case of spectral
clustering. However, unlike previous clustering experiments,
here we find that for JT3 and expJT3, approximations lead to
significant reduction in performance.

C. Image segmentation
We also studied the performance of the proposed kernels

in the context of image segmentation, where the similarities
are constructed based on the pixel intensities and positions,
and spectral clustering [24] is used to segment the image.
The study is performed on the benchmark single object image
segmentation database [37]5.

To improve the space and time complexity of segmentation,
we follow the approach in [31] and divide each image into
blocks of size 16×16 or 32×32. Segmentation of each block
is performed based on the RGB values of the pixels. For 2-
point kernels, such as Gaussian [24], JT-kernel (7) and expJT-
kernel (8), the intensity based affinity matrix V is directly
computed from the kernel functions, whereas for the multi-
point kernels as in (9) and (11), we use the computation in (12)

5Available at: http://www.wisdom.weizmann.ac.il/
∼vision/Seg_Evaluation_DB/1obj/index.html

TABLE VI
ARI OBTAINED FROM k-MEANS AND SPECTRAL CLUSTERING FOR

CLUSTERING GENE EXPRESSION DATASETS. THE RESULTS ARE AVERAGED
OVER ALL DATASETS OF EACH TYPE. THE BEST RESULTS OBTAINED FROM
KERNEL K-MEANS OR SPECTRAL CLUSTERING FOR EACH DATA TYPE ARE

UNDERLINED.

Method cDNA Affymetrix

k
-m

ea
ns

Pearson 0.51 0.44
Cosine 0.46 0.44

Spearman – –
Euclidean 0.38 0.39
Gaussian 0.34 0.42

Polynomial 0.44 0.49
JT2 0.45 0.56
JT3 0.14 0.33

JT3+ 0.09 0.21
expJT2 0.49 0.62
expJT3 0.17 0.37

expJT3+ 0.11 0.22
nLin 0.14 0.33

nLin+ 0.14 0.31

Sp
ec

tr
al

cl
us

te
ri

ng

Pearson 0.33 0.39
Cosine 0.32 0.42

Spearman 0.27 0.40
Euclidean 0.10 0.11
Gaussian 0.27 0.27

Polynomial 0.38 0.47
JT2 0.36 0.45
JT3 0.40 0.47

JT3+ 0.24 0.29
expJT2 0.44 0.54
expJT3 0.47 0.57

expJT3+ 0.28 0.35
nLin 0.39 0.44

nLin+ 0.34 0.39

to obtain the intensity based affinity matrix V . As shown
in (15), this computation can be simplified for n-point linear
kernel. We do not report the result for approximate multi-
point kernels, which were observed to perform worse than
their exact counterparts. Further to incorporate the proximity
information for pixels, we scaled each entry in V based on
the distance among pixels as

V ij = V
(1−λ)
ij exp

(
−λ‖ci − cj‖22

σ2

)
, (17)

where ci and cj denote the coordinates of ith and jth pixels,
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Fig. 4. Segmentation of images using spectral clustering with Gaussian and Jensen-type kernels.

and λ = 0.08 and σ = 2 are two constants. The pixels in
each block is segmented into 8 initial segments. In the second
stage, all the segments are further grouped into the desired
number of output segments. This is again achieved by spectral
clustering, where only adjacent segments are provided with a
non-zero affinity computed as the Bhattacharya coefficient of
their histogram of pixel intensities. The number of bins for the
histogram are varied over the range 2b for b = 1, . . . , 5, and
the Bhattacharya coefficient is raised by a factor that varies as
4, 8, 16 or 32.

TABLE VII
PERFORMANCE OF DIFFERENT KERNELS ON SINGLE OBJECT IMAGE

SEGMENTATION DATABASE.

Kernel F-score
16× 16 blocks 32× 32 blocks

Gaussian 0.76 0.78
JT2 0.78 0.80
JT3 0.71 –

expJT2 0.80 0.80
expJT3 0.74 –

n-point linear 0.74 0.75

Table VII shows the F-score for each kernel, averaged over
all the images, when we use blocks of size 16×16 or 32×32.
The F-score computation is performed using the code provided
along with the database [37], and the parameters are tuned to
improve the performance. We note that since the complexity
for 3-point kernels is high, segmentation was not performed
with them for 32×32 block size. The results show that 2-point
expJT gives the best performance, which is also achieved by
2-point JT-kernel for 32 × 32 block size. Table VII clearly
shows that the 2-point JT and expJT-kernels provide better

performance than other kernels. The segmentation of some
sample images are also provided in Figure 4.

VII. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we studied the Jensen-Tsallis kernels on the
Euclidean space that generalize the linear kernel. We proved
that these kernels are positive semi-definite for q ∈ [0, 2],
and show that the nature of these kernels differ from standard
distance based kernels. We also mentioned the possibility of
defining multi-point extensions of these kernels. We showed
a technique of generating positive-definite kernel from such
multi-point similarities by the method of tensor flattening [21].
In the broad sense, the proposed kernels generalize the linear
kernel, and hence, are expected to provide more flexibility in
applications where the linear kernel is usually preferred over
Gaussian or other related kernels.

Our elaborate empirical study on UCI datasets, gene expres-
sion dataset and image segmentation also provide some insight
into the advantages and applicability of the proposed kernels.
We observed that though considering multi-point extensions
may be useful in the case of clustering, it does not provide
further improvement in kernel SVMs. To this end, we also
presented approximate computations of multi-point kernels in
order to reduce the time complexity.

An interesting discussion related to multi-point linear ker-
nels has been presented. Though the complexity of explicitly
computing multi-point kernels is usually high, one can achieve
cubic complexity in this case. The result can be stated in
more general form for any positive definite pairwise kernel
(Proposition 5). Hence, a study of multi-point extensions of
this form may provide an interesting direction of research. To
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motivate such study, we illustrate the nature of 4 and 6-point
extensions of the Gaussian kernel in Figure 5.
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Fig. 5. Variation of the linear multi-point extension of the RBF kernel with
σ = 0.1. The setting is same as Figure 1. The kernel function values have
been normalized.

APPENDIX

Proof of Proposition 1

We mention few results on kernels [27], which will be used
to arrive at the claim. For any space X , the following results
hold. We use the acronyms p.d. for positive definite kernel,
and n.d. for negative definite kernel.
(R1) ϕ : X × X 7→ R is n.d. if and only if exp(−tϕ) is p.d.

for all t > 0.
(R2) If ϕ : X×X 7→ R is n.d. and x0 ∈ X , then ψ : X×X 7→

R defined as ψ(x, y) = ϕ(x, x0) +ϕ(y, x0)−ϕ(x, y)−
ϕ(x0, x0) is a p.d. kernel.

(R3) ϕ : X × X 7→ R is n.d. and ϕ(x, x) > 0 for all x ∈ X
implies ϕα is n.d. for α ∈ [0, 1].

(R4) If f : X 7→ R is such that f(x) > 0 for all x ∈ X , then
for any α ∈ [1, 2], the map ϕα : X ×X 7→ R defined as
ϕα(x, y) = −

(
f(x) + f(y)

)α
is a n.d. kernel.

(R5) ψ1, ψ2 : X ×X 7→ R are p.d. kernels, then so are (ψ1 +
ψ2) and cψ1 for any c > 0.

(R6) {ϕn : X × X 7→ R}n∈N be a sequence of n.d. kernels,
then lim

n→∞
ϕn is a n.d. kernel.

We first prove positive definiteness of kq . In our case, the
domain space is X = [0, 1]d. We prove the claim separately
for three cases: q ∈ (1, 2], q ∈ [0, 1) and q = 1.

Case 1 - q ∈ (1, 2] : Consider the functions fi : [0, 1]d 7→
R, i = 1, . . . , d as fi(x) = x(i) for x = (x1, . . . , xd) ∈ [0, 1]d.
Then fi(x) > 0 for all x ∈ [0, 1]d, i = 1, . . . , d. Hence,
by (R4), ϕq,i(x, y) = −(fi(x) + fi(y))q = −(x(i) + y(i))q is
n.d. for q ∈ (1, 2] and i = 1, . . . , d. Applying (R2) with x0 =

(0, . . . , 0) ∈ [0, 1]d, we have ψq,i = (x(i) + y(i))q − x(i)q −
y(i)q is p.d. for each i = 1, . . . , d. Finally, by Result (R5), as
q > 1, kq = 1

q−1
∑d
i=1 ψq,i is p.d.

Case 2 - q = 1 : This is a consequence of the above case
and an application of Result (R6). Consider for any n ∈ N,
qn = (1+ 1

n ). As shown above, ϕqn,i(x, y) = −(x(i)+y(i))qn

is n.d. for all i = 1, . . . , d, n ∈ N. Hence by (R6), ϕ1,i =
limn→∞ ϕqn,i is n.d., and using (R2) and (R5) as before, we
have k1 is p.d.

Case 3 - q ∈ [0, 1) : We begin by noting that ϕi(x, y) =
(x(i)+y(i)), i = 1, . . . , d are n.d. kernels. This can be derived
from the definition of n.d. kernel. Then use of Result (R3)
leads to the fact that ϕqi = (x(i)+y(i))q is n.d. for q ∈ [0, 1),
i = 1, . . . , d. Following the same procedure as before, we
use (R2) and (R5) to claim that

kq =
1

1− q

d∑
i=1

[x(i)q + y(i)q − (x(i) + y(i))q]

is p.d. for q ∈ [0, 1).
Thus, we have kq is p.d. Now, to claim k

(e)
q is p.d., by (R1)

and (8), it suffices to show that lnq(2) − kq is n.d., which is
obvious from the fact that kq is p.d.

Proof of Proposition 2

Note that for any N data points, the values of the n-point
kernel can be stored in a nth-order tensor of dimension N . One
can verify that The computation in (12) can be restated as V =
AAT , where A ∈ RN×Nn−1

is a flattened matrix [21] obtained
from the tensor whose each column contains the values of the
n-point kernel when one data is varied and others are held
fixed. From the representation V = AAT , it is obvious the
V is positive semi-definite for any set of given data points.
Hence, this process defines a positive definite kernel.

Proof of Corollary 3

Follows from observing that V =
∑
i aia

T
i , where ai

denotes ith column of A. Instead of summing over all columns,
if we only sum over a fixed number of columns, V is still
positive semidefinite, but computation is only O(N2).

Proof of Proposition 4

We provide a brief sketch of the proof. Note that V can be
written as

V = 4

N∑
i2,...,in=1

[
XT

(
n∑
l=2

n∑
r=2

xilx
T
ir

)
X

+XT

(
n∑
l=2

n∑
r=2

n∑
s=r+1

xilx
T
irxis

)
11×N

+ 11×N

(
n∑
r=2

n∑
l=2

n∑
k=l+1

xirx
T
il
xik

)
X

+

(
n∑
l=2

n∑
r=2

n∑
k=l+1

n∑
s=r+1

xTilxisx
T
irxis

)
1N×N

]
. (18)
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Here we use the fact that given i2, . . . , in and

j =

(
1 +

n∑
l=2

(il − 1)N l−2

)
,

jth column of A, is

2XT

(
n∑
l=2

xil

)
+ 2

(
n∑
l=2

n∑
k=l+1

xTilxik

)
1N×1.

Comparing (18) and (15), we observe that the first term in (18)
decomposes into the first two terms of (15). The second and
third terms of (18) contribute to the third and fourth terms
of (15), while the last term of (18) is equal to the last term
in (15). Also, the outer summation in (18) may be pushed
inside to simplify the results of the inner summations as shown
below. For the first term, we consider the outer product of same
and distinct vectors separately as

N∑
i2,...,in=1

n∑
l=2

n∑
r=2

xilx
T
ir

= Nn−2
n∑
l=2

N∑
il=1

xilx
T
il

+Nn−3
n∑

r,l=2,r 6=l

N∑
il,ir=1

xilx
T
ir

(19)

since the terms act as constants while summing over all indices
other than il and ir, and each such summation adds up N
similar terms, leading to the constants outside the summations.
Now, one can verify that XXT =

∑N
i=1 xix

T
i and x̄x̄T =∑N

i,j=1 xix
T
j . Plugging this in (19), and noting that there are

(n− 1) terms in the first summation and 2
(
n−1
2

)
terms in the

second leads to the first two terms of (15). To deal with the
second term of (18), it is enough to show that

N∑
i2,...,in=1

n∑
l=2

n∑
r=2

n∑
s=r+1

xilx
T
irxis

= 2
(
n−1
2

)
Nn−3XXT x̄+ 3

(
n−1
3

)
Nn−4‖x̄‖22x̄ .

(20)

The constants Nn−3 and Nn−4 appear as before due to
summation over indices, which are absent from the terms
involved. We consider the cases r = l and r 6= l separately.
For r = l, we obtain half of the first term in (20) since

n∑
r=2

n∑
s=r+1

N∑
ir,is=1

xirx
T
irxis =

(
n−1
2

)
XXT x̄.

For r 6= l, the situation becomes complicated as we may
have s = l. But this happens only in

(
n−1
2

)
cases, which adds

up to give the remaining half of the first term in (20). The
rest of the terms on the left in (20) have distinct indices,
and hence, summing over them gives a term of the form∑N
i,j,k=1 xix

T
j xk = ‖x̄‖22x̄. But, there are 3

(
n−1
3

)
such terms,

and hence, the result. Similarly, computing the other terms
in (18), one can derive the expression in (15).

Proof of Proposition 5

Similar to above proof.

Proof of Corollary 6

We only need to show that the subsampled version of A is
of the form (S+1N×1s

T ). Consider the lth randomly sampled
subset {x1,l, . . . , x(n−1),l}. Then for any point x,

K(x, x1,l, . . . , x(n−1),l)

=

n−1∑
i=1

k(x, xi,l) +

n−1∑
i=1

n=1∑
j=i+1

k(xi,l, xj,l).

The first summation is a function of x, and contributes to the
lth column of S, while the second term is constant for each
chosen subset and contributes to lth entry of s.
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