Facility Location

Sections 4.5 and 5.8 from Williamson-Shmoys.

Facility location problems

- Input:
 - Set of "facilities" \mathcal{F} , and for each $i \in \mathcal{F}$ a "facility opening cost" f_i .
 - Set of clients C.
 - Metric d over $\mathcal{F} \cup \mathcal{C}$.
- Goal: "Open" a subset of facilities $S \subseteq \mathcal{F}$ and assign each client to some open facility $f: \mathcal{C} \to S$.
- Facility location: Minimize $\sum_{i \in S} f_i + \sum_{j \in C} d(j, f(j))$.
- k-median: Open at most k facilities, minimize $\sum_{j \in C} d(j, f(j))$.
- k-means: Open at most k facilities, minimize $\sum_{j \in C} d(j, f(j))^2$.
- Many other variants: capacitated facility location, k-center, etc.

Integer Program

- Variable y_i "indicates" whether facility $i \in \mathcal{F}$ is open.
- Variable x_{ij} "indicates" whether client $j \in \mathcal{C}$ is assigned to facility i.
- Each client must be assigned to some facility, $\sum_{i \in \mathcal{F}} x_{ij} = 1$.
- Since clients can only be assigned to open facilities, $x_{ij} \leq y_i$.

$$\min \sum_{i \in \mathcal{F}} f_i y_i + \sum_{j \in \mathcal{C}, i \in \mathcal{F}} d_{ij} x_{ij}$$
 Subject to
$$\sum_{i \in \mathcal{F}} x_{ij} = 1 \ \forall j \in \mathcal{C}$$

$$x_{ij} \leq y_i \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$x_{ij} \geq 0 \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$y_i \geq 0 \ \forall i \in \mathcal{F}$$

$$\max \sum_{j \in \mathcal{C}} v_j$$
 Subject to
$$v_j - w_{ij} \leq d_{ij} \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$\sum_{j \in \mathcal{C}} w_{ij} \leq f_i \ \forall i \in \mathcal{F}$$

$$w_{ij} \geq 0 \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$\min \sum_{i \in \mathcal{F}} f_i y_i + \sum_{j \in \mathcal{C}, i \in \mathcal{F}} d_{ij} x_{ij}$$
Subject to
$$\sum_{i \in \mathcal{F}} x_{ij} = 1 \ \forall j \in \mathcal{C}$$

$$x_{ij} \leq y_i \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$x_{ij} \in \{0,1\} \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$y_i \in \{0,1\} \ \forall i \in \mathcal{F}$$

Linear Program

• Let (x^*, y^*) be an optimal primal solution and let (v^*, w^*) be an optimal dual solution.

$$\max \sum_{j \in \mathcal{C}} v_j$$
 Subject to
$$v_j - w_{ij} \le d_{ij} \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$\sum_{j \in \mathcal{C}} w_{ij} \le f_i \ \forall i \in \mathcal{F}$$

$$w_{ij} \ge 0 \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

- Lemma: $x_{ij}^* > 0$ implies $d_{ij} \le v_j^*$.
- Proof: Using complementary slackness, $x_{ij}^* > 0$ implies $v_j^* w_{ij}^* = d_{ij}$.
- Define $N(j) \stackrel{\text{def}}{=} \{i \in \mathcal{F}: x_{ij}^* > 0\}.$
- If we can ensure that for each $j \in C$, at least one facility in N(j) is open, then service $\cos t \leq \sum_{i \in C} v_i^* \leq OPT$.

Opening facilities

- For each $j \in \mathcal{C}$, open the cheapest facility in N(j)?
- Let $i_i = \operatorname{argmin}_{i \in N(i)} f_i$ be a cheapest facility in N(j).

$$f_{ij} \text{ } f_{i} \text{ be a cheapest facility in } N(j).$$

$$f_{ij} \leq \sum_{i \in N(j)} f_{i} x_{ij}^{*} \quad \left(\text{using } \sum_{i \in \mathcal{F}} x_{ij} = 1 \right)$$

$$\leq \sum_{i \in N(i)} f_{i} y_{i}^{*} \quad \left(\text{using } x_{ij} \leq y_{i} \right)$$

$$\sum_{i \in \mathcal{F}} x_{ij} = 1 \, \forall j \in \mathcal{C}$$

$$x_{ij} \leq y_{i} \, \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$x_{ij} \geq 0 \, \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$y_{i} \geq 0 \, \forall i \in \mathcal{F}$$

$$\min \sum_{i \in \mathcal{F}} f_i y_i + \sum_{j \in \mathcal{C}, i \in \mathcal{F}} d_{ij} x_{ij}$$
 Subject to
$$\sum_{i \in \mathcal{F}} x_{ij} = 1 \ \forall j \in \mathcal{C}$$

$$x_{ij} \leq y_i \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$x_{ij} \geq 0 \ \forall i \in \mathcal{F}, j \in \mathcal{C}$$

$$y_i \geq 0 \ \forall i \in \mathcal{F}$$

- Total facility cost $\leq \sum_{i \in \mathcal{C}} (\sum_{i \in N(i)} f_i y_i^*)$. This upper bound is not useful in general.
- Therefore, for each $j \in \mathcal{C}$, opening the cheapest facility in N(j) may not work.

Service cost

- Define $N^2(j) \stackrel{\text{def}}{=} \{l \in \mathcal{C}: N(j) \cap N(l) \neq \emptyset\}.$
- If we open $i' \in N(j')$ and assign all clients in $N^2(j')$ to i', service cost of $j \le v_{j'}^* + v_{j'}^* + v_j^*$

Algorithm

- Let U = C, k = 1.
- While $U \neq \emptyset$
 - 1. Choose $j_k = \operatorname{argmin}_{j \in U} v_j^*$.
 - 2. Choose i_k to be the lowest cost facility in $N(j_k)$.
 - 3. Open i_k and assign all unassigned clients in $N^2(j_k)$ to i_k .
 - 4. Update $U := U \setminus N^2(j_k)$ and k := k + 1.

Analysis

• Since $N(j_k) \cap N(j_l) = \emptyset$ for $k \neq l$, total facility cost $\leq \sum_k \sum_{i \in N(j_k)} f_i y_i^* \leq \sum_{i \in \mathcal{F}} f_i y_i^*$

- service cost of j
 - $\leq v_{j_k}^*$ if $j = j_k$ for some k.
 - $\leq v_j^* + v_{j_k}^* + v_{j_k}^* \leq 3v_j^*$ otherwise.
- Total service cost $\leq \sum_{j \in \mathcal{C}} 3v_j^*$.
- Total cost $\leq \sum_{i \in \mathcal{F}} f_i y_i^* + \sum_{j \in \mathcal{C}} 3v_j^* \leq 4 \ OPT$

Algorithm-2

$$C_j^* \stackrel{\text{def}}{=} \sum_{i \in \mathcal{F}} d_{ij} x_{ij}^*.$$

- Let U = C, k = 1.
- While $U \neq \emptyset$
 - 1. Choose $j_k = \operatorname{argmin}_{j \in U} (v_j^* + C_j^*)$.
 - 2. Choose i_k according to the probability distribution $x_{ij_k}^*$.
 - 3. Open i_k and assign all unassigned clients in $N^2(j_k)$ to i_k .
 - 4. Update $U := U \setminus N^2(j_k)$ and k := k + 1.
- Expected cost of facility opened in iteration k is $\sum_{i \in N(j_k)} f_i x_{ij_k}^* \leq \sum_{i \in N(j_k)} f_i y_i^*$.

Analysis

- Expected service cost of j
 - $\leq C_{j_k}^*$ if $j = j_k$ for some k.
 - $\leq v_j^* + v_{j_k}^* + C_{j_k}^* \leq 2v_j^* + C_j^*$ otherwise.
- Expected total service cost $\leq \sum_{j \in \mathcal{C}} (2v_j^* + C_j^*)$.
- Expected total cost

$$\leq \sum_{i \in \mathcal{F}} f_i y_i^* + \sum_{j \in \mathcal{C}} \left(2v_j^* + C_j^* \right) = \left(\sum_{i \in \mathcal{F}} f_i y_i^* + \sum_{j \in \mathcal{C}} C_j^* \right) + 2 \sum_{j \in \mathcal{C}} v_j^* \leq 3 \ OPT$$

References

- 1.488 approximation for facility location [Li 2011].
- No < 1.463 approximation unless $NP \subseteq DTIME\left(n^{O(\log\log n)}\right)$ [Guha, Khuller 1998].