* Tecdhrugue 4: SQ_PCCPQ_"]:UT’S :

* Planar Separatov Phm E/?\ _ A\EEIS EEBA o r)i
LuprenTengen 7)o L L LG L LD
( Irforemal : any planay T Vii iiu T 17 1 i
3'r>0~193\, CorL be S,?L\,Q; e :.O O Cii ::() O—O OE
smolier (bok balanced) | O0—O—0—@--0—0—0—0

P{e,ce.s on wem-avl}\ﬁ oL SyaJie
numbaye ogi VZ'P“CZ'SD Planar separator for gmd

Givi A [ pg I 18: Planar separator from circle packing

G=CvE), [Vi=n,; na cn
Parbitieon V (ato Vi, Vy, X
st 2V & X
Catt rops of Vi, exduding Vi)
Vot £lval, 1V2l & 2/5n
=l < OCIWR).
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Ertends planor groph case |

Sowth- ,qg}
e Geometric Sapo.ﬂod:'o'w TR eoven |LWormald,

Given n cu,sjo—in’c disks ((or squares or fot Sejecks),
3 a sguare B s.t- \>m~ o Constont
+# Objects inside B £ VYon ‘
# objects owbside B £ Ypn
# objects intersecting 5B £ 0($H)

d . v | -Ya
(R o ™))




?Y’QQZ'- Let BRo be the smallest stuare ccw'ta_;.’n\‘,ﬁ
> g centev? pocAts.
lek ~ be the side densft, of Bo.

ek B be o vandomly shifted sduare of side
Rencfi (2—€)v ot contains Bo.

e—(2-€)P— e—(2—-¢C)P—

B B B can be covered by foux
Bo B o Copies of Bo.

<_B°_. As, Bwaas smollest square

r Bo Bo CQY\'EWj >/ 'Y)/S fPGt/\tS ,

+ centev povnts | 4
inside B < Vg™
As B cantadlns Bp , ' 2 s

S

ool abea e m“teﬁszgtr\.j s 7 9-\

R

Consider an o\ojzc:l: S of Podius < P/ . UL

o

= P[S tatersects 2BR7) < OQ‘”/R/TQ =O(—\é<-—.3

E [# objs of radius 27 «h-’cep.sec;t-cnj 2B)
=o("7k).

Now consider objzc:ts of vadius > k-
H sucl objed:s wtersechn 5 9B = oK),

hence, ELH objects UTttersecting 2B)
S o(+x) =0@FR), by =Xing K=3n. B



¢« PTAS —’):z:“r’ \Independent set —Faw dusks : (Chan'03)
— A more cae_nz,\"a\.L sz;\;arad:ov thesvrem .

To state our result in an abstract framework, consider a measure u(-) that maps
a collection of objects to a nonnegative number and satisfies the following axioms:

(A1) If AC B, then u(A) < u(B).
(A2) u(AUB) < pu(A) + wu(B).
(A3) Ifno pair of objects in A x B intersects, then u(AU B) = u(A) + n(B).

(A4) Given any r and size-r box R, if every object in A intersects R and has size at least r,
then u(A) <c foraconstantc. -» fexiness «

(A5) A constant-factor approximation to 1(A) can be computed in time A, If
u(A) < b, then 1(A) can be computed exactly in time |.4]?® and linear space.

Plercing LS7 = o &,.\-hnj Set for S Can be
over| '\nj
/7 App
Theorem . Given a measure pu satisfying (A1)—(A4) and a collection C of n objects
in R with 1(C) sufficiently large, there exists a box R such that u(Cg), u(Cz) = au(C),

and 1(Clar) = O(n(C)' =V, where a > 0 is some fixed constant. Moreover, if (AS) is
satisfied, such a box can be found in polynomial time and linear space.

-
L
F'x a constant b. ﬁ

let oPT (@)= max indeperdet set:

0. If obT(X) £b then solve in +£ > tame

Else : by brute - force.

1. F'rd eduavre 8B s.t Uae P-opprox

/d‘hO‘P‘T

OPT (obys inside B) > OPTCI ™ ceo ?r’ee&y)
P ogz‘S: ﬁ\fdf;’)_..
oPT Cob\).s owrside B) = oW
=)
oPT (obis {n-bepsec:tfnj dB) = Ocm)

K. Recurse on 5\_019)5 inside BY, {_ob)s outside B



Anadysis
ASItve ervror s m -j:cr‘ an instance o ploy=m.

Elm) £ EAn) +EAIM2) +0{aw) [if m>b)

‘fc‘f‘ STME Mg, Mz > m/g{;
Mi+™Mz < v

O [+ m<p].

= Ecm) = O (/5T

Jo Approx Jactee (14 o(V/aE)). Set b=l/2

= (l+E€)— pPPFrOox in nOC‘/e?—) Eeve. . B

Rem ark @ The mexsure - makeo thea
-Ezchrv:q,we/ Cl,"‘""\'e’ ?zne,r'ak

Extends o piercing eke.



Ancther w?&mhm :

Maxirruen mA.e,Pendszt set crf- Line Sz_ca‘m.en'bs

Speciol cose : axis-pamllel.. cm——

Sieple - APPYO xinadion -

— Consider only vertaol o o‘r\% B oetzontal-

— taclh con be solved 2ractly '\45‘1}\7
max indeb set o;i tnctervals .

— Retuen the besbog-b\f\ese,‘bzoo‘w\ax
ndep. set.

ALGO £ mox { OPTy, OPTu}Y & OPTy + OPTy

< OPT +OPT = 20PT.

* Surpristngly ., (R+€) is e best-xnovor—
PO RIm eblion —fa\a max ndependent set
ok (axis-parallel) vectangles.

[ Galvez 2k al., 2021)

- Hrowever, for arbitrary (moy not be axis -paralletl)
Une segments the best-known appx rat'o s
n& [ Fox-pach’].

- lemmna 4 (Fox-Pacw) Foyv trtersecthon 3‘()&1:—?4, o:,?
N Line Se—c(gmanjcs S tn IR? Wit m tntersechions.,
. ey
a Cn Par-’b.‘h.‘o‘y\, O; S indko S,,32. A s.t-

1S4\, 1S2) éZn/S) S\ S —':75, 1 %] s Oy ).
lem1: | sparse groph 5 3 good. separatsoe.

[ Con be grtended to the case fcm orlovbrayy %
cupves st each posr intersects O(1) Zmes))




(P idea : IL a curve Rove ko ustersection points ,
add ot YV, b eachk. THhen G\F’Plj »\\e.u:?lkta_a
Lepton - Ta—r:jo.n— planar sebavratoy treorem
With intersechon poinks as verties |

‘Llemma 2(Fox-Padh): Fsv {ntersecthon grapt
& n cueves S in R (ezclh palr intersects
o) fames) , if H# intersection m > 57 -

Hen I dASJc\r\t subsets A B £ S of sv2e ?/Sn
St every curve in A tntersects every

curve v R, X X

Lem R 'D.enseaﬂpaf’ev = 3 Rarge baollanced bi-elique.

OlosepvVats !

No {ndz,Pznda_r\‘L‘ set 0 S can cantasn

both o segment n A & a_sec'O*Me/\b,v:nB.
So every inAQ,P set s cortacned. in S\A or S\R.

=2 oPT(S) € S\A o & S\B.

AL@OYH:IAM: Ic=s).

Cose 1:m £ Bn> (sparse)
Apply Lem 1 o et Si,S, X
Recugprse tn D, S X o 6@; I(s\),1(sz2. 10).
Return Laroer o§ I IC) & TO.

Case 2! m > on?* (dAense)
Apply Xem 2 tp oet ALB.
Recurse 1n S\A. S\B o set TCS\A)L TCS\R)
Return W%e.p o T(S\A) & x(s\&),




Avialysis
Approxitmation ratio :
e wank to sheve \opPT( < £GO 1I(SI].

Case 1: \opT (SO
< lopTE) AsS, | FlopTEY AU YV+ loPT (x|

< £ (2Y3) VIS + £(@2NTEDN+ F3En) 12069

(-m &£ 5 n%)

<€ £V (s VU I(Sy)]
+ £ (5 ) LI

< [£CY2) + £ IF] 11,

CaseR: YorT(3) |
o
< max § lopt(S—A)|, oPT (_S—lei [_observ«hsq
oé—'la_m?»

ax | £(n-5n) | I(s-A) , $G—5n) | I(s-RDIT
ne con p_\/mm»?w

£ m
£ FOL=3) 1 IO wstead of FCn-n1 & X

same vrabio. Bukr ,F(n-fn? s
needed. <n the wruntime

Ser FCV)+ (I3 n) = § (_ﬂr—Sn) analysis do woke groyress.
Assume S is sufficlently small, Yhne,, o havwe (V= nE.
(we wonk, (72)°+ (T ) L (n-sn)* [‘/a ~ C‘/e)%)]
<& (/)¢ + (I3)¢ = (1-5) J _
B Spen KR aven
= n€_ approximation | — @ gy (ogn) *
’ epproximotion .,
where

Runtime. :
Qrse | T < T'CT\\') Y ch\z') A TO)+ ‘Po}y (o) NiANE% =N

Cased: TG « T((—8)n) + poly )
N ¥ % ‘oo Smaua

=2 po\y nomiakl ranbtmne. itff;f‘gzm e

o



e Techrnigque 5: lLocol Search.

— PTAS for Cr\de,tpe_nden‘t set for fot d:\»Je,ctS
Fx b.

IniHolige: T = @ (or any fmsible. soluwhsiy).
Repeat
for cadh subset DS T oa’;.sfze, < b

—

& SC—_I—Tcg snge \Dlr4d Ao

If (T—-P)uUsS is o feastble solwhon

T (T—DI)Us
}w\:b'.x. stuck. . °

2137
Return T.
Runtume :
# terations O Ou).
Time pave iteraton O Cnb~ et VZ’—) =n° Cb.)

Analysis: [ Chan - HawrPaled "09]

e Mult- eluster version 03? St - Wormal A ’s
Sapaﬁabw’ thesvenm :

Given intersechon geopt 68 o const-deptin
fok obyects in ®E, we can porbition wnio

Vi, Vo, - \/O(_Y‘/b')' X s.t

OV € X, '3 G_Towsebw
md,,,vaehea

IX1 < O(n/AJB) 7 of vire £b.
S 12vil £ o ("),



Lek T* be optimal independent set,
T be LlocoaMy opt indep sek- (o) e

Apply obove thm o THO T (daeptn2),
Then | TVl £ | T o CV-L“ Ua\/{))

CEBlse condelete T ALV, U V) fp'm\ T
& itnsert TF Nvy to get Rarser ndep ser)

Ht
S21 TNVl £ $1TAvel + glav;l

1

Now, Y\ T*| = i: | T* vl + | TP X ]
2
L lTAave] ¥ $,12Vil + 1T N x|

< \T1 o+ o(l"‘\‘u_:’") 21T+ OC_"'\:%T*‘)

217 (-o(g) et (~oiE)

2\ ™ < 1Tl O+o CAB)Y) (1—0(‘@3)-1
S 1T*l< Qv o (g )Tl

Setting b=s2. ne obtain (1+E&) - anpprox
in n®le*) tme.

Remark : Wworks akso ff-cm Pse udo dxsks. @

@



c Technique 6 Linear programming
Werll use LP to give an OCQ.OS .Qos-n.')'- NP 0\0._80
:Pop Mo Nei-ca@\).’e_d. inéle.P selc Oj_ 'r’ecj:anale.s (MWISR).

— Tndeperderce C stability) nunber X (F):
mox ¥ of poaLwise disjornt sets in F-
— QUque number W (F):
max HEof polreise intersectung sets in F-
— C.ochina number X(F) or 4(F):
i o of- chasses i a Pa(:\zil-:ﬁo—m, of- F nt
PO Lo Se c\;f)mr\t seks.
o < xS AR (w0-1) DAsplond & Griinbaun)

O(wlgw) [ Unalermsook &
Wolczak » SODA’21)

L o00) Learjecture].

Rectangle intepsectons: (of A& R)D

Corner intersechon @ Rcovtadns ak Least one corner of R

& viee versa-.
C:ooss{nﬁ intersection: Otrerioise

Contalnment intersecten @ one 'Pe.c,l':o.ns'\e, contoxrns the
Other (special Case O—S, corner)
vertical thteesechon : If one wectorgle intersects
botih the “op & boltsm sides of Bhe other.

(a) (b) (¢) (d) () (f) (2) (h)
FIGURE 1. All possible ways a pair of rectangles can intersect: (a) a crossing
intersection, (b)—(h) corner intersections (each involving at least two corners), (b) a
containment intersection, (a)—(d) vertical intersections.



For yeckan e R,

V(R): Rectongles thak dntersect ot -bhe
botton & top sides of R.

X (R): Rectangles that cwoss R, So X(R) &V (R)

* S-sparse @ A family of vectargles R s s-sparse
‘:JN?— cam—f\‘x S pownts P‘R,.--,PSR inn eacl. RE€ R

st ¥V crossing 'ch.’CO.nﬁ\e_,s R.R . R, RNR’

contouns ene of LpSs e er, ., (Psp"} . et
£.g. 7 varves s O- sSC. I E
g 'f'arru.!y of- squav O- sparse on N
s C,\"ossinj —j?’ee_-

Lem : Every s-sparse fanuly of mc-l:oulﬁles it
c\lque no. O 1s (28+4) (w-1)- colorable n folytime.

Proof :
First. we shao the number Oj- e&aaz.s an the
rersecthion gragh &G as L (sx2)(R-1) 1K1,

We showd this by ken counting.

If R& R cross. give one token to o point b [[F]
Pl&’ L) PSKJ 'Pq&)9 ey PSR/ 'H'\O\,t /Q*“e' Ch Rn R/' N

Else ttF 1's corner Tntewsecbom : E
Give ', tokens o buo 05 ‘the :

cornesrs vnyolved. in Hhe (Atersechon




Total # tokens = # edogs.
Totol amount™ of vececved tokensby pot ~ts
< IR Cs(-+ 4. (_"°_z'_1)> = |R|(s*2) (-1,

each ps\:r\'\' PF
vecedlves £ Loy-| tokens

Acornes. Eac e eV NV gokens
. -
th some Coeners yecv sbeickly

ferer tokens, =2-9. Qe,_f'-{: most coener

So, HFBAges < R\ (s+2) (W -1),

Now we use nductimm o \RY 2 shswd
(2s+4)(W-1) - cdorabilly .

fvr the basecases \@R\ =2, o HEdspo =0,
(R (Sx2)(~-1) >0 =2 vwZ2A.

It is cearly colayzalile by K éQ_sA\-dc) Cwo-1) co\sy' s.

an <20 W 2.

G the induchive skep, note that 2 a vertex

of de5 < HEITIIE = (2s+4)(0-1).

[ By averasung ay%-u_rwzx\,t] ,

lksfnﬁ inducton G\Y 1S ceo\evred L7
(2s+4)(o~1) <olees,

fo vertex 9 Ao £ (25440 (o) neghlers.



TR G s (2S+4) (W-\) Coleranble,

*Covollary: Every family of vectangles witih mo
cwossinj intersectons are A (s-17) coloralle.

Ci.e. only cooner [ cantornment (nferesection )

idea PCLP'\'\‘HO'M
Thesrer [ Aoplund - Gytinbaism) Lo crossing - Sree
R.1s 4w Cw—l) "C_O\a'f?able —fami(y
Peos§ : Define portiol order < on R: R’
R< R’ iff RIE X(R). &

- Every chaun (Ssubset of poset f{s
thak is totally, ordered ) in R, :‘
tiis poset (R, 2) is a clique - —es

n R .

of (R.4L) is € -

. Miyesky’s theosvem : For 2very funite poset,
the heiobt equals the ribs mumber of
onbichoung (subsets tn which no paler of
elements are ordered ) tnkp Whuich the poset
can be pa:wthlsn@~



7
Theorem A poset of height h can be

partitioned into h antichains.
*So R can ke partlbiondd into o anbchains -
- Eochh anbrchasins are c,woss\‘nﬁ—fwee-

g USx‘nﬁ corolary . we 7t AR -1) ~Colormng B

( Rerated : Dilworts thm
max si2e of antichauin (wrdtn)
= min no. of chatns an tre
Po.piz;t\‘-b‘n 03_ poset Wi Qhadns’)

Dilword, : 4 pradh
A 9052—\' c@ Ridth B can be
partiboned. into K chasins -



Thesver [ ChaleremsooK - Walezak )
R s O(w Log L) —colorable.

Special cages .
— Only cpossfnﬁ and ceantacnment intersecthions
= X(R)= O(RD.

— Only verthical intersecbhons = X £ 20 —2.

Pa}ynomm”y

e Howo do we commect o & 2 unded veohs

° Fweprocessfng AN N&‘j&\ts We € {O, 1, .., 2n7) v RE R.

—¥ Scale vO.e;.%&tS S.t pri’:a e = 1. Sa7 Nmax = fE R

Define newd roershds ‘\:]’R ‘:\7& ’\/\Tmazc
Uasm : Ay 5- opproximate soln —fwwp\ °S  2Y- APproX
soln —_FG'Y’ w?\-
2n

N
> N2 bave ' Slp —— < S, ve £ 2V
<J = W max -
Jr any =k SR RES max RES

(@) in P
W - — £ 2.\/\7& £ 7 ﬁ,w,,\ £7¥

> 2, We £ 27 2We
K E€OPT R EALLO

So, nowW on e’ ll assuar= azLLwe,«_cZZ\b are L
fo.1 ,?J\\; In —j;ac't nWe Core wmsve- 'v:zc‘h’ocﬂsle&

o “newst O-eigtt
Note breir oeiginale tal wWerlghk 'S SYnouk
o R =0 D We £ Wras/zn.

3 &, We & Wmax/o .

R: WgsD



Clugue - consbradned. LP reloxatiorn of MIWISR.
R: formily of n 'r-iectanjeas,

Wg (>0) : WGt of R & (R[é{(,uhg

F: fanmsly o;F nclusion - maxtmal C_\A'q/ue...s wm R,

maximze S Wp*e CElacr: oPT
e ® Fracthenal son

S.t. i,'x-gél v 2 & F to Be LP.

E
reL W*: OPT LP varue
Lo > 0O Yy _RE R, .
OPT s soln,
Observation: |F1 < n’

o Tthe intersection of every wnclusisn - Wise
maximal cligue s & vectongle whose
top 16—_9!: corner s the intecrsechon

Va )N
\'%

|
Pofnt‘ of the top side o’,g. seme.

rectangle +h R ot the left side of some
vecktars\e in .

Case 1.

LT s OGL.,

Just onkpnkt A -.,Q.z;%@d: 'Pacta.na\e,. Q,a-k >, 27)
=2 o(\)- oppx Alyready.

Cose 2. N = 22,

we'll convert (Elaeg 0 (%Raecq v
- —fn'hajPN— Cie. Ay = % ,Re 1o, -, MY) &

i, WR”C;- s _S2 (A
Re®



- lemma: Given WY'Z2 32n , @ « Po]y'\lfve rand.
ad,ﬁo thak produces feasible soln. ) pe e
for the LP =T
O = s V- integral,
® Z.Wr*r s LA,
Re®

Peorf:  First we crente MWBRRE R fren R

Gre cac. RE R, creake [xgM]|—1 copies of

R Wwith value f Covrespondinyg LP varicoble b be
Y & one Copy witlh v v Xp T C\")Lp\M'( -1) /™M -
Cotl Hs LP sow o
lekb To be mse)tog CT@L‘RM'\—'l) CMF\'%G?R.

befine #p:= S Xy
EeTa

Ae 9?9/\ = Xa , C‘,\.ZCLP[)' ‘2/& 1S o~ ,E-QO\S/CE\C So\H

5 L
Now create mulliise® @7 jf:PGYW ﬁ
Select ecachh (owopy of) R E 6{ independently

P, MG
P pr\

Tefine «’ t2 be & * condidate” 1P soluthien
where eachh selecked Cop~ s asaigmed
a. vollune o—_}; \/M-

So vf & coplen Og_ vectangde R s sedectedl
e R/' 2z OLA:: t/M ,



<o. @ = *\:\”\'v{cdd.? trwe | \v.e. ?(Pr\ 1S é—/—\-,_}(\-‘\-eg\'h'l,
New Re sheo X is -Yeas{b\e— -S:u'r LE WP,

Claim: 2’ s ~ feastle soln $or the L& (=h.p)

Lek C€F be & indusiomn - Wise maxinmal cligue.

Ne need +p sheww the cam»z.spcs-n&inﬁ Censtrasnt

is tewe le. £ % L1
Re.e

lek & Le the sw\asefcg'ﬂect'ar\?&m O?;/@ bl
Qve presert in R’

Toen E[L1L71)

ﬁ{:[ g, 2 Pleopy t og_'ﬁecbomgzzﬁj

ReL teT, wWno selected <n )
-3 [ % <) Te be S 28
&efo[een\z of copten of R
~
=M0g ¢ %]
RE.L teTe
—~ ~
Ry e Fur £ 8]
el EcTe

= "Ai E—; 9[2 'S —ans\‘)a\z so\n Gﬁ-tp:).

N2/ we  Chesnoff bound @ Shesw Caneentrabon,



CFor A sum ca'} independent” O-1 &/ 2
P(z>2®2) <ep(~8%/3)))

Ustng Cke\onojcf bound .

e (== catoa)

r%[\,d\>tv\356 *_\r?(_‘

MCZ; / = 'Y' g _‘—-

e C Exe >1) = B[ 1£7 >4
= [\ >m) = 1/t

Applying vrson bound sver € (o IFIE 0Dl
oy <1 N ET, WP (\=Vn)

Ree

Hence, =/ 1S —_Fea\sm’lo‘\e, WP, B\ = YAZ -

Fovr @; we dioAade T’ZCEOJ’\%ZM vy @ indo K= F°5@*’ﬂ
subcollections AR AR+ Ry = {re & wWee 127,207

Pavclition @ indo ] &1, surilarly

= g, S, WLE is se\ecked in@®')
&e';é{ teTe
=2, ke = A 5 %,
= .

re@ Re®&,

Hence, ™= (1 Q1D



Define 1+ € Ck) bad 'L-BC 21@44
KG@
Else. v s ‘8’005“
® be seb 0§ bad. irndices.

Uarm = 5 i} Aquk\é &le

eR eed,
/vdz_/}qog_ba?
~ Ne iy, <2t 5% < 4 2.
é’ReK & feER.
Su.mmr\g cvex’aM, te B,
2424242 2 16n < W2, -

‘e @ 1=1

Wmd.ncw TEe B, TECLQ'LI:)

/M(_,% 'AK) 4 = ZM,
Re &,

Using Chermedf bound,

TP[\GZ | £ _‘\i- C_é”( ]4\?[1@\|4IE@%3]
RER. \
<o _ ) /g z O:ZM/gé e—\él.orgn ;:LZ

TPus usuns ALy bound. ,
@41z M (g% Yig® whp
) er.

VA4
e &;



QA ey R
Sumnv.nﬁwex’o«u.\,gg’@,we,?zt
s
32, Wexd z £ S, 5 %ee 2w o = Wiie
1EG K e®y gg@&ea L
-Fruw\c.\ﬁnm
B Giverr LP soln (%) reg o W& Creake multrse
RY: £or eack re g, add Cr:= MR Wpieo
N
O'g' R 6(/ wrizsraAl & £ M,

Ao W\,c,o'pj'i.w R, Bron \_,Pvaex.%l*\b I/M’
Max Qﬂqlq__u\z, nze \@' Bus K éM»i\,}cp\s«‘Qe_\-uf.

~ < 1
Ao, i'\/\T@M LS _SlC/\/\T*) R%/gg -

Re®l
Hencz, &7 can be colsyred- ustns O (M Rog M)
colors.
s2.(5N%) - M
O (M Aog M)
> 52 C‘/\T*/Log M),

SO max wt color class hhas it >

Ao. OPT &£ AT " & M (s 9@2_037\), Ne,%zt
O (Log Log ) - approx. a
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