

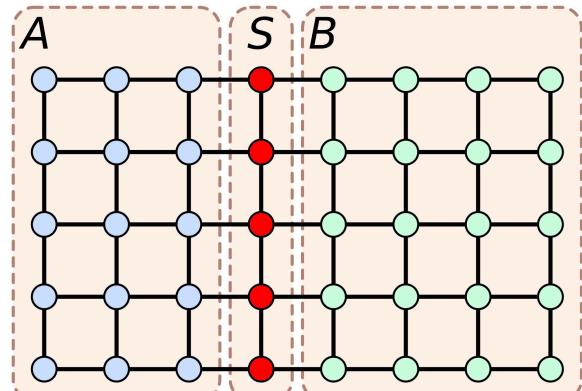
• Technique 4: Separators:

- Planar Separator Thm
[Lipton-Tarjan '77]

(Informal: any planar graph can be split into smaller (but balanced) pieces by removing a small number of vertices)

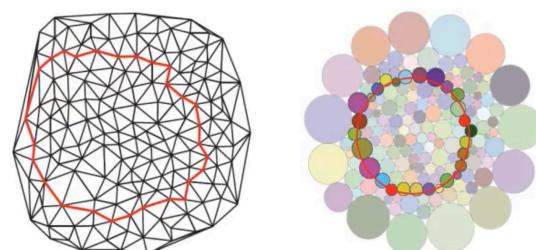
Given a planar graph

$G = (V, E)$, $|V| = n$; we can partition V into V_1, V_2, X
s.t. $\partial V_i \subseteq X$
(all nbrs of V_i , excluding V_i)
 $\gamma_3 n \leq |V_1|, |V_2| \leq \frac{2}{3} n$
 $|X| \leq O(\sqrt{n})$.



Planar separator for grid

18: Planar separator from circle packing



Extends planar graph case!

- Geometric Separator Theorem [Smith-Wormald, '98]

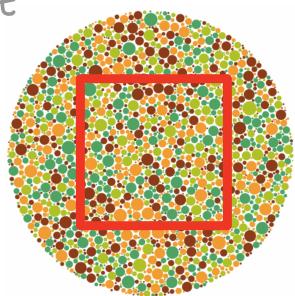
Given n disjoint disks (or squares or fat objects),
 \exists a square B s.t. or of constant depths.

Objects inside $B \leq \frac{4}{5}n$

objects outside $B \leq \frac{4}{5}n$

objects intersecting $\delta B \leq O(\sqrt{n})$

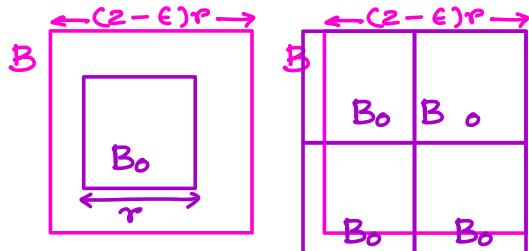
(\mathbb{R}^d : $O(n^{1-\frac{1}{d}})$)



Proof: Let B_0 be the smallest square containing $\geq \frac{n}{5}$ center points.

Let r be the side length of B_0 .

Let B be a randomly shifted square of side length $(2-\epsilon)r$ that contains B_0 .



B can be covered by four copies of B_0 .

As, B_0 was smallest square containing $\geq \frac{n}{5}$ points,

center points inside B

$$\leq \frac{4}{5}n.$$

As B contains B_0 ,

"

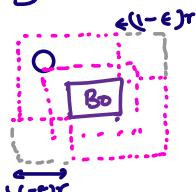
$$\geq \frac{n}{5}.$$

B can be divided into $(1-\epsilon)^2$ side squares

What about intersecting items?

Consider an object S of radius $\leq r/k$.

$$\Rightarrow \mathbb{P}[S \text{ intersects } \partial B] \leq O(r/k/r) = O(\frac{1}{k})$$



$\mathbb{E}[\# \text{ objs of radius } \leq r/k \text{ intersecting } \partial B]$

$$\leq O(\frac{n}{k}).$$

Now consider objects of radius $> r/k$.

such objects intersecting $\partial B \leq O(k)$.

\uparrow C. $O(k)$
constant depth

Hence, $\mathbb{E}[\# \text{ objects intersecting } \partial B]$

$$\leq O(\frac{n}{k} + k) = O(\sqrt{n}), \text{ by setting } k = \sqrt{n}. \quad \square$$

- PTAS for independent set for disks: (Char '03)
 - A more general separator theorem.

To state our result in an abstract framework, consider a measure $\mu(\cdot)$ that maps a collection of objects to a nonnegative number and satisfies the following axioms:

- (A1) If $\mathcal{A} \subseteq \mathcal{B}$, then $\mu(\mathcal{A}) \leq \mu(\mathcal{B})$.
- (A2) $\mu(\mathcal{A} \cup \mathcal{B}) \leq \mu(\mathcal{A}) + \mu(\mathcal{B})$.
- (A3) If no pair of objects in $\mathcal{A} \times \mathcal{B}$ intersects, then $\mu(\mathcal{A} \cup \mathcal{B}) = \mu(\mathcal{A}) + \mu(\mathcal{B})$.
- (A4) Given any r and size- r box R , if every object in \mathcal{A} intersects R and has size at least r , then $\mu(\mathcal{A}) \leq c$ for a constant c . \rightarrow **fatness** ✓
- (A5) A constant-factor approximation to $\mu(\mathcal{A})$ can be computed in time $|\mathcal{A}|^{O(1)}$. If $\mu(\mathcal{A}) \leq b$, then $\mu(\mathcal{A})$ can be computed exactly in time $|\mathcal{A}|^{O(b)}$ and linear space.



Example: $\text{indepset}(S) = \max \text{ indep set for } S$.

$\text{piercing}(S) = \min \text{ hitting set for } S$.

can be overlapping

Theorem . Given a measure μ satisfying (A1)–(A4) and a collection \mathcal{C} of n objects in \mathbb{R}^d with $\mu(\mathcal{C})$ sufficiently large, there exists a box R such that $\mu(\mathcal{C}_R), \mu(\mathcal{C}_{\bar{R}}) \geq \alpha \mu(\mathcal{C})$, and $\mu(\mathcal{C}|_{\partial R}) = O(\mu(\mathcal{C})^{1-1/d})$, where $\alpha > 0$ is some fixed constant. Moreover, if (A5) is satisfied, such a box can be found in polynomial time and linear space.

Fix a constant b .

can be approx. guessed
by bin. search.

Let $\text{OPT}(I) = \max \text{ independent set}$.

0. If $\text{OPT}(I) \leq b$ then solve in $n^{O(b)}$ time
by brute-force.

Else:

1. Find square B s.t.

$$\text{OPT}(\text{objs inside } B) \geq \frac{\text{OPT}(I)}{5\beta} \quad \begin{matrix} \text{use } B\text{-approx} \\ \text{on } \text{OPT} \\ (\text{e.g. greedy}) \end{matrix}$$

$$\text{OPT}(\text{objs outside } B) \geq \frac{\text{OPT}(I)}{5\beta} \quad \alpha = 5^{-1} \text{ for } d = 2.$$

$$\text{OPT}(\text{objs intersecting } \partial B) = O(\sqrt{\text{OPT}(I)}).$$

2. Recurse on $\{\text{objs inside } B\}, \{\text{objs outside } B\}$.

Analysis:

Additive error is m for an instance ω $\mu(C)=m$.

$$E_r(m) \leq E_r(m_1) + E_r(m_2) + O(\sqrt{m}) \quad [\text{if } m > b]$$

for some $m_1, m_2 \geq m/5\beta$
 $m_1 + m_2 \leq m$

$$O \quad [\text{if } m \leq b].$$

$$\Rightarrow E_r(m) = O(m/\sqrt{b}).$$

\therefore Approx factor $(1 + O(1/\sqrt{b}))$. Set $b = 1/\epsilon^2$.

$\Rightarrow (1+\epsilon)$ -approx in $n^{O(1/\epsilon^2)}$ time. ■

Remark: The measure μ makes the technique quite general.

Extends to piercing etc.

Another application:

Maximum independent set of line segments.

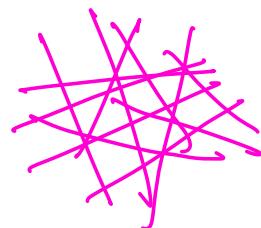
special case: axis-parallel.

Simple 2-approximation.

→ Consider only vertical or only horizontal.

→ Each can be solved exactly using max indep set of intervals.

→ Return the best of these two max indep. set.



$$\text{ALGO} \leq \max \{ \text{OPT}_V, \text{OPT}_H \} \leq \text{OPT}_V + \text{OPT}_H \\ \leq \text{OPT} + \text{OPT} = 2\text{OPT}.$$

- Surprisingly, $(2+\epsilon)$ is the best-known approximation for max independent set of (axis-parallel) rectangles.

[Galvez et al., 2021]

- However, for arbitrary (may not be axis-parallel) line segments the best-known appx ratio is n^ϵ [Fox-pach].

- Lemma 1 (Fox-Pach) For intersection graph of n line segments S in \mathbb{R}^2 with m intersections, \exists a partition of S into S_1, S_2, X s.t.

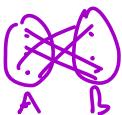
$$|S_1|, |S_2| \leq 2n/3, S_1 \cap S_2 = \emptyset, |X| \leq O(\sqrt{m}).$$

Lem 1: sparse graph $\Rightarrow \exists$ good separator.

[can be extended to the case for arbitrary curves s.t. each pair intersects $O(1)$ times]

[Pf idea : If a curve has k intersection points, add wt $1/k$ to each. Then apply weighted Lipton-Tarjan planar separator theorem with intersection points as vertices].

- **Lemma 2 (Fox-Pack):** For intersection graph of n curves S in \mathbb{R}^2 (each pair intersects $O(1)$ times), if $\# \text{ intersection } m > \delta n^2$, then \exists disjoint subsets $A, B \subseteq S$ of size $\geq \delta n$ s.t. every curve in A intersects every curve in B .



Lem 2 : Dense graph $\Rightarrow \exists$ large balanced bi-clique.

Observation :

No independent set in S can contain both a segment in A & a segment in B .
So every indep set is contained in $S \setminus A$ or $S \setminus B$.
 $\Rightarrow \text{OPT}(S) \subseteq S \setminus A$ or $\subseteq S \setminus B$.

Algorithm: $I(S)$.

Case 1: $m \leq \delta n^2$ (sparse)

Apply lem 1 to get S_1, S_2, X .

Recurse in S_1, S_2, X to get $I(S_1), I(S_2), I(X)$.

Return larger of $I(S_1) \cup I(S_2)$ & $I(X)$.

Case 2: $m > \delta n^2$ (dense)

Apply lem 2 to get A, B .

Recurse in $S \setminus A, S \setminus B$ to get $I(S \setminus A), I(S \setminus B)$.

Return larger of $I(S \setminus A)$ & $I(S \setminus B)$.

Analysis:

Approximation ratio :

We want to show $|OPT(S)| \leq f(n) |I(S)|$.

Case 1: $|OPT(S)|$

$$\begin{aligned}
 &\leq |OPT(S) \cap S_1| + |OPT(S) \cap S_2| + |OPT(S) \cap X| \\
 &\leq f(\frac{2n}{3}) |I(S_1)| + f(\frac{2n}{3}) |I(S_2)| + f(\sqrt{\delta n}) |I(X)| \\
 &\leq f(\frac{2n}{3}) |I(S_1) \cup I(S_2)| \quad (\because m \leq \delta n^2) \\
 &\quad + f(\sqrt{\delta n}) |I(X)| \\
 &\leq [f(\frac{2n}{3}) + f(\sqrt{\delta n})] |I(S)|.
 \end{aligned}$$

Case 2: $|OPT(S)|$

$$\begin{aligned}
 &\leq \max \{ |OPT(S-A)|, |OPT(S-B)| \} \quad \left[\begin{array}{l} \text{From} \\ \text{observation} \\ \text{of Lemma 2} \end{array} \right] \\
 &\leq \max \{ f(n-\delta n) |I(S-A)|, f(n-\delta n) |I(S-B)| \} \\
 &\leq f(n-\delta n) |I(S)|.
 \end{aligned}$$

$$\text{Set } f(\frac{2n}{3}) + f(\sqrt{\delta n}) \approx f(n-\delta n)$$

→ We can even take $f(n)$ instead of $f(n-\delta n)$ & get same ratio. But $f(n-\delta n)$ is needed in the runtime analysis to make progress.

Assume δ is sufficiently small, then we have $f(n) = n^\epsilon$.

$$\begin{aligned}
 &\text{we want, } (\frac{2n}{3})^\epsilon + (\sqrt{\delta n})^\epsilon \approx (n-\delta n)^\epsilon \quad \left[\frac{1}{3} \sim \frac{1}{\epsilon} \right] \\
 &\Leftrightarrow (\frac{2}{3})^\epsilon + (\sqrt{\delta})^\epsilon \approx (1-\delta)^\epsilon. \\
 &\Rightarrow n^\epsilon - \text{approximation!} \quad \rightarrow \begin{array}{l} \text{Big open \& even} \\ \text{to get } (log n)^{O(\epsilon(1))} \end{array} \\
 &\quad \text{approximation.}
 \end{aligned}$$

Runtime:

$$\text{Case 1: } T(n) \leq T(n_1) + T(n_2) + T(X) + \text{poly}(n) \quad \left[\begin{array}{l} \text{where} \\ n_1 + n_2 + X = n \end{array} \right]$$

$$\text{Case 2: } T(n) \leq 2T((1-\delta)n) + \text{poly}(n)$$

⇒ polynomial runtime.

Choosing δ too small, will increase the runtime.

- **Technique 5: Local Search.**

- PTAS for independent set for fat objects.

Fix b .

Initialize: $T := \emptyset$ (or any feasible solution).

Repeat {

For each subset $D \subseteq T$ of size $\leq b$

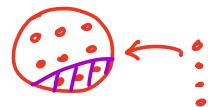
& $S \subseteq I - T$ of size $|D| + 1$ do:

If $(T - D) \cup S$ is a feasible solution

$$T \leftarrow (T - D) \cup S$$

} until stuck.

Return T .



Runtime:

iterations $O(n)$.

Time per iteration $O(n^b \cdot n^{b+1} \cdot n^2) = n^{O(b)}$.

Analysis: [Chan - HarPeled '09]

- Multi-cluster version of Smith-Wormald's separator theorem:

Given intersection graph of n const-depth fat objects in \mathbb{R}^2 , we can partition into

$V_1, V_2, \dots, V_O(n/b)$, X s.t.

all objects intersecting S_i excluding S_i $\rightarrow \partial V_i \subseteq X$,

$|V_i \cup \partial V_i| \leq b$,

$|X| \leq O(n/\sqrt{b})$

$\sum |\partial V_i| \leq O(n/\sqrt{b})$.

To use local search, we need to consider sets of size $\leq b$.

Let T^* be optimal independent set,
 T be locally opt indep set.

Apply above thm to $T^* \cup T$ (depth 2).

Then $\underbrace{|T^* \cap v_i|}_{\text{size} \leq b} \leq |T \cap (\underbrace{v_i \cup \partial v_i}_{\text{size} \leq b})|$

(Else can delete $T \cap (v_i \cup \partial v_i)$ from T
& insert $T^* \cap v_i$ to get larger indep set)

$$\Rightarrow \sum_i |T^* \cap v_i| \stackrel{\#}{\leq} \sum_i |T \cap v_i| + \sum_i |\partial v_i|$$

$$\text{Now, } |T^*| = \sum_i |T^* \cap v_i| + |T^* \cap X|$$

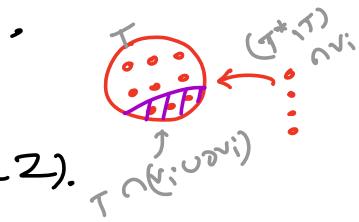
$$\stackrel{\#}{\leq} \sum_i |T \cap v_i| + \sum_i |\partial v_i| + |T^* \cap X|$$

$$\leq |T| + O\left(\frac{|T \cup T^*|}{\sqrt{b}}\right) \leq |T| + O\left(\frac{|T| + |T^*|}{\sqrt{b}}\right).$$

$$\Rightarrow |T^*| \left(1 - O\left(\frac{1}{\sqrt{b}}\right)\right) \leq |T| \left(1 + O\left(\frac{1}{\sqrt{b}}\right)\right)$$

$$\Rightarrow |T^*| \leq |T| \left(1 + O\left(\frac{1}{\sqrt{b}}\right)\right) \left(1 - O\left(\frac{1}{\sqrt{b}}\right)\right)^{-1}$$

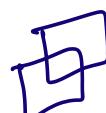
$$\Rightarrow |T^*| \leq \left(1 + O\left(\frac{1}{\sqrt{b}}\right)\right) |T|.$$



Setting $b = 1/\epsilon^2$, we obtain $(1+\epsilon)$ -approx
in $n^{O(1/\epsilon^2)}$ time.

Remark: works also for pseudo-disks.

set of objects s.t.
boundary of each pair
intersects at most twice



- **Technique 6: linear programming**

We'll use LP to give an $O(\log \log n)$ -appx algo for max weighted indep set of rectangles (MWISR).

- Independence (stability) number $\alpha(F)$:

max # of pairwise disjoint sets in F .

- Clique number $\omega(F)$:

max # of pairwise intersecting sets in F .

- Coloring number $\chi(F)$ or $\alpha(F)$:

min # of classes in a partition of F into pairwise disjoint sets.

$$\omega \leq \chi \leq 4\omega(\omega-1) \text{ [Asplund \& Grünbaum]}$$

$$O(\omega \lg \omega) \text{ [Chalermsook \& Walczak, SODA'21]}$$

$$\stackrel{?}{=} O(\omega) \text{ [conjecture].}$$

Rectangle intersections: (of R & R')

Corner intersection: R contains at least one corner of R' & vice versa.

Crossing intersection: Otherwise.

Containment intersection: one rectangle contains the other (special case of corner)

Vertical intersection: If one rectangle intersects both the top & bottom sides of the other.

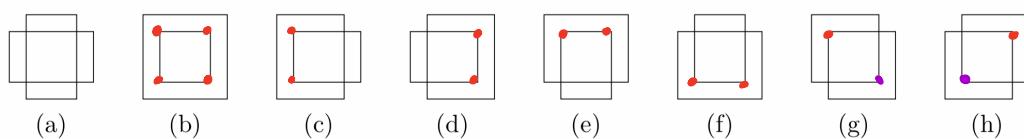
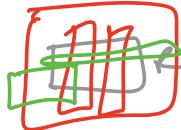


FIGURE 1. All possible ways a pair of rectangles can intersect: (a) a crossing intersection, (b)–(h) corner intersections (each involving at least two corners), (b) a containment intersection, (a)–(d) vertical intersections.

For rectangle R ,

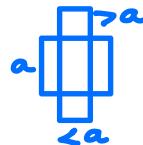


$V(R)$: Rectangles that intersect both the bottom & top sides of R .

$X(R)$: Rectangles that cross R . So $X(R) \subseteq V(R)$.

- **s -sparse**: A family of rectangles \mathcal{R} is s -sparse if we can fix s points p_1^R, \dots, p_s^R in each $R \in \mathcal{R}$ s.t. \forall crossing rectangles $R, R' \in \mathcal{R}$, $R \cap R'$ contains one of $\{p_1^R, \dots, p_s^R, p_1^{R'}, \dots, p_s^{R'}\}$.

E.g. family of squares is 0-sparse as it is crossing-free.



Lem: Every s -sparse family of rectangles with clique no. ω is $(2s+4)(\omega-1)$ -colorable in polytime.

Proof:

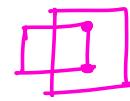
First, we show the number of edges in the intersection graph G is $\leq (s+2)(\omega-1) |\mathcal{R}|$.

We show this by token counting.

If R & R' cross, give one token to a point in $p_1^R, \dots, p_s^R, p_1^{R'}, \dots, p_s^{R'}$ that lie in $R \cap R'$.

Else it is corner intersection:

Give $\frac{1}{2}$ tokens to two of the corners involved in the intersection



Total # tokens = # edges.

Total amount of received tokens by points

$$\leq |R| \left(\underbrace{s \cdot (w-1)}_{\substack{\text{each point } p_i \\ \text{receives } \leq w-1 \text{ tokens}}} + 4 \cdot \underbrace{\left(\frac{w-1}{2} \right)}_{\substack{\text{Acorn. Each can recv } \frac{w-1}{2} \text{ tokens.} \\ \text{with some corners recv strictly} \\ \text{fewer tokens, e.g. left most corner} \\ \text{among top edges.}}} \right) = |R| (s+2)(w-1).$$

so, # Edges $\leq |R| (s+2)(w-1)$.

Now we use induction on $|R|$ to show $(2s+4)(w-1)$ -colorability.

for the base case $|R| = 2$, as # Edges ≥ 0 ,
 $|R|(s+2)(w-1) > 0 \Rightarrow w \geq 2$.

It is clearly colorable by $2 \leq (2s+4)(w-1)$ colors.
 $\approx s \geq 0, w \geq 2$.

For the inductive step, note that \exists a vertex v of $\deg < \frac{2(s+2)(w-1)|R|}{|R|} = (2s+4)(w-1)$.

[By averaging argument].

Using induction $v \setminus v$ is colored by $(2s+4)(w-1)$ colors.

As vertex v has $< (2s+4)(w-1)$ neighbors, we can color it with one of $(2s+4)(w-1)$ colors as well.

Thus G is $(2s+4)(\omega-1)$ colorable. ■

- **Corollary:** Every family of rectangles with no crossing intersections are $4(\omega-1)$ colorable.
(i.e. only corner/containment intersection),

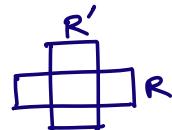
Theorem [Asplund - Grünbaum]

R is $4\omega(\omega-1)$ -colorable.

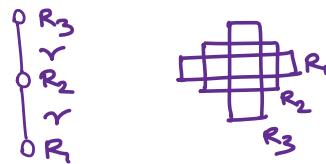
(idea: partition into crossing-free family)

Proof: Define partial order \preceq on R :

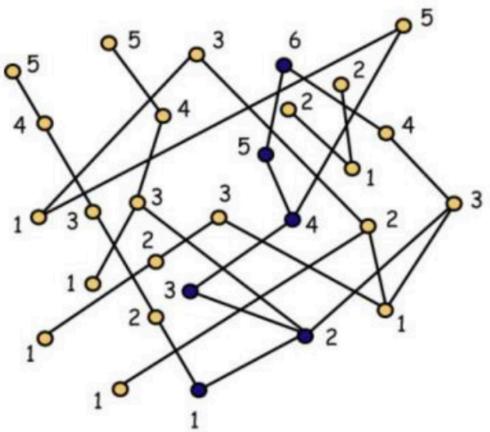
$R \preceq R'$ iff $R' \in X(R)$.



- Every chain (subset of poset that is totally ordered) in this poset (R, \preceq) is a clique in R .

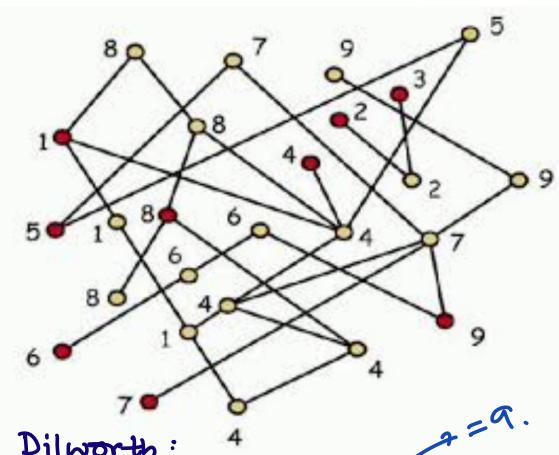


- So height [max cardinality of a chain] of (R, \preceq) is $\leq \omega$.
- Mirsky's theorem: For every finite poset, the height equals the min number of antichains (subsets in which no pair of elements are ordered) into which the poset can be partitioned.



Theorem A poset of height h can be partitioned into h antichains.

- So R can be partitioned into ω antichains.
- Each antichains are crossing-free.
- Using corollary, we get $4\omega(\omega-1)$ -coloring. █



(Related : Dilworth's thm :
max size of antichain (width)
= min no. of chains in the
partition of poset into chains)

Dilworth : █ $\omega = 9$.
A poset of width ω can be
partitioned into ω chains.

Theorem [Chalermsook - Walczak]

R is $O(\omega \log \omega)$ -colorable.

Special cases :

- Only crossing and containment intersections
 $\Rightarrow \chi(R) = \omega(R)$.

- Only vertical intersections $\Rightarrow \chi \leq 3\omega - 2$.

• How do we connect χ & ω ?

polynomially
bounded weights

• Preprocessing : All weights $w_R \in \{0, 1, \dots, 2n\} \forall R \in R$.

\rightarrow Scale weights s.t. $\min_{R \in R} w_R = 1$. Say $W_{\max} = \max_{R \in R} w_R$.

Define new weight $\hat{w}_R = \lfloor w_R \cdot \frac{2n}{W_{\max}} \rfloor$.

Claim : Any τ -approximate soln for \hat{w}_R is 2τ -approx soln for w_R .

\rightarrow We have : $\sum_{R \in S} w_R \cdot \frac{n}{W_{\max}} \leq \sum_{R \in S} \hat{w}_R \leq \sum_{R \in S} w_R \cdot \frac{2n}{W_{\max}}$
for any set $S \subseteq R$

Say, $\sum_{R \in \text{OPT}} w_R \cdot \frac{n}{W_{\max}} \leq \sum_{R \in \text{OPT}} \hat{w}_R \leq \tau \sum_{R \in \text{OPT}} \hat{w}_R \leq \tau \sum_{R \in \text{OPT}} w_R \cdot \frac{2n}{W_{\max}}$

$\Rightarrow \sum_{R \in \text{OPT}} w_R \leq 2\tau \sum_{R \in \text{OPT}} w_R$

So, now on we'll assume all weights are in $\{0, 1, \dots, 2n\}$. In fact, we can remove rectangles of "new" 0-weight.

Note their original total weight is small as $\hat{w}_R = 0 \Leftrightarrow w_R \leq W_{\max}/2n$.

$\Rightarrow \sum_{R: \hat{w}_R=0} w_R \leq W_{\max}/2$.

Clique-constrained LP relaxation of MWISR.

R : family of n rectangles.

$w_R (> 0)$: weight of $R \in R [\in \{1, \dots, 2n\}]$

F : family of inclusion-maximal cliques in R .

$|F| \leq n^2$.

$$\text{maximize } \sum_{R \in R} w_R x_R$$

$$\text{s.t. } \sum_{R \in e} x_R \leq 1 \quad \forall e \in F$$

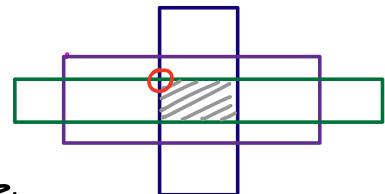
$$x_R \geq 0 \quad \forall R \in R.$$

$(x_R^*)_{R \in R}$: OPT fractional soln to the LP.

w^* : OPT LP value
OPT is soln.

Observation: $|F| \leq n^2$.

- The intersection of every inclusion-wise maximal clique is a rectangle whose top left corner is the intersection point of the top side of some rectangle in R with the left side of some rectangle in R .



Case 1. $w^* \leq O(n)$.

Just output max-weight rectangle. ($wt > 2n$).
 $\Rightarrow O(1)$ -appx already.

Case 2. $w^* \geq 32n$. Take $M = 64 \log n$.

We'll convert $(x_R^*)_{R \in R}$ to $(x_R')_{R \in R}$, which $\frac{1}{M}$ -integral (i.e. $x_R' = \frac{k}{M}$, $k \in \{0, 1, \dots, M\}$) & $\sum_{R \in R} w_R x_R'$ is $\leq 2(w^*)$.

• Lemma: Given $W^* \geq 32n$, \exists a polytime rand. algo that produces a feasible soln. $(x'_R)_{R \in R}$ for the LP s.t.

- ① x'_R is $1/M$ -integral,
- ② $\sum_{R \in R} w_R x'_R$ is $\leq W^*$.

Proof: First we create multiset \tilde{R} from R .

For each $R \in R$, create $\lceil x_R M \rceil - 1$ copies of R with value of corresponding LP variable to be $1/M$ & one copy with " " $x_R - (\lceil x_R M \rceil - 1)/M$. Call this LP soln \tilde{x} .

Let T_R be the set of $(\lceil x_R M \rceil - 1)$ copies of R .

$$\text{Define } \tilde{x}_R := \sum_{t \in T_R} \tilde{x}_t.$$

As $\tilde{x}_R = x_R$, clearly \tilde{x}_R is a feasible soln of LP.

Now create multiset R' from \tilde{R} .

Select each (copy of) $R \in \tilde{R}$ independently w.p. $\frac{M}{2} \tilde{x}_R$.

Define x' to be a "candidate" LP solution where each selected copy is assigned a value of $1/M$.

So if t copies of rectangle R is selected in R' then $x'_R = t/M$.

so, (i) is trivially true, i.e. x'_R is $\frac{1}{M}$ -integral.

Now we show it is feasible for LP w.h.p.

claim: x' is a feasible soln for the LP. (w.h.p.)

Let $C \in F$ be a inclusion-wise maximal clique.

We need to show the corresponding constraint is true i.e. $\sum_{R \in C} x'_R \leq 1$.

Let C' be the subset of rectangles of C that are present in R' .

Then $\mathbb{E}[|C'|]$

$$= \mathbb{E}\left[\sum_{R \in C} \sum_{t \in T_R} \mathbb{P}[\text{copy } t \text{ of rectangle } R \text{ was selected in } R']\right]$$

$$= \sum_{R \in C} \left[\sum_{t \in T_R} \frac{M}{2} \tilde{x}_t \right]$$

T_R be the set of copies of R .

$$= \frac{M}{2} \cdot \left[\sum_{R \in C} \sum_{t \in T_R} \tilde{x}_t \right]$$

$$= \frac{M}{2} \cdot \sum_{R \in C} \tilde{x}_R$$

$$\left[\text{where } \tilde{x}_R = \sum_{t \in T_R} \tilde{x}_t \right]$$

$$\leq \frac{M}{2} \quad [\because \tilde{x}_R \text{ is feasible soln of LP}].$$

We'll use Chernoff bound to show concentration.

[For a sum of independent 0-1 RV Z :

$$\Pr(Z > 2\mathbb{E}Z) < \exp(-\mathbb{E}Z/3).$$

Using Chernoff bound,

$$\Pr[|\mathcal{C}'| > M] \leq e^{-M/6} \leq \frac{1}{n^4}. \quad (\because M = 64 \log n)$$

$$\begin{aligned} \text{Hence, } \Pr_{R \in \mathcal{C}} \left[\sum_{R \in \mathcal{C}} x'_R > 1 \right] &= \Pr \left[|\mathcal{C}'| \cdot \frac{1}{M} > 1 \right] \\ &= \Pr[|\mathcal{C}'| > M] \leq 1/n^4. \end{aligned}$$

Applying union bound over \mathcal{F} ($\because |\mathcal{F}| \leq n^2$),

$$\sum_{R \in \mathcal{C}} x'_R \leq 1 \quad \forall \mathcal{C} \in \mathcal{F}, \text{ w.p. } (1 - \gamma_{n^2}).$$

Hence, x' is feasible w.p. $\geq 1 - \gamma_{n^2}$. ■

For (ii), we divide rectangles in $\tilde{\mathcal{R}}$ into $K = \lceil \log(2n) \rceil$ subcollections $\{\tilde{\mathcal{R}}_i\}_{i=1}^K$: $\tilde{\mathcal{R}}_i = \{R \in \tilde{\mathcal{R}} : w_R \in [2^{i-1}, 2^i)\}$.

Partition \mathcal{R}' into $\{\mathcal{R}'_i\}_{i=1}^K$ similarly.

$$\begin{aligned} \text{Hence, } \mathbb{E}[|\mathcal{R}'_i|] &= \sum_{R \in \tilde{\mathcal{R}}_i} \sum_{t \in T_R} \Pr[t \text{ is selected in } \mathcal{R}'] \\ &= \sum_{R \in \tilde{\mathcal{R}}_i} \frac{M}{2} \tilde{x}_R = \frac{M}{2} \sum_{R \in \tilde{\mathcal{R}}_i} \tilde{x}_R. \end{aligned}$$

Define $i \in [K]$ bad iff $\sum_{R \in \tilde{R}_i} \tilde{x}_R < 4$;

Else i is good.

B be set of bad indices.

Claim: $\sum_{i \in B} \sum_{R \in \tilde{R}_i} w_R \tilde{x}_R \leq w^*/2$.

$$\rightarrow \sum_{R \in \tilde{R}_i} w_R \tilde{x}_R < 2^i \sum_{R \in \tilde{R}_i} \tilde{x}_R \xleftarrow{\text{defn of bad}} < 4 \cdot 2^i.$$

Summing over all $i \in B$,

$$\sum_{i \in B} 4 \cdot 2^i \leq \sum_{i=1}^K 4 \cdot 2^i \leq 16n \leq w^*/2. \quad \blacksquare$$

for good indices $i \in B$, $\mathbb{E}[|R'_i|]$

$$\geq \frac{M}{2} \left(\sum_{R \in \tilde{R}_i} \tilde{x}_R \right) \geq \frac{M}{2} \cdot 4 = 2M.$$

Using Chernoff bound,

$$\begin{aligned} \Pr[|R'_i| \leq \frac{M}{4} \cdot \left(\sum_{R \in \tilde{R}_i} \tilde{x}_R \right)] &\leq \Pr[|R'_i| \leq \frac{\mathbb{E}[R'_i]}{2}] \\ &\leq e^{-\mathbb{E}[R'_i]/8} \leq e^{-2M/8} \leq e^{-16\log n} = \frac{1}{n^{16}}. \end{aligned}$$

Thus using union bound,

$$|R'_i| \geq \frac{M}{4} \left(\sum_{R \in \tilde{R}_i} \tilde{x}_R \right) \quad \forall i \notin B \text{ w.h.p.}$$

$$\downarrow M \sum_{R \in \tilde{R}_i} \tilde{x}_R$$

$$\text{So } \sum_{R \in \tilde{Q}_i} x'_R \geq \sum_{R \in \tilde{Q}_i} \tilde{x}'_R / 4. \quad \begin{matrix} \text{Important!} \\ \text{Relates } x'_R \text{ & } \tilde{x}'_R \end{matrix}$$

For each $i \notin B$, we have: $w_R \leq 2^i$.

$$\sum_{R \in \tilde{Q}_i} w_R x'_R \geq \frac{2^{i-1}}{4} \sum_{R \in \tilde{Q}_i} \tilde{x}'_R \geq \frac{1}{8} \sum_{R \in \tilde{Q}_i} x_R w_R.$$

Summing over all $i \notin B$, we get

$$\sum_{i \notin B} \sum_{R \in \tilde{Q}_i} w_R x'_R \geq \frac{1}{8} \sum_{i \notin B} \sum_{R \in \tilde{Q}_i} x_R w_R \geq \frac{1}{8} \cdot \frac{w^*}{2} = w^*/16. \quad \blacksquare$$

\downarrow
from claim

- Given LP soln $(x'_R)_{R \in \tilde{Q}}$, we create multiset \tilde{R}' : for each $R \in \tilde{Q}$, add $c_R := \underbrace{M x'_R}_{\text{integral & } \leq M}$ copies of R to \tilde{R}' .

As each copy in \tilde{R}' has LP weight $1/M$,
max clique size by this is $\leq M$. \leftarrow feasible to LP.

Also, $\sum_{R \in \tilde{R}'} w_R x'_R$ is $\Omega(w^*)$. $\sum_{R \in \tilde{R}'} x_R \leq 1$

Hence, \tilde{R}' can be colored using $O(M \log M)$ colors.

$$\begin{aligned} \text{So max wt color class has wt} &\geq \frac{\Omega(w^*) \cdot M}{O(M \log M)} \\ &\geq \Omega(w^*/\log M). \end{aligned}$$

As $\text{OPT} \leq w^*$ & M is $\Theta(\log n)$, we get
 $O(\log \log n)$ -approx. \blacksquare