
 

Geometric set corer

Geometric set corer asc Discrete version
Given a objects If n points p toeightedunwt
Find min subset Ste I that covers all of P
Equivalent to hitting set in dual range space

o
o

o
o

Hitting set Discrete version
Given a objects I n points P weighted unwt
Find min subset s E P that stabs all of I

v y

Now we'll see use of Vc dim E nets to obtain

improved approximation



sampling using a small set of o
bsÉiÉÉÉÉn

estimate properties of an entire sample space

sample complexity minimum size sample to
obtain the required result

Interestingly one can capture the structure

of a distribution point set by a small subset

C E net or E sample The size will depend on

the complexity of the structure ranges
but indep of size of point set

VC Dimension Vapnik Cherronenkis dimension

X is also called
ground set

set of all closed
Example of range space y intervals

X IR 22 a b I a b E IR

I

i s
co is

1.3 3.5
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0 I 2 3 4 5 6 7



S 2.43 0 Dy is the set of all

4 possible subsets of s

IIIEared
S 2 4.6 By gives seven of the eight possible
protrffggered

subsets of S except 2,6

Any interval containing 2 6 must contain 4

I

so VC Dim of above range space with infinite
points intervals is only 2

Note VC dim R d if there is some set

of cardinality d that is shattered by J2
It does not say all sets of cardinality d are

shattered by R To show VC dim E d we

need to show all sets of cardinality d

are not shattered by R

Sauer Shelah theorem

Let X R be a range space with 1 1 n

VC dim d Then I 21 I nd

Low vc dim intuitively imply
cardinality of range space is low



x izz the family of all closed
convex sets on the plane

Claim This range space has infinite ve dimension
Need to show for any n e N there exists a

set s with 1st n that can be shattered

Sn see an be n points on the

boundary of a circle

8 Any subset T E Sn Y 0 defines a

convex set that does not contain

any points in salt

Hence Y is included in the projection of Ron Sn
Empty set is also a projection as well

Hence An E Ir Sn is shattered

YC dim 3
Disks X IR R the family of all disks on the plane
Observation For any 3 points on the plane in

general position one can find eight disks 1so that the points are shattered

It is ok to
show for7 400 03
some setof
3points
we don't
require an

6 I 4 setof3points

02
I 4



Can disks shatter a set P with four points ha b c d
case 1 convex hull of P has only 3 points on

its boundary say a b c

Then x a b c can not be obtain as a fÉjprojection
Due to convexity any disk containing a b c
must contain d

Case 2 all 4 points are on the convex hull
Then if we can realize a C b d as

projections these two disks will intersect each
other at a points a contradiction

Vo Din
OO
OO

Squares X IR R the family of all squares on the plane

co n A set of 3points can be shattered
No set of 4 points can be shattered
similar to above proof for disks

I 19,07 Two squares can't have crossing
intersection

y I
O 1

Rectangles can supportcrossing
Rectangles X IR R the family 1,8 1 o
of all rectangles on the plane

Tc din 4



orNo five points can be shattered 1
Consider min enclosing rectangle
All five points lie on the boundary

a
Atleast one point lie inside

we can't shatter the blue points on the o

boundary
In general most simplegeometric ranges have low
VC dimension

E nets

E nets are combinatorial object that
catches or intersects with every range
of sufficient size

Here Pryer is the prob that a point
is chosen according to D is in R

Note combinatorial defn Corps to

the setting when D is uniform
over A



E net theorem Let X R be a range space with
VC dim d and let D be a prob distribution
on X For any o c 8 E E la there is an

m 0 ed en f t te en f such that a random

sample from D of size m is an E net for X
with probability at least 1 8

O d en Cdopt approximation for hitting set
with Vc dimension d

Hitting set variant
n elements m sets
X er en R Si Sm

Algorithm
Guess OPT BETLEY E 1 20 Pt

Initialize
Put w ceil I f ie n 1 start with uniform

weights on each element
Loop
Find E net Ne of size 0 f en f
If all sets are hit return NE stop

Else F Sj s t Sj n Ne p y if some set is
not hit by E net

W ei 2W er Kei e s I Double weightsof
points in SjGoto Loop



The algorithm is a variant of multiplicative
weight update Mw u Intuitively total weight
of points increases by a rate ite and OPT

increases by a faster rate Itf CI TZE
Thus the algorithm stop quickly w good guarantee

Theorem If I hitting set of size opt the

doubling process can happen at most 0 Copt loggy
times and the total weight is at most n4 opt

Say It be an optimal set
For input X say the set Sj is returned by
an iteration

Then W Sj E E W X

Thus in each iteration W X becomes at
most w X W Sj E ITE W X

so total weight of X after k iterations

W X E n it E s net ITE E e
HE O

As It is a hitting set H n Sj 0
So at least one element h E H is doubled in
each iteration say h is doubled totally
za times



W H Iff 22h where Eze Z K
LEH

22 QE

Here we have used convexity ofexponential function
from Jensen's inequality Ei pi d hi 3 O CEPi Xi
where Pi 70 Epi 1 d is convex

His optimal i e I HI Yze Take 467 2 Pi ZE t ie I HI

4,227 EZE 224 I 2120.2h 22 22
E K

LEH

As W H E W X

ZEEK ze net s n23 Ek
e 2312

2.82
2,2EK 36142 z ane

2042 E Zn E Eka I log Zn E

K E E log ane 0 OPT log n OPT

i W X I n eek I n e s me
I 0 n'loptz

So we can stop the run if iterations exceed K

In special cases if A small e nets of size
Ocd e an Ocd approx is obtained

Matousek Siedel Welt 90

for disks in R2 I e nets of size o ye



Aronov Ezra Shapiro Sto c og

Better E nets for rectangles Oct log lost
also true for dual range spacesof rectangles Tiff It

used for set cover

as E 0 ft son of cost 0 opt loglogOPT

This is still the best known approx
Open problem OC approximation for
geometric hitting set set cover for rectangles

related by
dual rangespace

S S o o o

00

lemma consider a range space s X R
with ve dim d Then the dual range space
St R X has ve dim I 2dt

Thus to solve Geometric set cover with Rectangles
we solve Geometric hitting set with dual range
space of rectangles which has Vc dim 06



LP based approach Even et al Hitting set

Natural LP LP1 Equivalent LP L2

min Ey Ku J Max E

S t I see 7 I K S E R
S ti Es Mi Z E F S E R

MES E Mu 1

Rre 70 F U E X UE X

E Mu O V U E X

Equivalence proof
use substitution E Eggen Mu E An H U EX
J Yet

FEEL 2 to obtain tht et
2 Find E net H with weight re Mu tu EX

As Es Mi 3 E F S E R H is a hitting set

can be extended to weighted setting as well



Application Art Gallery Theorem

AYEEE
what about

approximation

Consider the range space s P R where
R is the set of all possible visibility
polygons inside

a a EPTheorem
Pa EPVC din S 0 l

Ch 6 4 Han Peled

We want to cover the entire polygon using
min of visibility polygons
This is just geometric set cover

Using prev algorithms we obtain O log OPT
approximation Be



o Rectangle Packing Problem

Atf

with associated
Given n rectangles profit

Bin packing knapsack
variant variant

Pack all rectangles
into min bins

Pack maximum

profit subset

of rectanglesnonoferlapping
axis parallel into a single
packing knapsack

Rectangles 2D Bin Packing 2D knapsackcan be moved
1 405 Bansal KI SODA 14

1 89 Galvez
et al 17

NO APTAS
PTAS might be
possible

d dim 1.69 Caprara 02 it E3d Sharing
Open polyd app
or even fed hardness

Guillotine
variant APTAS Bansal

et al Foes 05
PPTAS

K dal Soca 21
Pas is open

43conjecture
Best 2D BP Vs
Best Guillotine ZDBP



Rectangles Uniform Round SAP uniform
SAPcan only be

moved in C2 E appx
22

1 969
one direction no APtas Kar etat Momkeggiese
T arbitrary profile

OClog log n
RTE

Mom ke Wiese 15

Rectangles RectangleColoring MW ISR
are fixed o logo OCloslosn

CCW SODA 21

PTAS for packing squares into knapsack
to maximize the packed area

Given n squares I Si Sa sn

Square Si has sidelength si

Goal Find axis parallel nonoverlapping
packing of max

Iffy
subset of squares

Start with an optimal packing Po
Modify Po to obtain a structured packing
Pr set area Po area Pr

Find a packing Pa in polytime
s t area Pr area P2



Item Classification shifting
for two constants Eearge Esman define
square Si small if si Esman

medium if sie cesman
eÉÉÉÉÉÉlarge if so 7 Enlarge

La for any given E O and tve increasing
for fl F E Z E large 7 f Elarge Esman re l

St total area of squares with side length
in Esmail Eearge is at most E

Esma FEE
Pf Take K 1 E Eo E

E
E f E Eit f Ei H I E K

I g
DD D

O Es 1

These are Gt1 disjoint ranges Ei Ei a tie Kit
so F i s t total area of all squares
in opt with side length E Ei Ei y is

I ye E
Esmail Ei large Ei e

So now on we'll ignore medium squares

Packing of large squares
Push all to left bottom

Ifj large items Yet.gein OPT



positions for left bottom corners

is OeearseCl E Cease Eetge HUFFpermtutations Energia
Brute force for big

By brute force in nosearsel time try off
possible packings of large squares

If all items were large we solve the problem
exactly
From now assume we guess all large
squares in OPT but their packing can bedifferent

from OPT

Packing of small squares
Next Fit Decreasing NFD NFD H

sort squares by height

left justified on a level
until there is insufficient

accommodate the next

rectangle

Imma Let a set of squares s with sides 8

if MFD cannot place any square in a rectangle
R Pn X Rz then total wasted space

8 8 Pitre



Bot
e shelves Length of smallest

largest cube in level i Ci di

Non increasing order Citi Edi

Total wasted part red I

i
Cci di Pz

ta
EYECci Citi tee de n SEE o

Total wasted part green

any
If all squares are small MD will pack
min total area of squares 1 2Esman

so either pack only large or only
small Cate approximation



Éfgetfins in p
composition

Extend their edges to create a grid
we get G

jeans 25 B come
grid cells

Gents

For a cell Q p x2 if P J t Esmail
Nz I Esman start packing small rectangles
in Q by NFD Else ignore cell Q

Either we pack all small

Or the total wasted space
E B I Esman B

g BCI 27 Esman

signorÉÉE in Inacked

we can choose f such that

B I 2 Esman I E Esman I IIe Oeearsed
Then we only waste E E area I PTAS as



General square packing in 2D knapsack
Jansen Solis Oba IPCO 08 PTAS

Heydrich Wiese SODA 17 EPTAS

Jansen et al Ptas for d dim cubes
into d dim knapsack d 2


